Galapagos: an Intimate Look at Darwin's Islands 2018
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
BIRDS Masked Booby Semipalmated Plover Common Tern
BIRDS Masked Booby Semipalmated Plover Common Tern APPROXIMATELY 170 SPECIES OF BIRDS HAVE BEEN SEEN ON THE ISLANDS; HOWEVER THE FOLLOWING LIST DOES NOT INCLUDE VISITING BIRDS ONLY RARELY SEEN. Nazca Booby Spotted Sandpiper Royal Tern BIRDS MARKED ‘E’ ARE ENDEMIC AND ‘I’ ARE INTRODUCED SPECIES. Blue-footed Booby Wandering Tattler Galapagos Dove Birds Red-footed Booby Greater Yellowlegs Dark-billed Cuckoo Blue-winged Teal Flightless Cormorant Willet Smooth-billed Ani White-cheeked Pintail Brown Pelican Lesser Yellowlegs Barn Owl Red Junglefowl I Great Blue Heron Whimbrel Short-eared Owl Pied-billed Grebe Great Egret Ruddy Turnstone Common Nighthawk American Flamingo Striated Heron Least Sandpiper Belted Kingfisher Galapagos Penguin E Yellow-crowned Night-Heron Short-billed Dowitcher Peregrine Falcon Waved Albatross E Osprey Wilson's Phalarope Vermilion Flycatcher Galapagos Petrel E Galapagos Hawk Red-necked Phalarope Galapagos Flycatcher Galapagos Shearwater E Galapagos Rail Red Phalarope Galapagos Martin Band-rumped Storm-Petrel Paint-billed Crake Swallow-tailed Gull Barn Swallow Wedge-rumped Storm-Petrel Common Gallinule Laughing Gull Galapagos Mockingbird Least Storm-Petrel Black-necked Stilt Franklin's Gull Floreana Mockingbird Red-billed Tropicbird American Oystercatcher Lava Gull Española Mockingbird Magnificent Frigatebird Black-bellied Plover Brown Noddy San Cristobal Mockingbird Great Frigatebird Pied Lapwing Sooty Tern Green Warbler-Finch Gray Warbler-Finch Vegetarian Finch Woodpecker Finch Large Tree-Finch Medium Tree-Finch -
(Spheniscus Mendiculus) and Flightless Cormorants (Phalacrocorax Harrisi ): Genetics, Morphology, and Prevalence
J. Parasitol., 93(3), 2007, pp. 495–503 ᭧ American Society of Parasitologists 2007 MICROFILARIAE IN GALA´ PAGOS PENGUINS (SPHENISCUS MENDICULUS) AND FLIGHTLESS CORMORANTS (PHALACROCORAX HARRISI ): GENETICS, MORPHOLOGY, AND PREVALENCE Jane Merkel*†, Hugh I. Jones‡, Noah K. Whiteman*, Nicole Gottdenker†, Hernan Vargas§, Erika K. Travis†, R. Eric Miller†, and Patricia G. Parker*† *University of Missouri–St. Louis, Department of Biology, 223 Research Building, 8001 Natural Bridge Road, St. Louis, Missouri 63121. e-mail: [email protected] ABSTRACT: Gala´pagos penguins (Spheniscus mendiculus) and flightless cormorants (Phalacrocorax harrisi) live in small, isolated populations on the westernmost islands of Isabela and Fernandina in the Gala´pagos Islands, Ecuador. Between August 2003 and February 2005, 4 field trips, 2 in the cool, dry season (August 2003 and August 2004) and 2 in the hot, rainy season (March 2004 and February 2005), were undertaken; 298 Gala´pagos penguins and 380 cormorants were sampled for prevalence and intensity of hemoparasites. Microfilariae were found in both the penguins and the cormorants. Blood smears were negative for the presence of other species of hemoparasites. Overall prevalence of microfilariae across seasons was 42.0% in cormorants and 13.8% in the penguins. Intensity of infection was generally low (mean ϭ 3.2–31.7 in 25 fields across seasons and species) with the exception of a few individuals with markedly high intensities of parasites (Ͼ300 in 25 fields in 1 cormorant). Prevalence of microfilariae increased significantly over the 4 sampling periods for cormorants, but not for penguins. Prevalences were signifi- cantly higher in cormorants than in penguins for 3 of the 4 collecting trips. -
Ecuador & the Galapagos Islands
