On the Origin of the Galápagos Hawk: an Examination of Phenotypic Differentiation and Mitochondrial Paraphyly

Total Page:16

File Type:pdf, Size:1020Kb

On the Origin of the Galápagos Hawk: an Examination of Phenotypic Differentiation and Mitochondrial Paraphyly Biological Journal of the Linnean Society, 2008, 95, 779–789. With 3 figures On the origin of the Galápagos hawk: an examination of phenotypic differentiation and mitochondrial paraphyly JOSHUA M. HULL1*, WESLEY K. SAVAGE2, JENNIFER L. BOLLMER3, REBECCA T. KIMBALL4, PATRICIA G. PARKER3, NOAH K. WHITEMAN3,5 and HOLLY B. ERNEST1,6 1Wildlife and Ecology Unit, Veterinary Genetics Laboratory, University of California, One Shields Avenue, Davis, CA 95616, USA 2Section of Evolution and Ecology, University of California, One Shields Avenue, Davis, CA 95616, USA 3Department of Biology, University of Missouri – St Louis, St. Louis, MO 63121, USA 4Department of Zoology, University of Florida, PO Box 118525, Gainesville, FL 32611, USA 5Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA 6Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, One Shields Avenue, Davis, CA 95616, USA Received 18 September 2007; accepted for publication 11 March 2008 Previous phylogenetic hypotheses suggest a sister group relationship between mainland and widespread Buteo swainsoni (Swainson’s hawk) and the island archipelago taxon Buteo galapagoensis (Galápagos hawk). We further describe phylogenetic relationships of this clade using molecular data from the mitochondrial control region, and consider the role of niche expansion on phenotype using morphological data from B. galapagoensis, B. swainsoni, and related Buteo jamaicensis (red-tailed hawk). Among 52 unique Buteo haplotypes, phylogenetic analyses support a monophyletic B. galapagoensis clade within a clade of B. swainsoni haplotypes, rendering B. swainsoni paraphyletic with respect to B. galapagoensis. Mitochondrial paraphyly is likely a result of incomplete lineage sorting subsequent to a recent colonization event and exemplifies speciation of peripheral population isolates. Morphological comparisons indicate that metrics associated with prey capture differ significantly between B. galapagoensis and B. swainsoni, but are similar between B. galapagoensis and B. jamaicensis. These results suggest directional selection on B. galapagoensis morphology associated with feeding, possibly an outcome of decreased interspecific competition and change towards a more generalist diet shared by B. jamaicensis. In the B. galapagoensis lineage, our results suggest that genetic drift influences the neutral mitochondrial marker, whereas selection may have driven phenotypic character change. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95, 779–789. ADDITIONAL KEYWORDS: Buteo galapagoensis – Buteo swainsoni – archipelago – island – morphology – niche expansion. INTRODUCTION may be of varying importance depending upon the character under investigation (Lynch, 1990; Clegg Differentiation between island and mainland popula- et al., 2002). Under the neutral theory, noncoding tions of species may result from several factors, genomic DNA, not closely linked to regions under including population size, genetic drift, selection, and positive selection, will be affected by stochastic pro- the extent of ongoing gene exchange (Wright, 1931; cesses such as genetic drift (Kimura, 1983), with no Barton, 1998). Between sister species, these processes direct connection to phenotypic change (Bromham & Hendy, 2000; Bromham et al., 2002, but see also *Corresponding author. E-mail: [email protected] Omland, 1997). Consequently, divergence in neutral © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95, 779–789 779 780 J. M. HULL ET AL. molecular markers and phenotype is predicted to Table 1. Sample size for genetic and morphological data proceed independently. (including the number of females and males in parenthe- Rapid phenotypic change from an ancestral main- ses) from Buteo swainsoni, Buteo galapagoensis, and Buteo land phenotype is frequently observed among island jamaicensis taxa (Lack, 1971; Grant, 1998) and has been attrib- uted to several processes, including founder effects, Species Genetic Morphological change in selective landscape, relaxation of interspe- cific competition, and niche expansion (Grant, 1998; Buteo swainsoni 308 104 (38/66) Whittaker, 1998; Rasner et al., 2004). Among birds Buteo galapagoensis 