Cryo-Electron Tomography of Mouse Hepatitis Virus: Insights Into the Structure of the Coronavirion

Total Page:16

File Type:pdf, Size:1020Kb

Cryo-Electron Tomography of Mouse Hepatitis Virus: Insights Into the Structure of the Coronavirion Cryo-electron tomography of mouse hepatitis virus: Insights into the structure of the coronavirion Montserrat Ba´ rcenaa, Gert T. Oostergetelb, Willem Bartelinkc, Frank G. A. Faasa, Arie Verkleijd, Peter J. M. Rottierc, Abraham J. Kostera,1, and Berend Jan Boschc aDepartment of Molecular Cell Biology, Electron Microscopy Section, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands; bBiophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9497 AG, Groningen, The Netherlands; cDepartment of Infectious Diseases and Immunology, Virology Division, Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, The Netherlands; and dDepartment of Molecular Cell Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands Edited by Stanley Perlman, University of Iowa, Iowa City, IA, and accepted by the Editorial Board November 20, 2008 (received for review June 3, 2008) Coronaviruses are enveloped viruses containing the largest re- orchestrate virion assembly via interactions with all viral com- ported RNA genomes. As a result of their pleomorphic nature, our ponents, including itself. Virus-like particles devoid of RNP and structural insight into the coronavirion is still rudimentary, and it S can be formed upon co-expression of M and E (7). is based mainly on 2D electron microscopy. Here we report the Despite multiple biochemical and morphological studies, 3D virion structure of coronaviruses obtained by cryo-electron many fundamental aspects of the virion architecture remain to tomography. Our study focused primarily on the coronavirus be elucidated. The structure of the coronavirus RNP core has prototype murine hepatitis virus (MHV). MHV particles have a been particularly elusive. In negatively stained intact virions, the distinctly spherical shape and a relatively homogenous size (Ϸ85 interior is not visible, and thus early studies focused on samples nm envelope diameter). The viral envelope exhibits an unusual in which the viral envelope was disrupted and the inner content thickness (7.8 ؎ 0.7 nm), almost twice that of a typical biological released. RNPs extracted in this way from several CoVs appear membrane. Focal pairs revealed the existence of an extra internal to have helical symmetry (8–10). However, under certain con- layer, most likely formed by the C-terminal domains of the major ditions, intermediate spherical nucleocapsids have been re- envelope protein M. In the interior of the particles, coiled struc- ported (11, 12). These structures, which showed polygonal tures and tubular shapes are observed, consistent with a helical profiles, were devoid of S protein and lipids but, in addition to nucleocapsid model. Our reconstructions provide no evidence of a RNA and the N protein, contained the M protein (12). These shelled core. Instead, the ribonucleoprotein seems to be exten- assemblies were suggested to represent an additional viral sively folded onto itself, assuming a compact structure that tends structure: a shelled core, possibly even icosahedral, that would to closely follow the envelope at a distance of Ϸ4 nm. Focal contact enclose the helical RNP (12). In cryo-electron microscopy, in points and thread-like densities connecting the envelope and the which the contrast arises from the specimen itself, the internal ribonucleoprotein are revealed in the tomograms. Transmissible content becomes apparent in undisrupted viruses (12–14). How- gastroenteritis coronavirion tomograms confirm all the general ever, the superposition of viral features in projection images features and global architecture observed for MHV. We propose a hampers their structural interpretation. general model for the structure of the coronavirion in which our To a large extent, the pleomorphic nature of CoVs has been own and published observations are combined. the main obstacle to clarifying details of their structure, as the particles are not identical and therefore cannot be analyzed by coronaviruses ͉ enveloped viruses ͉ plus-stranded RNA viruses ͉ single particle averaging methods (15). To overcome this limi- transmissible gastroenteritis coronavirus tation, we have studied murine hepatitis virus (MHV; CoV group 2), the prototypic CoV, by cryo-electron tomography and have obtained 3D reconstructions of CoVs. The 3D nature of the oronaviruses (CoVs) are large, enveloped, plus-stranded data was particularly useful to gain insight into the inner RNA viruses that infect a wide variety of avians and C structure of the intact virus. As cyro-electron tomography mammals. Several CoVs are human pathogens, including the provides a 3D structure for each individual virus particle in the causative agent of severe acute respiratory syndrome (SARS) (1, sample, our results show the morphological variations within the 2). The SARS outbreak in 2002–2003 served as a grim reminder viral population together with common structural