Automotive Propulsion: Past and Present by André Loubser
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hydrogen Engines Authors
biblio.ugent.be The UGent Institutional Repository is the electronic archiving and dissemination platform for all UGent research publications. Ghent University has implemented a mandate stipulating that all academic publications of UGent researchers should be deposited and archived in this repository. Except for items where current copyright restrictions apply, these papers are available in Open Access. This item is the archived peer‐reviewed author‐version of: Title: Electricity Powering Combustion: Hydrogen Engines Authors: Sebastian Verhelst, Thomas Wallner; Helmut Eichlseder, et al. In: Proceedings of the IEEE, Volume 100, Issue 2, pages 427‐439 Optional: http://dx.doi.org/10.1109/JPROC.2011.2150190 To refer to or to cite this work, please use the citation to the published version: Authors (year). Title. journal Volume(Issue) page‐page. doi Manuscript ID 0012-SIP-2011-PIEEE 1 Electricity Powering Combustion: Hydrogen Engines Sebastian Verhelst, Thomas Wallner, Helmut Eichlseder, Kaname Naganuma, Falk Gerbig, Brad Boyer and Shiro Tanno Abstract—Hydrogen is a means to chemically store energy. It I. INTRODUCTION can be used to buffer energy in a society increasingly relying on HIS Special Issue focuses on the intermittency challenge, renewable but intermittent energy or as an energy vector for sustainable transportation. It is also attractive for its potential to T for reasons outlined in the preface article, and seeks to power vehicles with (near-) zero tailpipe emissions. The use of offer an overview of the possibilities for massive scale energy hydrogen as an energy carrier for transport applications is storage. One of the options for converting intermittent mostly associated with fuel cells. -
Famous German People
Famous German People Photo Name Description Bday Born-Died Staatsmann und Politiker / statesman, politician, and the first chancellor of post-war Konrad Adenauer Germany from the town of Bonn, who was the man given the responsibility for 1/5 (1876-1967) Germany’s economic recovery after World War Two Musiker und Komponist / musician and composer during the Barock period (early Johann Sebastian Bach 3/21 (1685-1750) 1700’s) and wrote musical works for the church Erfinder / inventor of first luxury cruise and the founder of the Hapag-Lloyd Albert Ballin 8/15 (1857-1918) enterprises, which helped assist millions of emigrants with their passage to America Bildhauer / sculptor, who was an important representative of the expressionistic Ernst Barlach 1/2 (1870-1938) period of the 1930’s Tennisspieler / former world No. 1 professional tennis player. His Grand Slam singles Boris Becker 11/22 (1967- ) titles included three Wimbledons, two Australian Opens and one US Open Musiker und Komponist / musician and composer, who was born in Bonn, was Ludwig van Beethoven famous for writing symphonies, and continued to write after becoming tone deaf at 12/16 (1770-1827) the age of 29 Chemiker und Mediziner / chemist and doctor who discovered vaccine against Emil von Behring 3/15 (1854-1917) diptheria and tetanus Erfinder und Techniker / inventor and technician, who along with Gottlieb Daimler, Karl Benz 11/26 (1844-1929) invented the first car Schriftsteller in Ostberlin / former East German writer in East Berlin and is a singer- Wolf Biermann 11/15 (1936- -
Vorlage Für Geschäftsbrief
AUDI AG 85045 Ingolstadt Germany History of the Four Rings AUDI AG can look back on a very eventful and varied history; its tradition of car and motorcycle manufacturing goes right back to the 19th century. The Audi and Horch brands in the town of Zwickau in Saxony, Wanderer in Chemnitz and DKW in Zschopau all enriched Germany’s automobile industry and contributed to the development of the motor vehicle. These four brands came together in 1932 to form Auto Union AG, the second largest motor-vehicle manufacturer in Germany in terms of total production volume. The new company chose as its emblem four interlinked rings, which even today remind us of the four founder companies. After the Second World War the Soviet occupying power requisitioned