Ecuador & the Galapagos Islands - including Sacha Lodge Extension Naturetrek Tour Report 29 January – 20 February 2018 Medium Ground-finch Blue-footed Booby Wire-tailed Manakin Galapagos Penguin Green Sea Turtle Report kindly compiled by Tour participants Sally Wearing, Rowena Tye, Debbie Hardie and Sue Swift Images courtesy of David Griffiths, Sue Swift, Debbie Hardie, Jenny Tynan, Rowena Tye, Nick Blake and Sally Wearing Naturetrek Mingledown Barn Wolf’s Lane Chawton Alton Hampshire GU34 3HJ UK T: +44 (0)1962 733051 E: [email protected] W: www.naturetrek.co.uk Tour Report Ecuador & the Galapagos Islands - including Sacha Lodge Extension Tour Leader in the Galapagos: Juan Tapia with 13 Naturetrek Clients This report has kindly been compiled by tour participants Sally Wearing, Rowena Tye, Debbie Hardie and Sue Swift. Day 1 Monday 29th January UK to Quito People arrived in Quito via Amsterdam with KLM or via Madrid with Iberia, while Tony came separately from the USA. Everyone was met at the airport and taken to the Hotel Vieja Cuba; those who were awake enough went out to eat before a good night’s rest. Day 2 Tuesday 30th January Quito. Weather: Hot and mostly sunny. The early risers saw the first few birds of the trip outside the hotel: Rufous- collared Sparrow, Great Thrush and Eared Doves. After breakfast, an excellent guide took us on a bus and walking tour of Quito’s old town. This started with the Basilica del Voto Nacional, where everyone marvelled at the “grotesques” of native Ecuadorian animals such as frigatebirds, iguanas and tortoises. -
Parasites of the Neotropic Cormorant Nannopterum (Phalacrocorax) Brasilianus (Aves, Phalacrocoracidae) in Chile
Original Article ISSN 1984-2961 (Electronic) www.cbpv.org.br/rbpv Parasites of the Neotropic cormorant Nannopterum (Phalacrocorax) brasilianus (Aves, Phalacrocoracidae) in Chile Parasitos da biguá Nannopterum (Phalacrocorax) brasilianus (Aves, Phalacrocoracidae) do Chile Daniel González-Acuña1* ; Sebastián Llanos-Soto1,2; Pablo Oyarzún-Ruiz1 ; John Mike Kinsella3; Carlos Barrientos4; Richard Thomas1; Armando Cicchino5; Lucila Moreno6 1 Laboratorio de Parásitos y Enfermedades de Fauna Silvestre, Departamento de Ciencia Animal, Facultad de Medicina Veterinaria, Universidad de Concepción, Chillán, Chile 2 Laboratorio de Vida Silvestre, Departamento de Ciencia Animal, Facultad de Medicina Veterinaria, Universidad de Concepción, Chillán, Chile 3 Helm West Lab, Missoula, MT, USA 4 Escuela de Medicina Veterinaria, Universidad Santo Tomás, Concepción, Chile 5 Universidad Nacional de Mar del Plata, Mar del Plata, Argentina 6 Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile How to cite: González-Acuña D, Llanos-Soto S, Oyarzún-Ruiz P, Kinsella JM, Barrientos C, Thomas R, et al. Parasites of the Neotropic cormorant Nannopterum (Phalacrocorax) brasilianus (Aves, Phalacrocoracidae) in Chile. Braz J Vet Parasitol 2020; 29(3): e003920. https://doi.org/10.1590/S1984-29612020049 Abstract The Neotropic cormorant Nannopterum (Phalacrocorax) brasilianus (Suliformes: Phalacrocoracidae) is widely distributed in Central and South America. In Chile, information about parasites for this species is limited to helminths and nematodes, and little is known about other parasite groups. This study documents the parasitic fauna present in 80 Neotropic cormorants’ carcasses collected from 2001 to 2008 in Antofagasta, Biobío, and Ñuble regions. Birds were externally inspected for ectoparasites and necropsies were performed to examine digestive and respiratory organs in search of endoparasites. -
Encyclopaedia of Birds for © Designed by B4U Publishing, Member of Albatros Media Group, 2020