motifs. Cryo- of these viruses’ potential to cross the species barrier and tomography of transmissible gastroenteritis coronavirus triggered a renewed interest in CoVs. Since then, new CoVs have (TGEV; CoV group 1) reveals a similar virion organization, come to expand the list of discovered members, with two more suggesting a general model for the architecture of CoVs. respiratory human CoVs among them (3, 4). The current virion model of CoVs, based on morphological Results and biochemical data, depicts a pleomorphic particle that is Cryo-Electron Tomography of MHV. Purified MHV samples were roughly spherical but shows variations in size (80–120 nm) and rapidly cryo-fixed by plunge freezing. A total of 7 tilt series were shape (reviewed in refs. 5, 6). The virion contains the ribonu- collected at a relatively low defocus (4 ␮m) to preserve fine cleoprotein (RNP) core, consisting of a genomic RNA that is the largest among all RNA viruses (Ϸ30 kb), in complex with the nucleocapsid (N) protein (Ϸ380–450 aa). The RNP is sur- Author contributions: M.B., P.J.M.R., A.J.K., and B.J.B. designed research; M.B., G.T.O., W.B., rounded by a lipidic envelope. Three viral proteins are anchored and B.J.B. performed research; G.T.O., F.G.A.F., and A.V. contributed new reagents/analytic in the envelope of all CoVs: the abundant triple-spanning tools; M.B., F.G.A.F., A.J.K., and B.J.B. analyzed data; and M.B. wrote the paper. membrane (M) protein (Ϸ230 aa), the envelope (E) protein The authors declare no conflict of interest. (Ϸ100 aa; present in only small amounts), and the spike (S) This article is a PNAS Direct Submission. S.P. is a guest editor invited by the Editorial Board. protein (Ϸ1,300 aa), forming trimeric spikes. The spikes are Freely available online through the PNAS open access option. responsible for receptor binding and membrane fusion and 1To whom correspondence should be addressed. E-mail: [email protected]. extend radially from the envelope, giving the virions a solar This article contains supporting information online at www.pnas.org/cgi/content/full/ image to which coronaviruses owe their name. The M protein 0805270106/DCSupplemental. appears to be the building brick of the virion and is thought to © 2009 by The National Academy of Sciences of the USA 582–587 ͉ PNAS ͉ January 13, 2009 ͉ vol. 106 ͉ no. 2 www.pnas.org͞cgi͞doi͞10.1073͞pnas.0805270106 Downloaded by guest on October 1, 2021 A B C Fig. 3. (A) Slice through one of the reconstructed MHV particles (5.8 nm Fig. 1. Virtual slice (8.7 nm thick) in one of the reconstructed fields of thick). The arrows point to some of the granular densities visible in the virion purified MHV particles. Inset, Z-slices (5.8 nm thick) through one of the MHV interior. These are likely to correspond to the N protein in complex with RNA. cryo-tomograms. (Scale bars, 100 nm.) The dashed circle encloses a quasi-circular profile formed by these densities. (A). Serial sections (4 nm thick) of this region encompassing a total height of 11 nm. (B and C) Thick virtual slices (11 nm thick) of four different MHV detail contrast transfer. Fig. 1 shows one of the reconstructed particles displaying (B) circular profiles and (C) tubular fragments. These patterns are colored in blue. Assuming that they are favorable orientations of areas, illustrating the typical distribution and general preserva- Ϸ tion of the particles in the preparations (see also Movie S1 and the RNP coil, a number of 4 to 5 granular densities per turn and a pitch of 10 nm were estimated. (Scale bars, 50 nm.) Movie S2). Three-dimensional density maps of 144 virions were computed from these data sets. differently sized MHV particles found in our preparations are General Features of MHV. The shape of the reconstructed MHVs shown in the gallery of Fig. 2. The viruses share a similar appeared to be remarkably homogeneous. The large majority of appearance and a detailed analysis did not reveal size-dependent the virions exhibit a distinct spherical form (Fig. 1). This is in differences in any of the viral features discussed in the next MICROBIOLOGY contrast not only with early studies of negatively stained CoVs, sections. in which distortions were known to account for part of the heterogeneity observed, but also with previous cryo-electron Ribonucleoprotein Complex. Our reconstructions show the interior microscopy images in which CoVs appear elliptical (14). Only of MHV particles to be filled with material. In some instances, Ϸ 7% of the MHVs in our samples showed ellipticity; however, however, a central region of lower density was observed (see Fig. our data strongly suggest this to be a result of distortions induced 2). Although these areas are more common in larger particles, in the proximity of the water-air interface (Fig. S1). Therefore, their presence and extent are not systematically correlated with the subsequent analysis focused on the remaining 135 spherical the virion size. Except for these lower-density regions, the RNP virions. seems to be relatively densely packed and disorganized under- The size range of MHV particles is shown in Fig.