and dismantled Auto Union AG’s production facilities in Saxony. Leading company executives made their way to Bavaria, and in 1949 established a new company, Auto Union GmbH, which continued the tradition associated with the four-ring emblem. In 1969, Auto Union GmbH and NSU merged to form Audi NSU Auto Union AG, which since 1985 has been known as AUDI AG and has its head offices in Ingolstadt. The Four Rings remain the company’s identifying symbol. Horch This company’s activities are closely associated with its original founder August Horch, one of Germany’s automobile manufacturing pioneers. After graduating from the Technical Academy in Mittweida, Saxony he worked on engine construction and later as head of the motor vehicle production department of the Carl Benz company in Mannheim. In 1899 he started his own business, Horch & Cie., in Cologne. -
The Corvair Line: Styling Sensation of the 1960S by James Kraus
The Corvair Line: Styling Sensation Of The 1960s by James Kraus Chevrolet Corvair 700 Sedan The Corvair Line is an accent line that circumnavigates the entire vehicle, front, sides and back, visually dividing the body into upper and lower sections. It can rise and fall, curve and bend, but must be unbroken, with neither beginning nor end. Volkswagen Transporter While the Corvair popularized this motif, it was not actually the first to make use of it. While there were a number of separate- fender era examples like the DKW Wanderer, 1937 Ford Model 74, Peugeot 202 and VW Beetle, the first modern appearance was on the Volkswagen Transporter of 1949. Fiat 500 In 1957, the Fiat 500 made its debut with a single concave character line encircling the perimeter. This was the first use of such a line in a single relatively flat plane, roughly parallel with the ground on a ponton, envelope body design. The idea of a such a single character line uniting the front, sides and rear was a concept that was clearly in the air at the General Motors styling studios in the late ’50s. The 1960 Pontiacs and Oldsmobiles featured partial Corvair Lines, but the new 1960 Corvair incorporated the full all-round treatment in the form of a crisp deeply- drawn crease, deviating from complete linearity only by way of a slightly dipped section between the headlamps. 1960 Pontiac Bonneville: a Corvair Line fading at the centre sides and intersected by quad tail lamps. Fitz and Van illustration While the Corvair was not the first to incorporate the 360-degree accent, its sharp, well-delineated expression of the feature had an immediate marked influence on automobile designers the world over. -
Karl E. Ludvigsen Papers, 1905-2011. Archival Collection 26
Karl E. Ludvigsen papers, 1905-2011. Archival Collection 26 Karl E. Ludvigsen papers, 1905-2011. Archival Collection 26 Miles Collier Collections Page 1 of 203 Karl E. Ludvigsen papers, 1905-2011. Archival Collection 26 Title: Karl E. Ludvigsen papers, 1905-2011. Creator: Ludvigsen, Karl E. Call Number: Archival Collection 26 Quantity: 931 cubic feet (514 flat archival boxes, 98 clamshell boxes, 29 filing cabinets, 18 record center cartons, 15 glass plate boxes, 8 oversize boxes). Abstract: The Karl E. Ludvigsen papers 1905-2011 contain his extensive research files, photographs, and prints on a wide variety of automotive topics. The papers reflect the complexity and breadth of Ludvigsen’s work as an author, researcher, and consultant. Approximately 70,000 of his photographic negatives have been digitized and are available on the Revs Digital Library. Thousands of undigitized prints in several series are also available but the copyright of the prints is unclear for many of the images. Ludvigsen’s research files are divided into two series: Subjects and Marques, each focusing on technical aspects, and were clipped or copied from newspapers, trade publications, and manufacturer’s literature, but there are occasional blueprints and photographs. Some of the files include Ludvigsen’s consulting research and the records of his Ludvigsen Library. Scope and Content Note: The Karl E. Ludvigsen papers are organized into eight series. The series largely reflects Ludvigsen’s original filing structure for paper and photographic materials. Series 1. Subject Files [11 filing cabinets and 18 record center cartons] The Subject Files contain documents compiled by Ludvigsen on a wide variety of automotive topics, and are in general alphabetical order. -