122 217 (91/126) Española 10 19 (10/9) and mammals, morphological changes among island Isabela 20 19 (11/8) species often follow the ‘island rule’ (Foster, 1964; Van Santa Fe 9 18 (9/9) Valen, 1973; Lomolino, 1985; Clegg & Owens, 2002), Santiago 21 128 (54/74) where small-bodied taxa evolve to larger size and Marchena 15 21 (4/17) larger-bodied taxa evolve towards smaller size. Such Pinta 13 12 (3/9) phenotypic changes between island and mainland Fernandina 20 0 taxa can mislead assumptions of phylogenetic rela- Pinzón 10 0 tionships. Phylogenetic analysis using character Santa Cruz 4 0 information from neutral molecular markers (particu- Buteo jamaicensis 5 132 (45/87) larly those with smaller effective population sizes), in conjunction with morphological characters, can facili- tate an objective examination of the relationships The present study aimed to describe the phylo- among closely-related taxa and an understanding of genetic relationship between B. swainsoni and B. the evolutionary processes leading to their divergence galapagoensis with fine-scale sampling, and to inves- (Scott et al., 2003). tigate the extent of molecular and morphological Buteo swainsoni (Swainson’s hawks; Bonaparte) differentiation. Accordingly, we describe the phyloge- and Buteo galapagoensis (Galápagos hawks; Gould) netic relationship between these Buteo species using are phenotypically distinct in body size, plumage, samples from throughout their current ranges to test diet, and mating system, and their geographic ranges the monophyly of each lineage and to evaluate the are entirely non-overlapping and differ greatly in strength of morphological differentiation. We investi- extent. Buteo swainsoni is an abundant raptor species gate phenotypic divergence by comparing five mor- that breeds throughout western North America and a phological characters among B. galapagoensis, B. large number of individuals migrate through central swainsoni, and Buteo jamaicensis (red-tailed hawk; America to the grasslands of South America Gmelin). We include B. jamaicensis to provide a con- (England, Bechard & Houston, 1997). Limited micro- trast between a generalist mainland Buteo and a satellite population genetic structure exists across generalist island taxon (B. galapagoensis). their breeding range (Hull et al., 2008) and regional differences in morphology have not been documented MATERIAL AND METHODS (England et al., 1997). By contrast, B. galapagoensis are restricted to eight (historically eleven) islands of SAMPLE COLLECTION the Galápagos archipelago (de Vries, 1975, 1976). We collected whole blood and feathers from 365 B. Extremely limited dispersal occurs among the islands swainsoni and 122 B. galapagoensis, as well as and most populations are genetically distinct five Buteo regalis (ferruginous hawk), three Buteo (Bollmer et al., 2005) and differ in morphology lagopus (rough-legged hawk), six Buteo lineatus (red- (Bollmer et al., 2003). Until recently, the obvious phe- shouldered hawk), five B. jamaicensis, and one Buteo notypic and behavioural differences between B. albicaudatus (white-tailed hawk) for outgroup com- swainsoni and B. galapagoensis (de Vries, 1975, 1976) parison. Blood was stored in lysis buffer and feathers have been regarded as untested evidence for the rec- were stored dry. Three hundred and thirty-six B. ognition of two divergent Buteo species. Moreover, a swainsoni were sampled on breeding grounds (from sister relationship between these two species was not June to July) in North America (for locality informa- evident based on phenotypic evidence (de Vries, 1973). tion, see Table 1) between 2003 and 2005, and the Recent mitochondrial phylogenetics of the genus remaining 29 B. swainsoni were captured on wintering Buteo shows a close sister relationship between B. grounds in central Argentina during January 2003, as swainsoni and B. galapagoensis (Riesing et al., 2003) described previously (Whiteman et al., 2006). Samples with an estimated Galápagos colonization 126 000 were collected from 122 B. galapagoensis (Table 1) years ago (95% confidence interval = 51 000–254 000 captured with either bal-chatris or rope nooses on years; Bollmer et al., 2006). poles. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95, 779–789 PARAPHYLY IN B. SWAINSONI AND B. GALAPAGOENSIS 781 LABORATORY METHODS 3.1 (Kumar, Tamura & Nei, 2004) to confirm our For B. swainsoni samples, we isolated total cellular approximation of the most parsimonious tree recon- DNA from 25 ml of the blood/buffer solution using struction (closest-neighbour-interchange with search Qiagen DNeasy kits (QIAGEN Inc.). We extracted level 3, random addition trees with 900 replications). genomic DNA from B. galapagoensis samples using a MODELTEST, version 3.7 (Posada & Crandall, modification of phenol/chloroform extraction (Sam- 1998) was used to evaluate the best-fit model of brook, Fritsch & Maniatis, 1989) with final purification nucleotide evolution and parameter estimation to the control region sequence data for the ML tree search. by dialysis against TNE2. A total of 367 bp of domain I of the mitochondrial control region were amplified
Recommended publications
  • Ecuador & the Galapagos Islands
    Ecuador & the Galapagos Islands - including Sacha Lodge Extension Naturetrek Tour Report 29 January – 20 February 2018 Medium Ground-finch Blue-footed Booby Wire-tailed Manakin Galapagos Penguin Green Sea Turtle Report kindly compiled by Tour participants Sally Wearing, Rowena Tye, Debbie Hardie and Sue Swift Images courtesy of David Griffiths, Sue Swift, Debbie Hardie, Jenny Tynan, Rowena Tye, Nick Blake and Sally Wearing Naturetrek Mingledown Barn Wolf’s Lane Chawton Alton Hampshire GU34 3HJ UK T: +44 (0)1962 733051 E: [email protected] W: www.naturetrek.co.uk Tour Report Ecuador & the Galapagos Islands - including Sacha Lodge Extension Tour Leader in the Galapagos: Juan Tapia with 13 Naturetrek Clients This report has kindly been compiled by tour participants Sally Wearing, Rowena Tye, Debbie Hardie and Sue Swift. Day 1 Monday 29th January UK to Quito People arrived in Quito via Amsterdam with KLM or via Madrid with Iberia, while Tony came separately from the USA. Everyone was met at the airport and taken to the Hotel Vieja Cuba; those who were awake enough went out to eat before a good night’s rest. Day 2 Tuesday 30th January Quito. Weather: Hot and mostly sunny. The early risers saw the first few birds of the trip outside the hotel: Rufous- collared Sparrow, Great Thrush and Eared Doves. After breakfast, an excellent guide took us on a bus and walking tour of Quito’s old town. This started with the Basilica del Voto Nacional, where everyone marvelled at the “grotesques” of native Ecuadorian animals such as frigatebirds, iguanas and tortoises.
    [Show full text]
  • Raptor Migration in the Neotropics: Patterns, Processes, and Consequences
    ORNITOLOGIA NEOTROPICAL 15 (Suppl.): 83–99, 2004 © The Neotropical Ornithological Society RAPTOR MIGRATION IN THE NEOTROPICS: PATTERNS, PROCESSES, AND CONSEQUENCES Keith L. Bildstein Hawk Mountain Sanctuary Acopian Center, 410 Summer Valley Road, Orwigsburg, Pennsylvania 17961, USA. E-mail: [email protected] Resumen. – Migración de rapaces en el Neotrópico: patrones, procesos y consecuencias. – El Neotró- pico alberga poblaciones reproductivas y no reproductivas de 104 de las 109 especies de rapaces del Nuevo Mundo (i.e., miembros del suborden Falconides y de la subfamilia Cathartinae), incluyendo 4 migrantes obligatorios, 36 migrantes parciales, 28 migrantes irregulares o locales, y 36 especies que se presume que no migran. Conteos estandarizados de migración visible iniciados en la década de los 1990, junto con una recopilación de literatura, nos proveen con una idea general de la migración de rapaces en la región. Aquí describo los movimientos de las principales especies migratorias y detallo la geografía de la migración en el Neotrópico. El Corredor Terrestre Mesoamericano es la ruta de migración mas utilizada en la región. Tres especies que se reproducen en el Neártico, el Elanio Colinegro (Ictina mississippiensis), el Gavilán Aludo (Buteo platypterus) y el Gavilán de Swainson (B. swainsoni), de los cuales todos son migrantes obligatorios, junto con las poblaciones norteamericanas del Zopilote Cabecirrojo (Cathartes aura), dominan numérica- mente este vuelo norteño o “boreal”. Cantidades mucho menores de Aguilas Pescadoras (Pandion haliaetus), Elanios Tijereta (Elanoides forficatus), Esmerejónes (Falco columbarius) y Halcones Peregrinos (Falco peregrinus), ingresan y abandonan el Neotrópico rutinariamente utilizando rutas que atraviesan el Mar Caribe y el Golfo de México. Los movimientos sureños o “australes” e intra-tropicales, incluyendo la dispersión y la colonización en respuesta a cambios en el hábitat, son conocidos pero permanecen relativamente poco estudiados.