✹ Tomáš Tůma Tomáš ✹ ✹ We all know that there are many birds in the sky, but did you know that there is a similar Encyclopaedia vast number on our planet’s surface? The bird kingdom is weird, wonderful, vivid ✹ of Birds and fascinating. This encyclopaedia will introduce you to over a hundred of the for Young Readers world’s best-known birds, as well as giving you a clear idea of the orders in which birds ✹ ✹ are classified. You will find an attractive selection of birds of prey, parrots, penguins, songbirds and aquatic birds from practically every corner of Planet Earth. The magnificent full-colour illustrations and easy-to-read text make this book a handy guide that every pre- schooler and young schoolchild will enjoy. Tomáš Tůma www.b4upublishing.com Readers Young Encyclopaedia of Birds for © Designed by B4U Publishing, member of Albatros Media Group, 2020. ean + isbn Two pairs of toes, one turned forward, ✹ Toco toucan ✹ Chestnut-eared aracari ✹ Emerald toucanet the other back, are a clear indication that Piciformes spend most of their time in the trees. The beaks of toucans and aracaris The diet of the chestnut-eared The emerald toucanet lives in grow to a remarkable size. Yet aracari consists mainly of the fruit of the mountain forests of South We climb Woodpeckers hold themselves against tree-trunks these beaks are so light, they are no tropical trees. It is found in the forest America, making its nest in the using their firm tail feathers. Also characteristic impediment to the birds’ deft flight lowlands of Amazonia and in the hollow of a tree. -
Raptor Migration in the Neotropics: Patterns, Processes, and Consequences
ORNITOLOGIA NEOTROPICAL 15 (Suppl.): 83–99, 2004 © The Neotropical Ornithological Society RAPTOR MIGRATION IN THE NEOTROPICS: PATTERNS, PROCESSES, AND CONSEQUENCES Keith L. Bildstein Hawk Mountain Sanctuary Acopian Center, 410 Summer Valley Road, Orwigsburg, Pennsylvania 17961, USA. E-mail: [email protected] Resumen. – Migración de rapaces en el Neotrópico: patrones, procesos y consecuencias. – El Neotró- pico alberga poblaciones reproductivas y no reproductivas de 104 de las 109 especies de rapaces del Nuevo Mundo (i.e., miembros del suborden Falconides y de la subfamilia Cathartinae), incluyendo 4 migrantes obligatorios, 36 migrantes parciales, 28 migrantes irregulares o locales, y 36 especies que se presume que no migran. Conteos estandarizados de migración visible iniciados en la década de los 1990, junto con una recopilación de literatura, nos proveen con una idea general de la migración de rapaces en la región. Aquí describo los movimientos de las principales especies migratorias y detallo la geografía de la migración en el Neotrópico. El Corredor Terrestre Mesoamericano es la ruta de migración mas utilizada en la región. Tres especies que se reproducen en el Neártico, el Elanio Colinegro (Ictina mississippiensis), el Gavilán Aludo (Buteo platypterus) y el Gavilán de Swainson (B. swainsoni), de los cuales todos son migrantes obligatorios, junto con las poblaciones norteamericanas del Zopilote Cabecirrojo (Cathartes aura), dominan numérica- mente este vuelo norteño o “boreal”. Cantidades mucho menores de Aguilas Pescadoras (Pandion haliaetus), Elanios Tijereta (Elanoides forficatus), Esmerejónes (Falco columbarius) y Halcones Peregrinos (Falco peregrinus), ingresan y abandonan el Neotrópico rutinariamente utilizando rutas que atraviesan el Mar Caribe y el Golfo de México. Los movimientos sureños o “australes” e intra-tropicales, incluyendo la dispersión y la colonización en respuesta a cambios en el hábitat, son conocidos pero permanecen relativamente poco estudiados. -
Full Article