Recommended publications
  • Common COVID-19 Myths and Misinformation
    Common COVID-19 Myths and Misinformation Myth: The side effects of Myth: The COVID-19 Myth: If I’ve already had the COVID-19 vaccine are vaccine can affect COVID-19, I don’t need a dangerous. women’s fertility. vaccine. Myth: Researchers rushed the development of the Myth: Getting the COVID- Myth: The COVID-19 COVID-19 vaccine, so its 19 vaccine gives you vaccine can affect effectiveness and safety COVID-19. women’s fertility. cannot be trusted. Myth: The COVID-19 vaccine enters your cells and changes your DNA. Information gathered from the following website: https://www.hopkinsmedicine.org/health/conditions-and-diseases/coronavirus/covid-19-vaccines-myth-versus-fact https://www.muhealth.org/our-stories/covid-19-vaccine-myths-vs-facts FACT: People who have gotten sick with COVID-19 may still benefit from getting vaccinated. Due to the severe health risks associated with COVID-19 and the fact that re-infection with COVID-19 is possible, people may be advised to get a COVID-19 vaccine If I’ve already had even if they have been sick with COVID-19 before. There is not enough information currently available to COVID-19, I don’t say if or for how long people are protected from getting COVID-19 after they have had it (natural need a vaccine. immunity). Early evidence suggests natural immunity from COVID-19 may not last very long, but more studies are needed to better understand this. Several subjects in the Pfizer trial who were previously infected got vaccinated without ill effects. Some scientists believe the vaccine offers better protection for coronavirus than natural infection.
    [Show full text]
  • Virus Entry: What Has Ph Got to Do with It?
    TURNING POINTS Virus entry: What has pH got to do with it? Ari Helenius After several years of working on membrane For almost two years, the virus entry path- Over the following months, we validated proteins using the Semliki Forest virus (SFV) as way and mechanism of host penetration con- all the predictions of our pH hypothesis. For a model, I decided in 1976 to focus my research tinued to elude us. However, in the spring example, we could demonstrate a membrane on the mechanisms by which animal viruses of 1978, I had the chance to participate in a fusion reaction in vitro by simply mixing such as SFV enter and infect their host cells. Dahlem Conference in Berlin called ‘Transport liposomes and SFV, and briefly dropping the pH I had just moved from Finland with the lab of of Macromolecules in Cellular Systems’. It was to 6 or below. Moreover, when we added acidic Kai Simons to the newly founded European an opportune time for a meeting on this topic: medium to cells, we could ‘fool’ surface-bound Molecular Biology Laboratory (EMBL) in pathways of vesicle transport were being dis- viruses into fusing with the plasma membrane; Heidelberg, Germany. I was eager to tackle a covered, receptor-mediated trafficking pro- the entry block caused by weak bases was challenging problem — and one that did not cesses were beginning to be described, and the bypassed and the cells became infected. require work with detergents. important role of clathrin-coated vesicles was Joined by Judy White, Mark Marsh and Relying almost exclusively on electron finally properly appreciated.