    [Show full text]
  • Comparative Phylogeography and Population Genetics Within Buteo Lineatus Reveals Evidence of Distinct Evolutionary Lineages
    Molecular Phylogenetics and Evolution 49 (2008) 988–996 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Comparative phylogeography and population genetics within Buteo lineatus reveals evidence of distinct evolutionary lineages Joshua M. Hull a,*, Bradley N. Strobel b, Clint W. Boal b, Angus C. Hull c, Cheryl R. Dykstra d, Amanda M. Irish a, Allen M. Fish c, Holly B. Ernest a,e a Wildlife and Ecology Unit, Veterinary Genetics Laboratory, 258 CCAH, University of California, One Shields Avenue, Davis, CA 95616, USA b U.S. Geological Survey Texas Cooperative Fish and Wildlife Research Unit, Department of Natural Resources Management, Texas Tech University, Lubbock, TX 79409, USA c Golden Gate Raptor Observatory, Building 1064 Fort Cronkhite, Sausalito, CA 94965, USA d Raptor Environmental, 7280 Susan Springs Drive, West Chester, OH 45069, USA e Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, One Shields Avenue/Old Davis Road, Davis, CA 95616, USA article info abstract Article history: Traditional subspecies classifications may suggest phylogenetic relationships that are discordant with Received 25 June 2008 evolutionary history and mislead evolutionary inference. To more accurately describe evolutionary rela- Revised 13 September 2008 tionships and inform conservation efforts, we investigated the genetic relationships and demographic Accepted 17 September 2008 histories of Buteo lineatus subspecies in eastern and western North America using 21 nuclear microsatel- Available online 26 September 2008 lite loci and 375-base pairs of mitochondrial control region sequence. Frequency based analyses of mito- chondrial sequence data support significant population distinction between eastern (B.
    [Show full text]
  • Breeding Biology of Neotropical Accipitriformes: Current Knowledge and Research Priorities
    Revista Brasileira de Ornitologia 26(2): 151–186. ARTICLE June 2018 Breeding biology of Neotropical Accipitriformes: current knowledge and research priorities Julio Amaro Betto Monsalvo1,3, Neander Marcel Heming2 & Miguel Ângelo Marini2 1 Programa de Pós-graduação em Ecologia, IB, Universidade de Brasília, Brasília, DF, Brazil. 2 Departamento de Zoologia, IB, Universidade de Brasília, Brasília, DF, Brazil. 3 Corresponding author: [email protected] Received on 08 March 2018. Accepted on 20 July 2018. ABSTRACT: Despite the key role that knowledge on breeding biology of Accipitriformes plays in their management and conservation, survey of the state-of-the-art and of information gaps spanning the entire Neotropics has not been done since 1995. We provide an updated classification of current knowledge about breeding biology of Neotropical Accipitridae and define the taxa that should be prioritized by future studies. We analyzed 440 publications produced since 1995 that reported breeding of 56 species. There is a persistent scarcity, or complete absence, of information about the nests of eight species, and about breeding behavior of another ten. Among these species, the largest gap of breeding data refers to the former “Leucopternis” hawks. Although 66% of the 56 evaluated species had some improvement on knowledge about their breeding traits, research still focus disproportionately on a few regions and species, and the scarcity of breeding data on many South American Accipitridae persists. We noted that analysis of records from both a citizen science digital database and museum egg collections significantly increased breeding information on some species, relative to recent literature. We created four groups of priority species for breeding biology studies, based on knowledge gaps and threat categories at global level.