NOTORNIS Journal of the Ornithological Society of New Zealand Volume 29 Part 3 September 1982 ISSN 0029-4470 CONTENTS MILLENER, P. R. And then there were Twelve: The Taxonomic Status of Anomalopteryx Oweni ...... ...... ... ... .. CROXALL, J. P. Sexual Dimorphism in Snow Petrels ...... POWLESLAND, M. H. A Breeding Study of the South Island Fantail ... .. .. ...... ...... ...... ... .. BERNSTEIN, N. P.; MAXSON, S. J. Behaviour of the Antarctic Blue-eyed Shag ...... ...... ...... ...... ...... ...... GAZE, P. D.; FITZGERALD, B. M. Food of Honeyeaters on Little Barrier Island ...... ...... ...... ...... ...... ...... GILL, B. J. Notes on the Shining Cuckoo in New Zealand ...... Short Notes DANIEL, M. J. Tui Feeding on Sandhoppers ...... ...... ...... SPARROW, S. C. A Repeat Nesting of Bellbirds ...... ...... HENSLES', V. S. Wnite-necked peron in the Par North ...... WARHAM, J. Distant Recovery of a Buller's Mollymawk ...... HEDLEY, L. & S. Falcons Breeding in the Western King Country WATLING, D. Fiji's Sedentary Starlings ...... ...... .. .. ... MILES, J. A. R. Notes on Some Waders at Vatuwaqa, Suva, Fiji JENKINS, J. A. F. Seabird Records from Tonga - Further Notes from the Literature ...... ...... ...... ...... .. ... WHEELER, R. W. Fiordland Crested Penguin ...... .. ... TUNNICLIFFE, G. A. Indian Mynas in Eastern South Island Reviews FENNEL, J. Hawks in Focus: a Study of Australia's Birds of Prey (J. & L. Cooper) ...... ...... ....,. ...... ...... ...... 238 WODZICKI, K. Aves Brasileires (J. D. Frisch) ...... ...... 238 WILLIAMS, G. R. The Phylogeny and Relationships of the Rattite Birds (C. G. Sibley & J. E. Ahlquist) ...... ...... ...... 239 NOTORNIS is the journal of the Ornithological Society of New Zealand (Inc.) Editor: B. D. Heather, 10 Jocelyn Crescent, SILVERSTREAM VOLUME 29 PART 3 SEPTEMBER, 1982 AND THEN THERE WERE TWELVE: THE TAXONOMIC STATUS OF Anomalopteryx oweni (AVES: DINORNITHIDAE) By P. -
Hematology, Plasma Chemistry, and Serology of the Flightless Cormorant (Phalacrocorax Harrisi) in the Gala´ Pagos Islands, Ecuador
Journal of Wildlife Diseases, 42(1), 2006, pp. 133–141 # Wildlife Disease Association 2006 HEMATOLOGY, PLASMA CHEMISTRY, AND SEROLOGY OF THE FLIGHTLESS CORMORANT (PHALACROCORAX HARRISI) IN THE GALA´ PAGOS ISLANDS, ECUADOR Erika K. Travis,1,2,7 F. Hernan Vargas,3 Jane Merkel,1,5 Nicole Gottdenker,6 R. Eric Miller,1 and Patricia G. Parker1,5 1 Saint Louis Zoo, One Government Dr., Saint Louis, Missouri 63110, USA 2 College of Veterinary Medicine, University of Missouri, 203 Veterinary Medicine Building, Columbia, Missouri 65211, USA 3 Wildlife Conservation Research Unit, University of Oxford, Tubney House, Abingdon Road, OX13 5QL, UK 4 Charles Darwin Research Station, Puerto Ayora, Santa Cruz Island, Gala´pagos, Ecuador 5 Department of Biology, University of Missouri–Saint Louis, 8001 Natural Bridge Road, Saint Louis, Missouri 63121, USA 6 Institute of Ecology, University of Georgia, Athens, Georgia 30602, USA 7 Corresponding author (email: [email protected]) ABSTRACT: The flightless cormorant (Phalacrocorax harrisi) is an endemic species of the Gala´pagos Islands, Ecuador. Health studies of the species have not previously been conducted. In August 2003, baseline samples were collected from flightless cormorant colonies on the islands of Isabela and Fernandina. Seventy-six birds, from nestlings to adults, were evaluated. Genetic sexing of 70 cormorants revealed 37 females and 33 males. Hematology assessment consisted of packed cell volume (n519), leukograms (n569), and blood smear evaluation (n569). Microscopic evaluation of blood smears revealed microfilaria in 33% (23/69) of the cormorants. Plasma chemistries were performed on 46 cormorants. There was no significant difference in chemistry values or complete blood counts between male and female cormorants or between age groups. -