ENRESO WORLD - Ilab
ENRESO WORLD - ILab Different Car Engine Types Istas René Graduated in Automotive Technologies 1-1-2019 1 4 - STROKE ENGINE A four-stroke (also four-cycle) engine is an internal combustion (IC) engine in which the piston completes four separate strokes while turning the crankshaft. A stroke refers to the full travel of the piston along the cylinder, in either direction. The four separate strokes are termed: 1. Intake: Also known as induction or suction. This stroke of the piston begins at top dead center (T.D.C.) and ends at bottom dead center (B.D.C.). In this stroke the intake valve must be in the open position while the piston pulls an air-fuel mixture into the cylinder by producing vacuum pressure into the cylinder through its downward motion. The piston is moving down as air is being sucked in by the downward motion against the piston. 2. Compression: This stroke begins at B.D.C, or just at the end of the suction stroke, and ends at T.D.C. In this stroke the piston compresses the air-fuel mixture in preparation for ignition during the power stroke (below). Both the intake and exhaust valves are closed during this stage. 3. Combustion: Also known as power or ignition. This is the start of the second revolution of the four stroke cycle. At this point the crankshaft has completed a full 360 degree revolution. While the piston is at T.D.C. (the end of the compression stroke) the compressed air-fuel mixture is ignited by a spark plug (in a gasoline engine) or by heat generated by high compression (diesel engines), forcefully returning the piston to B.D.C. -
Anniversary Dates 2018
Anniversary dates 2018 Audi Tradition Audi Tradition 2 Anniversary dates 2018 Content Anniversaries in our corporate history January 1938 May 1963 80 years – In memory of Bernd Rosemeyer ..............5 55 years – End of NSU bicycle production ..............14 February 1928 July 1958 90 years – NSU 6/30 hp .........................................6 45 years – End of production of the Prinz 4 ...........15 February 1968 July 1958 50 years – Italdesign .............................................7 60 years – Groundbreaking for a new plant in Ingolstadt .....................................16 February 1993 25 years – Establishment of Audi Hungaria August 1928 Motor Kft. ............................................................8 90 years – NSU 7/34 ............................................17 March 1928 August 1938 90 years – First DKW car ........................................9 80 years – Crash tests at the Central Testing Unit of the Auto Union .........................................18 March 1958 60 years – NSU Prinz ............................................10 August 1978 40 years – Audi 80 B2 ..........................................19 March 1983 35 years – Audi 100 Avant (C3) .............................11 August 1998 20 years – Audi TT Coupé .....................................20 April 1958 60 years – Takeover of Auto Union GmbH September 1953 by Daimler Benz AG .............................................12 65 years – Three-cylinder DKW F 91 ......................21 May 1933 September 1963 85 years – Audi Front ...........................................13 -
Combustion Chamber Design Effect on the Rotary Engine Performance - a Review
Boughou Smail et al / International Journal of Automotive Engineering Vol.11, No.4(2020) Review article 20204578 Combustion Chamber Design Effect on The Rotary Engine Performance - A Review Boughou Smail 1) AKM Mohiuddin 2) 1) International University of Rabat UIR, Renewable Energies and Advanced Materials Laboratory LERMA, Technopolis Rabat-Shore, Morocco (E-mail [email protected]) 2) International Islamic University of Malaysia IIUM, Faculty of Engineering P.O. Box 10, 50728 Kuala Lumpur, Malaysia (E-mail [email protected] ) Received on March 5 ,2020 ABSTRACT: Comparatively, this review is meant to focus on possible developments studies of the rotary engine design. The controversial engine produces a direct