    [Show full text]
  • Species List – November 10 -17, 2019 with Mainland Ecuador Puembo/Antisana National Park Pre-Extension November 9, 2019
    Journey to the Galapagos Species List – November 10 -17, 2019 With mainland Ecuador Puembo/Antisana National Park pre-extension November 9, 2019 Guide Dan Donaldson, with local guides Antonio and Gustavo (in Galapagos), and 19 participants: Becky, Tom and Nancy, Julianne, Cynthia, John and Kathy L, Kathy P, Ed and Sil, Jenise, Ram and Sudha, Jim and Brenda, Kitty, Jean, Carol, and Deb. GALAPAGOS ISLANDS (HO)= Distinctive enough to be counted as heard only (E)= Galapagos Endemic (I)=introduced BIRDS (45 species recorded, of which 0 were heard only): DUCKS, GEESE, AND SWANS: Anatidae (1) White-cheeked Pintail Anas bahamensis— Several seen on Punta Cormorant Pond on Floreana with American Flamingos and again on Santa Cruz at El Chato Ranch (Giant Tortoise Ranch) FLAMINGOS: Phoenicopteridae (1) American Flamingo Phoenicopterus ruber— 37, Small groups, viewed from across the pond, making up 37 or more individuals seen at Punta Cormorant. Early breeding displays by several individuals consisting of coordinated marching and wing extensions were observed. PIGEONS AND DOVES: Columbidae (1) Galapagos Dove Zenaida galapagoensis (E)— 8, Observed on several days including on the beach at Punta Pitt and again on the hike at Punta Suarez. CUCKOOS: Cuculidae (1) Smooth-billed Ani Crotophaga ani (I)— 13, First seen on the drive into El Chato Ranch to view the giant tortoises, this species was introduced to the Galapagos to preen ticks from cattle. Their effectiveness at this task is questionable. STILTS AND AVOCETS: Recurvirostridae (1) Black-necked Stilt Himantopus mexicanus— 1, This individual was spotted feeding in a small mangrove cove on Punta Cormorant Pond.
    [Show full text]
  • Variation in Morphology and Mating System Among Island Populations of Gala´ Pagos Hawks
    The Condor 105:428±438 q The Cooper Ornithological Society 2003 VARIATION IN MORPHOLOGY AND MATING SYSTEM AMONG ISLAND POPULATIONS OF GALAÂ PAGOS HAWKS JENNIFER L. BOLLMER1,5,6,TANIA SANCHEZ2,MICHELLE DONAGHY CANNON3,7, DIDIER SANCHEZ2,BRIAN CANNON3,8,JAMES C. BEDNARZ3,TJITTE DE VRIES2, M. SUSANA STRUVE4,9 AND PATRICIA G. PARKER1,6 1Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, 1735 Neil Avenue, Columbus, OH 43210 and Department of Biology, University of Missouri-St. Louis, 8001 Natural Bridge Road, St. Louis, MO 63121 2Departamento de BiologõÂa, PontifõÂcia Universidad CatoÂlica del Ecuador, Quito, Ecuador 3Department of Biological Sciences, Arkansas State University, P.O. Box 599, State University, AR 72467 4Charles Darwin Foundation, Inc., 407 N. Washington Street, Suite 105, Falls Church, VA 22046 Abstract. Interspeci®c variation in sexual size dimorphism has commonly been attributed to variation in social mating system, with dimorphism increasing as intrasexual competition for mates increases. In birds, overall body size has also been found to correlate positively with size dimorphism. In this study, we describe variation in morphology and mating system across six populations of the endemic GalaÂpagos Hawk (Buteo galapagoensis). GalaÂpagos Hawks exhibit cooperative polyandry, a mating system in which long-term social groups contain a single female and multiple males. Comparisons among islands revealed signi®cant differences in overall body size for both adults and immatures. Populations ranged from completely monogamous to completely polyandrous, with varying mean group sizes. Data did not support our prediction that sexual size dimorphism would increase with the degree of polyandry (number of males per group) or with body size; there was no correlation between mating system and sexual dimorphism.