Comparative Phylogeography and Population Genetics Within Buteo Lineatus Reveals Evidence of Distinct Evolutionary Lineages
Molecular Phylogenetics and Evolution 49 (2008) 988–996 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Comparative phylogeography and population genetics within Buteo lineatus reveals evidence of distinct evolutionary lineages Joshua M. Hull a,*, Bradley N. Strobel b, Clint W. Boal b, Angus C. Hull c, Cheryl R. Dykstra d, Amanda M. Irish a, Allen M. Fish c, Holly B. Ernest a,e a Wildlife and Ecology Unit, Veterinary Genetics Laboratory, 258 CCAH, University of California, One Shields Avenue, Davis, CA 95616, USA b U.S. Geological Survey Texas Cooperative Fish and Wildlife Research Unit, Department of Natural Resources Management, Texas Tech University, Lubbock, TX 79409, USA c Golden Gate Raptor Observatory, Building 1064 Fort Cronkhite, Sausalito, CA 94965, USA d Raptor Environmental, 7280 Susan Springs Drive, West Chester, OH 45069, USA e Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, One Shields Avenue/Old Davis Road, Davis, CA 95616, USA article info abstract Article history: Traditional subspecies classifications may suggest phylogenetic relationships that are discordant with Received 25 June 2008 evolutionary history and mislead evolutionary inference. To more accurately describe evolutionary rela- Revised 13 September 2008 tionships and inform conservation efforts, we investigated the genetic relationships and demographic Accepted 17 September 2008 histories of Buteo lineatus subspecies in eastern and western North America using 21 nuclear microsatel- Available online 26 September 2008 lite loci and 375-base pairs of mitochondrial control region sequence. Frequency based analyses of mito- chondrial sequence data support significant population distinction between eastern (B. -
Breeding Biology of Neotropical Accipitriformes: Current Knowledge and Research Priorities
Revista Brasileira de Ornitologia 26(2): 151–186. ARTICLE June 2018 Breeding biology of Neotropical Accipitriformes: current knowledge and research priorities Julio Amaro Betto Monsalvo1,3, Neander Marcel Heming2 & Miguel Ângelo Marini2 1 Programa de Pós-graduação em Ecologia, IB, Universidade de Brasília, Brasília, DF, Brazil. 2 Departamento de Zoologia, IB, Universidade de Brasília, Brasília, DF, Brazil. 3 Corresponding author: [email protected] Received on 08 March 2018. Accepted on 20 July 2018. ABSTRACT: Despite the key role that knowledge on breeding biology of Accipitriformes plays in their management and conservation, survey of the state-of-the-art and of information gaps spanning the entire Neotropics has not been done since 1995. We provide an updated classification of current knowledge about breeding biology of Neotropical Accipitridae and define the taxa that should be prioritized by future studies. We analyzed 440 publications produced since 1995 that reported breeding of 56 species. There is a persistent scarcity, or complete absence, of information about the nests of eight species, and about breeding behavior of another ten. Among these species, the largest gap of breeding data refers to the former “Leucopternis” hawks. Although 66% of the 56 evaluated species had some improvement on knowledge about their breeding traits, research still focus disproportionately on a few regions and species, and the scarcity of breeding data on many South American Accipitridae persists. We noted that analysis of records from both a citizen science digital database and museum egg collections significantly increased breeding information on some species, relative to recent literature. We created four groups of priority species for breeding biology studies, based on knowledge gaps and threat categories at global level. -