    [Show full text]
  • Herpes Simplex Virus Type 1 Oril Is Not Required for Virus Infection In
    JOURNAL OF VIROLOGY, Nov. 1987, p. 3528-3535 Vol. 61, No. 11 0022-538X/87/113528-08$02.00/0 Copyright C 1987, American Society for Microbiology Herpes Simplex Virus Type 1 oriL Is Not Required for Virus Replication or for the Establishment and Reactivation of Latent Infection in Mice MARYELLEN POLVINO-BODNAR, PAULO K. ORBERG, AND PRISCILLA A. SCHAFFER* Laboratory of Tumor Virus Genetics, Dana-Farber Cancer Institute, and Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115 Received 11 May 1987/Accepted 31 July 1987 During the course of experiments designed to isolate deletion mutants of herpes simplex virus type 1 in the gene encoding the major DNA-binding protein, ICP8, a mutant, d61, that grew efficiently in ICP8-expressing Vero cells but not in normal Vero cells was isolated (P. K. Orberg and P. A. Schaffer, J. Virol. 61:1136-1146, 1987). d61 was derived by cotransfection of ICP8-expressing Vero cells with infectious wild-type viral DNA and a plasmid, pDX, that contains an engineered 780-base-pair (bp) deletion in the ICP8 gene, as well as a spontaneous -55-bp deletion in OriL. Gel electrophoresis and Southern blot analysis indicated that d61 DNA carried both deletions present in pDX. The ability of d61 to replicate despite the deletion in OriL suggested that a functional OriL is not essential for virus replication in vitro. Because d61 harbored two mutations, a second mutant, ts+7, with a deletion in oriL-associated sequences and an intact ICP8 gene was constructed. Both d61 and ts+7 replicated efficiently in their respective permissive host cells, although their yields were slightly lower than those of control viruses with intact oriL sequences.
    [Show full text]
  • Update on Approved and Candidate COVID-19 Vaccines in the EU
    Update on approved and candidate COVID-19 vaccines in the EU Dr. Marco Cavaleri Head of Biological Health Threats and Vaccines Strategy, EMA An agency of the European Union Outline 1 EMA response to COVID-19 pandemic - milestones 2 COVID-19 vaccines approved in the EU 3 Benefits and risks of COVID-19 vaccines 4 Real world evidence on effectiveness 5 Studies in children 6 Vaccines under review by EMA 7 Adapting COVID-19 vaccines to variants 8 Additional information Classified as public by the European Medicines Agency EMA RESPONSE TO COVID-19 PANDEMIC Milestones in the fight against the pandemic Scientific & regulatory Rapid development & Transparency & mobilisation evaluation outreach Approval: Comirnaty, COVID-19 vaccine Moderna, COVID-19 vaccine AstraZeneca, COVID-19 vaccine Janssen Accelerated development & evaluation procedures WHO declares pandemic COVID-19 Experts’ Task Force Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2020 2021 1 Classified as public by the European Medicines Agency COVID-19 vaccines approved in the EU 4 vaccines authorised in the EU • Comirnaty and Moderna vaccines contain a molecule called messenger RNA (mRNA) with instructions for producing the spike protein from SARS-CoV-2, the virus that causes COVID-19 • The AstraZeneca and Janssen vaccine uses a non-replicating adenovirus as a carrier that has been modified to produce the spike protein from SARS-CoV-2. • The vaccines do not contain the SARS-CoV-2 virus causing COVID-19 itself and cannot cause the disease. Comirnaty COVID-19 Vaccine COVID-19 Vaccine COVID-19 Vaccine (BioNTech/Pfizer) Moderna AstraZeneca Janssen 21 Dec 6 Jan 29 Jan 11 Mar 2 Classified as public by the European Medicines Agency BENEFITS AND RISKS Efficacy of COVID-19 vaccines in trials All COVID-19 vaccines approved in the EU have a positive benefit-risk balance in prevention of COVID-19 disease.