    [Show full text]
  • Accipitridae Species Tree
    Accipitridae I: Hawks, Kites, Eagles Pearl Kite, Gampsonyx swainsonii ?Scissor-tailed Kite, Chelictinia riocourii Elaninae Black-winged Kite, Elanus caeruleus ?Black-shouldered Kite, Elanus axillaris ?Letter-winged Kite, Elanus scriptus White-tailed Kite, Elanus leucurus African Harrier-Hawk, Polyboroides typus ?Madagascan Harrier-Hawk, Polyboroides radiatus Gypaetinae Palm-nut Vulture, Gypohierax angolensis Egyptian Vulture, Neophron percnopterus Bearded Vulture / Lammergeier, Gypaetus barbatus Madagascan Serpent-Eagle, Eutriorchis astur Hook-billed Kite, Chondrohierax uncinatus Gray-headed Kite, Leptodon cayanensis ?White-collared Kite, Leptodon forbesi Swallow-tailed Kite, Elanoides forficatus European Honey-Buzzard, Pernis apivorus Perninae Philippine Honey-Buzzard, Pernis steerei Oriental Honey-Buzzard / Crested Honey-Buzzard, Pernis ptilorhynchus Barred Honey-Buzzard, Pernis celebensis Black-breasted Buzzard, Hamirostra melanosternon Square-tailed Kite, Lophoictinia isura Long-tailed Honey-Buzzard, Henicopernis longicauda Black Honey-Buzzard, Henicopernis infuscatus ?Black Baza, Aviceda leuphotes ?African Cuckoo-Hawk, Aviceda cuculoides ?Madagascan Cuckoo-Hawk, Aviceda madagascariensis ?Jerdon’s Baza, Aviceda jerdoni Pacific Baza, Aviceda subcristata Red-headed Vulture, Sarcogyps calvus White-headed Vulture, Trigonoceps occipitalis Cinereous Vulture, Aegypius monachus Lappet-faced Vulture, Torgos tracheliotos Gypinae Hooded Vulture, Necrosyrtes monachus White-backed Vulture, Gyps africanus White-rumped Vulture, Gyps bengalensis Himalayan
    [Show full text]
  • Gastrointestinal and External Parasites of the Variable
    Original Article ISSN 1984-2961 (Electronic) www.cbpv.org.br/rbpv Braz. J. Vet. Parasitol., Jaboticabal, v. 28, n. 3, p. 376-382, july.-sept. 2019 Doi: https://doi.org/10.1590/S1984-29612019045 Gastrointestinal and external parasites of the Variable hawk Geranoaetus polyosoma (Accipitriformes: Accipitridae) in Chile Parasitas gastrointestinais e externos do Falcão Variável Geranoaetus polyosoma (Accipitriformes: Accipitridae) de Chile Alexandra Grandón-Ojeda1; Patricio Cortés1; Lucila Moreno2; John Mike Kinsella3; Armando Cicchino4; Carlos Barrientos5; Daniel González-Acuña1 1 Laboratorio de Enfermedades y Parásitos de Fauna silvestre, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile 2 Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile 3 Helm West Lab, Missoula, Montana, United States of America 4 Universidad Nacional de Mar del Plata, Mar del Plata, Argentina 5 Escuela de Medicina Veterinaria, Universidad Santo Tomás, Concepción, Chile Received February 7, 2019 Accepted May 5, 2019 Abstract Information about parasites associated with diurnal raptors from Chile is scarce. Between 2006 and 2017, a total of 15 specimens of the Variable hawk, Geranoaetus polyosoma (Quoy & Gaimard, 1824) were collected, 14 of them from different localities in the Biobío region and one specimen from the Valparaíso region. An external examination of the plumage was made to collect ectoparasites, and necropsies were performed, focusing primarily on the gastrointestinal tract. Chewing lice (Phthiraptera) were found on five (33.3%) of the birds corresponding to three species: 97 specimens of Degeeriella fulva (Giebel, 1874), six specimens of Colpocephalum turbinatum Denny, 1842 and nine belonging to an unidentified species of the genusCraspedorrhynchus Kéler, 1938. Endoparasites found in three (20%) of the birds included round worms (Nematoda) of the genus Procyrnea Chabaud, 1958, and spiny-headed worms (Acanthocephala) of the genus Centrorhynchus Lühe, 1911.