rotational motion. Felix Wankel derived the triangular rotor shape from complex geometry of the Reuleaux triangle. The Wankel engine simulation and prediction of its performance is still limited. The current work reviews rotary engine’s flow field inside the combustion chamber with different commercial software used. It studies different parameters effect on the performance of the engine, such as the effect of the recess sizes and the shape-factor. It is found that the engine chambers design is one of the aspects of improvement opportunities. KEY WORDS: Rotary engine; Design geometry, Shape factor; Combustion simulation. [A1] The rotary engine recently got interests for possible 1. Introduction reliability as range extenders for electric vehicles. The rotary engine is reliable to be applied for the design architecture of UAV powertrains 12,13. The small-scale reliability to unmanned aerial Although the controversial rotary engine was adopted and vehicles UAVs. Such as for aviation of RQ-7A Shadow 200 and developed by many manufacturers, it is seen that multiple Sikorsky Cypher are run with a rotary engine. -
History of Major Automotive Developments 1920-1940
History of Major Automotive Developments 1920-1940 - The main components of the cars were well designed and efficient, and a variety of accessories were introduced, such as reversing lights, radios, automatic chokes, windshield wipers, and chrome-plated trim. Since World War II, most commercial vehicles are fitted with the magnetic speedometer, which was originally developed in the 1920s. Tires, until the 1920s, were of narrow cross-section and ran at relatively high air pressures. As technology improved tires and they were made wider, they operated at lower pressures. The tire alone would not provide much comfort, however. Between the wheel and the body of the car it is necessary to have springs. Some carriages had had the body suspended by straps from the chassis ends, but the semi-elliptical multi-leaf spring was an early development. Leaf springs are still widely used on cars, especially on the rear axles. Early "shocks" were of the friction type, often consisting of a simple pivoted arm attached to the axle so that its movement turned friction discs like a clutch. Between WWI and WWII, several very high quality cars were built, and some of these represented such an exceptionally high standard of craftsmanship and durability that, owing to changing economic circumstances, it is unlikely that cars of comparable quality will ever be built again. These include such classics as the Bugatti "Royale," Hispano-Suiza, Rolls- Royce "Phantom III," Bentley 8 litre, and the Delage. In America the trend was to power and luxury, while European manufacturers concentrated on small, low-priced cars like the Austin 7 in England, and the Italian Fiat 500. -
From Wikipedia, the Free Encyclopedia Audi Type Private Company
Audi From Wikipedia, the free encyclopedia Audi Private company Type (FWB Xetra: NSU) Industry Automotive industry Zwickau, Germany (16 July Founded 1909)[1] Founder(s) August Horch Headquarters Ingolstadt, Germany Production locations: Germany: Ingolstadt & Neckarsulm Number of Hungary: Győr locations Belgium: Brussels China: Changchun India: Aurangabad Brazil: Curitiba Area served Worldwide Rupert Stadler Key people Chairman of the Board of Management, Wolfgang Egger Head of Design Products Automobiles, Engines Production 1,143,902 units (2010) output (only Audi brand) €35.441 billion (2010) Revenue (US$52.57 billion USD) (including subsidiaries) €1.850 billion (2009) Profit (US$2.74 billion USD) €16.832 billion (2009) Total assets (US$25 billion USD) €3.451 billion (2009) Total equity (US$5.12 billion USD) Employees 46,372 (2009)[2] Parent Volkswagen Group Audi do Brasil e Cia (Curitiba, Brazil) Audi Hungaria Motor Kft. (Györ, Hungary) Audi Senna Ltda. (Brazil) Automobili Lamborghini Subsidiaries Holding S.p.A (Sant'Agata Bolognese, Italy) Autogerma S.p.A. (Verona, Italy) quattro GmbH (Neckarsulm, Germany) Website audi.com Audi AG (Xetra: NSU) is a German automobile manufacturer, from supermini to crossover SUVs in various body styles and price ranges that are marketed under the Audi brand (German pronunciation: [ˈaʊdi]), positioned as the premium brand within the Volkswagen Group.[3] The company is headquartered in Ingolstadt, Germany, and has been a wholly owned (99.55%)[4] subsidiary of Volkswagen AG since 1966, following a phased purchase of its predecessor, Auto Union, from its former owner, Daimler-Benz. Volkswagen relaunched the Audi brand with the 1965 introduction of the Audi F103 series. -