    [Show full text]
  • Topological Analysis of the Gp41 MPER on Lipid Bilayers Relevant to the Metastable HIV-1 Envelope Prefusion State
    Topological analysis of the gp41 MPER on lipid bilayers relevant to the metastable HIV-1 envelope prefusion state Yi Wanga,b, Pavanjeet Kaurc,d, Zhen-Yu J. Sune,1, Mostafa A. Elbahnasawya,b,2, Zahra Hayatic,d, Zhi-Song Qiaoa,b,3, Nhat N. Buic, Camila Chilea,b,4, Mahmoud L. Nasre,5, Gerhard Wagnere, Jia-Huai Wanga,f, Likai Songc, Ellis L. Reinherza,b,6, and Mikyung Kima,g,6 aLaboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115; bDepartment of Medicine, Harvard Medical School, Boston, MA 02115; cNational High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32306; dDepartment of Physics, Florida State University, Tallahassee, FL 32306; eDepartment of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115; fDepartment of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215; and gDepartment of Dermatology, Harvard Medical School, Boston, MA 02215 Edited by Peter Palese, Icahn School of Medicine at Mount Sinai, New York, NY, and approved September 23, 2019 (received for review July 18, 2019) The membrane proximal external region (MPER) of HIV-1 envelope immunologically vulnerable epitopes targeted by several of the most glycoprotein (gp) 41 is an attractive vaccine target for elicitation of broadly neutralizing antibodies (bNAbs) developed during the broadly neutralizing antibodies (bNAbs) by vaccination. However, course of natural HIV-1 infection (10–13). Insertion, deletion, current details regarding the quaternary structural organization of and mutations of residues in the MPER defined the functional the MPER within the native prefusion trimer [(gp120/41)3] are elu- importance of the MPER in Env incorporation, viral fusion, and sive and even contradictory, hindering rational MPER immunogen infectivity (14–16).
    [Show full text]
  • Formation of Influenza Virus Particles Lacking Hemagglutinin on the Viral Envelope Asit K
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers in Veterinary and Biomedical Science Veterinary and Biomedical Sciences, Department of 1986 Formation of Influenza Virus Particles Lacking Hemagglutinin on the Viral Envelope Asit K. Pattnaik University of Nebraska-Lincoln, [email protected] Donald J. Brown University of California at Los Angeles Debi P. Nayak University of California at Los Angeles Follow this and additional works at: http://digitalcommons.unl.edu/vetscipapers Part of the Biochemistry, Biophysics, and Structural Biology Commons, Cell and Developmental Biology Commons, Immunology and Infectious Disease Commons, Medical Sciences Commons, Veterinary Microbiology and Immunobiology Commons, and the Veterinary Pathology and Pathobiology Commons Pattnaik, Asit K.; Brown, Donald J.; and Nayak, Debi P., "Formation of Influenza Virus Particles Lacking Hemagglutinin on the Viral Envelope" (1986). Papers in Veterinary and Biomedical Science. 198. http://digitalcommons.unl.edu/vetscipapers/198 This Article is brought to you for free and open access by the Veterinary and Biomedical Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Veterinary and Biomedical Science by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. JOURNAL OF VIROLOGY, Dec. 1986, p. 994-1001 Vol. 60, No.3 0022-S38X1861120994-08 $02.00/0 Copyright © 1986, American Society for Microbiology Formation of Influenza Virus Particles
    [Show full text]
  • Viroporins: Structures and Functions Beyond Cell Membrane Permeabilization
    Editorial Viroporins: Structures and Functions beyond Cell Membrane Permeabilization José Luis Nieva 1,* and Luis Carrasco 2,* Received: 17 September 2015 ; Accepted: 21 September 2015 ; Published: 29 September 2015 Academic Editor: Eric O. Freed 1 Biophysics Unit (CSIC, UPV/EHU) and Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain 2 Centro de Biología Molecular Severo Ochoa (CSIC, UAM), c/Nicolás Cabrera, 1, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain * Correspondence: [email protected] (J.L.N.); [email protected] (L.C.); Tel.: +34-94-601-3353 (J.L.N.); +34-91-497-8450 (L.C.) Viroporins represent an interesting group of viral proteins that exhibit two sets of functions. First, they participate in several viral processes that are necessary for efficient production of virus progeny. Besides, viroporins interfere with a number of cellular functions, thus contributing to viral cytopathogenicity. Twenty years have elapsed from the first review on viroporins [1]; since then several reviews have covered the advances on viroporin structure and functioning [2–8]. This Special Issue updates and revises new emerging roles of viroporins, highlighting their potential use as antiviral targets and in vaccine development. Viroporin structure. Viroporins are usually short proteins with at least one hydrophobic amphipathic helix. Homo-oligomerization is achieved by helix–helix interactions in membranes rendering higher order structures, forming aqueous pores. Progress in viroporin structures during the last 2–3 years has in some instances provided a detailed knowledge of their functional architecture, including the fine definition of binding sites for effective inhibitors.