Species List – November 10 -17, 2019 with Mainland Ecuador Puembo/Antisana National Park Pre-Extension November 9, 2019
Journey to the Galapagos Species List – November 10 -17, 2019 With mainland Ecuador Puembo/Antisana National Park pre-extension November 9, 2019 Guide Dan Donaldson, with local guides Antonio and Gustavo (in Galapagos), and 19 participants: Becky, Tom and Nancy, Julianne, Cynthia, John and Kathy L, Kathy P, Ed and Sil, Jenise, Ram and Sudha, Jim and Brenda, Kitty, Jean, Carol, and Deb. GALAPAGOS ISLANDS (HO)= Distinctive enough to be counted as heard only (E)= Galapagos Endemic (I)=introduced BIRDS (45 species recorded, of which 0 were heard only): DUCKS, GEESE, AND SWANS: Anatidae (1) White-cheeked Pintail Anas bahamensis— Several seen on Punta Cormorant Pond on Floreana with American Flamingos and again on Santa Cruz at El Chato Ranch (Giant Tortoise Ranch) FLAMINGOS: Phoenicopteridae (1) American Flamingo Phoenicopterus ruber— 37, Small groups, viewed from across the pond, making up 37 or more individuals seen at Punta Cormorant. Early breeding displays by several individuals consisting of coordinated marching and wing extensions were observed. PIGEONS AND DOVES: Columbidae (1) Galapagos Dove Zenaida galapagoensis (E)— 8, Observed on several days including on the beach at Punta Pitt and again on the hike at Punta Suarez. CUCKOOS: Cuculidae (1) Smooth-billed Ani Crotophaga ani (I)— 13, First seen on the drive into El Chato Ranch to view the giant tortoises, this species was introduced to the Galapagos to preen ticks from cattle. Their effectiveness at this task is questionable. STILTS AND AVOCETS: Recurvirostridae (1) Black-necked Stilt Himantopus mexicanus— 1, This individual was spotted feeding in a small mangrove cove on Punta Cormorant Pond. -
Variation in Morphology and Mating System Among Island Populations of Gala´ Pagos Hawks
The Condor 105:428±438 q The Cooper Ornithological Society 2003 VARIATION IN MORPHOLOGY AND MATING SYSTEM AMONG ISLAND POPULATIONS OF GALAÂ PAGOS HAWKS JENNIFER L. BOLLMER1,5,6,TANIA SANCHEZ2,MICHELLE DONAGHY CANNON3,7, DIDIER SANCHEZ2,BRIAN CANNON3,8,JAMES C. BEDNARZ3,TJITTE DE VRIES2, M. SUSANA STRUVE4,9 AND PATRICIA G. PARKER1,6 1Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, 1735 Neil Avenue, Columbus, OH 43210 and Department of Biology, University of Missouri-St. Louis, 8001 Natural Bridge Road, St. Louis, MO 63121 2Departamento de BiologõÂa, PontifõÂcia Universidad CatoÂlica del Ecuador, Quito, Ecuador 3Department of Biological Sciences, Arkansas State University, P.O. Box 599, State University, AR 72467 4Charles Darwin Foundation, Inc., 407 N. Washington Street, Suite 105, Falls Church, VA 22046 Abstract. Interspeci®c variation in sexual size dimorphism has commonly been attributed to variation in social mating system, with dimorphism increasing as intrasexual competition for mates increases. In birds, overall body size has also been found to correlate positively with size dimorphism. In this study, we describe variation in morphology and mating system across six populations of the endemic GalaÂpagos Hawk (Buteo galapagoensis). GalaÂpagos Hawks exhibit cooperative polyandry, a mating system in which long-term social groups contain a single female and multiple males. Comparisons among islands revealed signi®cant differences in overall body size for both adults and immatures. Populations ranged from completely monogamous to completely polyandrous, with varying mean group sizes. Data did not support our prediction that sexual size dimorphism would increase with the degree of polyandry (number of males per group) or with body size; there was no correlation between mating system and sexual dimorphism.