    [Show full text]
  • Ecology of Rare and Abundant Raptors on an Oceanic Island the Sharp-Shinned Hawk and Red-Tailed Hawk in Puerto Rico
    Mississippi State University Scholars Junction Theses and Dissertations Theses and Dissertations 1-1-2018 Ecology of Rare and Abundant Raptors on an Oceanic Island the Sharp-Shinned Hawk and Red-Tailed Hawk in Puerto Rico Julio C. Gallardo Follow this and additional works at: https://scholarsjunction.msstate.edu/td Recommended Citation Gallardo, Julio C., "Ecology of Rare and Abundant Raptors on an Oceanic Island the Sharp-Shinned Hawk and Red-Tailed Hawk in Puerto Rico" (2018). Theses and Dissertations. 1615. https://scholarsjunction.msstate.edu/td/1615 This Dissertation - Open Access is brought to you for free and open access by the Theses and Dissertations at Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholars Junction. For more information, please contact [email protected]. Template B v3.0 (beta): Created by J. Nail 06/2015 Ecology of rare and abundant raptors on an oceanic island: the Sharp-shinned Hawk and Red-tailed Hawk in Puerto Rico By TITLE PAGE Julio C. Gallardo A Dissertation Submitted to the Faculty of Mississippi State University in Partial Fulfillment of the Doctor of Philosophy Requirements for the Degree of Doctor in Philosophy in Forest Resources in the Department of Wildlife, Fisheries and Aquaculture Mississippi State, Mississippi August 2018 Copyright by COPYRIGHT PAGE Julio C. Gallardo 2018 Ecology of rare and abundant raptors on an oceanic island: the Sharp-shinned Hawk and Red-tailed Hawk in Puerto Rico By APPROVAL PAGE Julio C. Gallardo Approved: ____________________________________ Francisco J. Vilella (Major Professor) ____________________________________ Jerrold L. Belant (Committee Member) ____________________________________ Bruce D.
    [Show full text]
  • Preventing Extinctions: Planning and Undertaking Invasive Rodent Eradication from Pinzon Island, Galapagos
    D. Rueda, V. Carrion, P.A. Castaño, F. Cunninghame, P. Fisher, E. Hagen, J.B. Ponder, C.A. Riekena, C. Sevilla, H. Shield, D. Will and K.J. Campbell Rueda, D.; V. Carrion, P.A. Castaño, F. Cunninghame, P. Fisher, E. Hagen, J.B. Ponder, C.A. Riekena, C. Sevilla, H. Shield, D. Will and K.J. Campbell. Preventing extinctions: planning and undertaking invasive rodent eradication from Pinzon Island, Galapagos Preventing extinctions: planning and undertaking invasive rodent eradication from Pinzon Island, Galapagos D. Rueda1, V. Carrion2, P.A. Castaño2, F. Cunninghame3, P. Fisher4, E. Hagen5, J.B. Ponder6, C.A. Riekena7, C. Sevilla1, H. Shield8, D. Will5 and K.J. Campbell2,9 1Galapagos National Park Directorate, Charles Darwin Ave., Puerto Ayora, Galapagos Islands, Ecuador. 2Island Conservation, Charles Darwin Ave., Puerto Ayora, Galapagos Islands, Ecuador. <[email protected]>. 3Charles Darwin Foundation, Charles Darwin Ave., Puerto Ayora, Galapagos Islands, Ecuador. 4Landcare Research, P.O. Box 69040, Lincoln 7640, New Zealand. 5Island Conservation, 2100 Delaware Ave, Santa Cruz, CA 95060, USA. 6The Raptor Center, University of Minnesota, 1920 Fitch Avenue, St. Paul, MN 55108, USA. 7Bell Laboratories, Inc., 3699 Kinsman Blvd., Madison, WI 53704, USA. 8P.O. Box 5184, Springlands 7201, Blenheim, Marlborough, New Zealand. 9School of Geography, Planning & Environmental Management, The University of Queensland, St Lucia 4072, Australia. Abstract Invasive black rats (Rattus rattus) were successfully eradicated during 2012 from Pinzon Island in the Galapagos archipelago using the rodenticide brodifacoum. Potential exposure to brodifacoum in Pinzon tortoises (Chelonoidis ephippium), Pinzon lava lizards (Microlophus duncanensis) and Galapagos hawks (Buteo galapagoensis) was mitigated by captive holding of subpopulations.