Heft 76, 3.2015
HEFT 76, 3.2015 Club International @page 2: TABLE OF CONTENTS Events and Dates Mazda RX‐7 Club Europe 3 ... Imprint / Events and Dates 38 ... About the Mazda RX‐7 Rotary Drive Club Europe Internal News 39 ... New Members in 2015 39 ... Whitsun Meet Up in Lich Eberstadt 4 ... News from the Board 40 ... Invitation to the Autumn Meet Up in 6 ... Spare Parts Production News Bedburg 7 ... From Switzerland With Love: Members 41 ... “Summer, Sun, Cabrio” introduced themselves 41 ... Dutch Rotarystock 2015 8 ... New Members Club Service 9 ... Short profile of the group meeting in Brandenburg / Berlin 42 ... Club Items 43 ... Club Addresses Meet‐Ups 10 ... Union Lido 2015 14 ... Tour de Ruhr 15 ... There’s always something to do on the Ro! 16 ... Autumn Meet‐Up in Berlin and Potsdam 17 ... Classic World Bodensee Members Report 18 ... Es Lebe der Tod 24 ... 4th Meet‐Up of the NSU‐Prinz‐IG‐ Rosenheim 25 ... Classic Car Parade in Nußdorf 26 ... More than 250 Rotors at the Rotarystock 2015 28 ... “Haute cuisine en dehors” – cooking outdoors 29 ... Schluss mit dem Wankelmut – Mut zum Wankel 30 ... A Ro 80 from the Easter Rabbit Technical Stuff / Tips and Tricks 32 ... Installing an electronic r.p.m. counter 32 ... Remedy for hard‐to‐close doors Last But Not Least 33 ... Alle Hunde Lieben Theobald 35 ... The Winner of the Roßfeld Tickets 36 ... Wankel Accident in Goodwood 37 ... Classified Ads 2 @page 3: EVENTS AND DATES 24.09.‐27.09.2015 NSU Ro 80 Club Switzerland Family Barbeque Rapperswill (CH) 01.10.‐04.10.2015 Ro 80 Club International Autumn Meet Up near Berlin (D) 10.10.2015 NSU Ro 80 Club Switzerland Technical Get Together Schoch garage in Urnäsch (CH) 28.11.2015 NSU Ro 80 Club Switzerland’s “Chlausabend” place and program not yet certain (CH) 05.02.‐08.02.2016 Ro 80 Club International Winter Meet Up near Rosenheim (D) 06.03.2016 36th Ordinary General Assembly of the NSU Ro 80 Club Switerland (CH) This is just a small selection of all the events. -
Wankel Engine
WANKEL ENGINE Wankel Engine in Deutsches Museum Munich, Germany The Wankel rotary engine is a type of internal combustion engine, invented by German engineer Felix Wankel, which uses a rotor instead of reciprocating pistons. This design promises smooth high-rpm power from a compact, lightweight engine; Criticism Wankel engines however are criticized for poor fuel efficiency and exhaust emissions. Naming Since its introduction in the NSU Motorenwerke AG (NSU) and Mazda cars of the 1960s, the engine has been commonly referred to as the rotary engine, a name which has also been applied to several completely different engine designs. Although many manufacturers licensed the design, and Mercedes-Benz used it for their C-111 concept car, only Mazda has produced Wankel engines in large numbers. As of 2005, the engine is only available in the Mazda RX-8. How it works The Wankel cycle. The "A" marks one of the three apexes of the rotor. The "B" marks the eccentric shaft, turning three times for every revolution of the rotor. In the Wankel engine, the four strokes of a typical Otto cycle engine are arranged sequentially around an oval, unlike the reciprocating motion of apiston engine. In the basic single rotor Wankel engine, a single oval (technically an epitrochoid) housing surrounds a three-sided rotor (a Reuleaux triangle) which turns and moves within the housing. The sides of the rotor seal against the sides of the housing, and the corners of the rotor seal against the inner periphery of the housing, dividing it into three combustion chambers. As the rotor turns, its motion and the shape of the housing cause each side of the rotor to get closer and farther from the wall of the housing, compressing and expanding combustion chamber similarly to the "strokes" in a reciprocating engine.