    [Show full text]
  • How Influenza Virus Uses Host Cell Pathways During Uncoating
    cells Review How Influenza Virus Uses Host Cell Pathways during Uncoating Etori Aguiar Moreira 1 , Yohei Yamauchi 2 and Patrick Matthias 1,3,* 1 Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; [email protected] 2 Faculty of Life Sciences, School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK; [email protected] 3 Faculty of Sciences, University of Basel, 4031 Basel, Switzerland * Correspondence: [email protected] Abstract: Influenza is a zoonotic respiratory disease of major public health interest due to its pan- demic potential, and a threat to animals and the human population. The influenza A virus genome consists of eight single-stranded RNA segments sequestered within a protein capsid and a lipid bilayer envelope. During host cell entry, cellular cues contribute to viral conformational changes that promote critical events such as fusion with late endosomes, capsid uncoating and viral genome release into the cytosol. In this focused review, we concisely describe the virus infection cycle and highlight the recent findings of host cell pathways and cytosolic proteins that assist influenza uncoating during host cell entry. Keywords: influenza; capsid uncoating; HDAC6; ubiquitin; EPS8; TNPO1; pandemic; M1; virus– host interaction Citation: Moreira, E.A.; Yamauchi, Y.; Matthias, P. How Influenza Virus Uses Host Cell Pathways during 1. Introduction Uncoating. Cells 2021, 10, 1722. Viruses are microscopic parasites that, unable to self-replicate, subvert a host cell https://doi.org/10.3390/ for their replication and propagation. Despite their apparent simplicity, they can cause cells10071722 severe diseases and even pose pandemic threats [1–3].
    [Show full text]
  • Viral Envelope Are Controlled by the Helper Virus Used to Activate The
    DETERMINING FACTOR IN THE CAPACITY OF ROUS SARCOMA VIRUS TO INDUCE TUMORS IN MAMMALS* By HIDESABURO HANAFUSA AND TERUKO HANAFUSA COLLMGE DE FRANCE, LABORATOIRE DE MIDECINE EXPARIMENTALE, PARIS Communidated by Ahdre Lwoff, January 24, 1966 Since Zilber and Kriukoval and Svet-Moldavsky' demonstrated that some strains of Rous sarcoma virus (RSV) are capable of inducing hemorrhagic cysts or sarcomas in newborn rats, numerous attempts have been made to induce tumors by RSVin various species of mammals.3-9 One of the remarkable aspects revealed by these investigations is the strain differences in RSV for this capacity.6-9 Certain strains, such as the Schmidt-Ruppin strain, are active, while others, such as the Bryan strain, are generally inactive in mammals. The cause of such strain differ- ences has not been elucidated. Our previous studies have shown that the Bryan high-titer strain of RSV is a defective virus which cannot reproduce without the help of any one of the avian leukosis viruses.'0 The defectiveness derives from the inability of this strain of RSV to induce the synthesis of its own viral envelope."I An essential role played by the helper virus is to provide the envelope to the RSV genome, whose replica- tion occurs in the infected cells without the aid of helper virus. Thus, several properties of RSV which presumably depend in some way on the character of the viral envelope are controlled by the helper virus used to activate the RSV.11-13 These properties include the antigenicity, the sensitivity to the interference induced by the helper virus, and the host range among genetically different chick embryos.
    [Show full text]
  • Assembly Lecture 11 Biology W3310/4310 Virology Spring 2014
    Assembly Lecture 11 Biology W3310/4310 Virology Spring 2014 “Anatomy is des.ny.” --SIGMUND FREUD All virions complete a common set of assembly reac3ons * common to all viruses common to many viruses ©Principles of Virology, ASM Press The structure of a virus parcle determines how it is formed ©Principles of Virology, ASM Press Assembly is dependent on host cell machinery • Cellular chaperones • Transport systems • Secretory pathway • Nuclear import and export machinery Concentrang components for assembly: Nothing happens fast in dilute solu1ons • Viral components oSen visible by light microscopy (‘factories’ or ‘inclusions’) • Concentrate proteins on internal membranes (poliovirus) • Negri bodies (rabies virus) Viral proteins have ‘addresses’ built into their structure • Membrane targeYng: Signal sequences, fa\y acid modificaons • Membrane retenYon signals • Nuclear localizaYon sequences (NLS) • Nuclear export signals 414 Localiza3on of viral proteins to the nucleus CHAPTER 12 Golgi apparatus Ribosome Rough endoplasmic reticulum Plasma membrane Py(VP1) + VP2/3 Ad hexon + 5 100 kDa Nuclear envelope: Outer nuclear membrane Inner nuclear membrane Nucleus Nuclear pore complex Mitochondrion Cytoskeleton: Influenza virus NP Intermediate filament Microtubule Actin filament bundle Extracellular matrix ©Principles of Virology, ASM Press Figure 12.1 Localization of viral proteins to the nucleus. The nucleus and major membrane-bound compartments of the cytoplasm, as well as components of the cytoskeleton, are illustrated schematically and not to scale. Viral proteins destined for the nucleus are synthesized by cytoplasmic polyribosomes, as illustrated for the infl uenza virus NP protein. They engage with the cytoplasmic face of the nuclear pore complex and are translocated into the nucleus by the protein import machinery of the host cell.