    [Show full text]
  • Galapagos Hawk: Demographic and Social Effects in a Changing Environment
    University of Missouri, St. Louis IRL @ UMSL Theses UMSL Graduate Works 4-26-2010 Galapagos Hawk: Demographic and Social Effects in a Changing Environment Jose Luis Rivera University of Missouri-St. Louis, [email protected] Follow this and additional works at: https://irl.umsl.edu/thesis Recommended Citation Rivera, Jose Luis, "Galapagos Hawk: Demographic and Social Effects in a Changing Environment" (2010). Theses. 29. https://irl.umsl.edu/thesis/29 This Thesis is brought to you for free and open access by the UMSL Graduate Works at IRL @ UMSL. It has been accepted for inclusion in Theses by an authorized administrator of IRL @ UMSL. For more information, please contact [email protected]. Jose Luis Rivera Licenciado, Ciencias Biologicas, Pontificia Universidad Catolica del Ecuador, 2007 Galapagos Hawk: Demographic and Social Effects in a Changing Environment Master of Science in Biology with an emphasis in Ecology May 2010 Advisory Committee ________________________ Patricia Parker, Ph.D Chairperson Robert Ricklefs, Ph.D Zuleyma Tang‐Martinez, Ph.D Copyright, Jose Luis Rivera, 2010 2 Abstract The Galapagos Hawk (Buteo galapagoensis) is endemic to the Galapagos Islands, where it is the top predator and only resident diurnal raptor. On most islands, Galapagos hawks form polyandrous breeding groups with one female with up to eight males. Before entering a breeding group, individuals spend 3‐4 years as non‐breeding floaters. I studied the hawks on Santiago Island, where introduced goats had been recently eradicated, leading to drastic changes in the ecology of the island. Using mark‐recapture procedures, we assessed the size of the juvenile component of the population over time.
    [Show full text]
  • NRN Newsletter 10English.Indd
    SPIZAETUS NEOTROPICAL RAPTOR NETWORK NEWSLETTER ISSUE 10 DECEMBER 2010 STUDYING THE GALAPAGOS HAW K POSSIBLE EVIDENCE OF BREEDING AMONG CONDORS IN COLOMBIA REINTRODUCTION OF A HARPY EAGLE IN PANAMA RECOVERY OF A HARPY EAGLE IN BRASIL WWW.NEOTROPICALRAPTORS.ORG PAGE - 1 TABLE OF CONTENTS THE GALAPAGOS HAWK (BUTEO GALAPAGOENSIS): LIVING IN AN EVER-CHANGING ENVIRONMENT............................................................................................................................2 POSSIBLE EVIDENCE OF BREEDING IN REINTRODUCED CONDORS (VULTUR GRYPHUS) IN COLOMBIA....................................................................................................................................8 EXPERIENCES WITH THE REINTRODUCTION OF A CAPTIVE-BRED HARPY EAGLE (HARPIA HARYPJA) INTO A W ILD E COSYSTEM IN D ARÉN, PANAMÁ.............................................................12 RECOVERY OF A HARPY EAGLE (HARPIA HARYPJA) IN THE PRIVATE NATURAL HERITAGE RESERVE REVECOM............................................................................................................. 16 NEOTROPICAL RAPTOR LITERATURE NOTES ......................................................................... 22 OTHER RESOURCES....................................................................................................................24 UPCOMING CONFERENCES .......................................................................................................24 The NRN is a membership-based organization. Its goal is to aid the research and conservation
    [Show full text]