    [Show full text]
  • Statements Contained in This Release As the Result of New Information Or Future Events Or Developments
    Pfizer and BioNTech Provide Update on Booster Program in Light of the Delta-Variant NEW YORK and MAINZ, GERMANY, July 8, 2021 — As part of Pfizer’s and BioNTech’s continued efforts to stay ahead of the virus causing COVID-19 and circulating mutations, the companies are providing an update on their comprehensive booster strategy. Pfizer and BioNTech have seen encouraging data in the ongoing booster trial of a third dose of the current BNT162b2 vaccine. Initial data from the study demonstrate that a booster dose given 6 months after the second dose has a consistent tolerability profile while eliciting high neutralization titers against the wild type and the Beta variant, which are 5 to 10 times higher than after two primary doses. The companies expect to publish more definitive data soon as well as in a peer-reviewed journal and plan to submit the data to the FDA, EMA and other regulatory authorities in the coming weeks. In addition, data from a recent Nature paper demonstrate that immune sera obtained shortly after dose 2 of the primary two dose series of BNT162b2 have strong neutralization titers against the Delta variant (B.1.617.2 lineage) in laboratory tests. The companies anticipate that a third dose will boost those antibody titers even higher, similar to how the third dose performs for the Beta variant (B.1.351). Pfizer and BioNTech are conducting preclinical and clinical tests to confirm this hypothesis. While Pfizer and BioNTech believe a third dose of BNT162b2 has the potential to preserve the highest levels of protective efficacy against all currently known variants including Delta, the companies are remaining vigilant and are developing an updated version of the Pfizer-BioNTech COVID-19 vaccine that targets the full spike protein of the Delta variant.
    [Show full text]
  • Covid-19 Messenger Rna Vaccine
    COVID-19 MESSENGER RNA VACCINE A Piece of the Coronavirus The SARS-CoV-2 virus is studded with proteins that it uses to enter human cells. These so-called spike proteins make a tempting target for potential vaccines and treatments. Image of Coronavirus and spike proteins. Spike CORONAVIRUS protein Spikes gene Like the Pfizer vaccine, Moderna’s vaccine is based on the virus’s genetic instructions for building the spike protein. mRNA Inside an Oily Shell The vaccine uses messenger RNA, genetic material that our cells read to make proteins. The molecule — called mRNA for short — is fragile and would be chopped to pieces by our natural enzymes if it were injected directly into the body. To protect their vaccine, Pfizer and BioNTech wrap mRNA in oily bubbles made of lipid nanoparticles. Lipid nanoparticles surrounding mRNA Entering a Cell After injection, the vaccine particles bump into cells and fuse to them, releasing mRNA. The cell’s molecules read its sequence and build spike proteins. The mRNA from the vaccine is eventually destroyed by the cell, leaving no permanent trace. Vaccine Particle Translating mRNA fuses into Spike Spike Protien, which beaks it into Protein fragmentsmRNA and then destroyed by the Translatingcell nucleus. mRNA Spike Three spike Proteins Combine Cell Nucleus Spike Proteins and Fragments Protruding Displaying Protein Fragments Spikes Some of the spike proteins form spikes that migrate to the surface of the cell and stick out their tips. The vaccinated cells also break up some of the proteins into fragments, which they present on their surface. These protruding spikes and spike protein fragments can then be recognized by the immune system.
    [Show full text]