The Ocean in Depth!

Total Page:16

File Type:pdf, Size:1020Kb

The Ocean in Depth! The ocean in depth! MARUM Newsletter April 2018 Dear readers, New knowledge in marine research is advanced on the one hand through co- operation among different disciplines. On the other hand, lean and efficient decision-making and administrative structures are necessary today to generate creative and productive new insights. A few years ago the “Research Faculty” MARUM was established as a new model at the University of Bremen precisely for the purpose of creating these necessary conditions for rese- arch. By means of a novel governance structure MARUM has obtained very far-reaching rights. It allows us, to a lar- ge extent, to manage our staff and our budget independently, and MARUM The cold-water-coral reefs off Mauritania serve as a habitat for fish, crustaceans, mussels and may also enter into contracts directly many other living creatures. Photo: Tomas Lundälv with partners outside the university. At the end of last year, university panels [ Research ] decided by a large majority to continue their course and make MARUM a Submarine cold-water coral mounds permanent organizational unit of the University of Bremen that is only The world’s so far largest known contiguous rates reached peak values of 16 meters accountable to the rectorate. With this cold-water coral structure, with a length of per 1,000 years. Their results suggest that landmark decision behind us, we will around 400 kilometers, is situated along the peak phases for the cold-water corals, continue to follow our chosen path to the coast of Mauretania. The coral mounds when the mounds grew significantly in strengthen interdisciplinary cooperati- here can reach heights of 100 meters. MAR- height, coincided with those times when on with our partners both within and UM scientist Dr. Claudia Wienberg was one oxygen-rich water masses flowed into the outside the University of Bremen. of an international team of researchers who area from the north. When the cold-water intensively sampled this area, making use corals were flooded by oxygen-poor water of the research vessel Maria S. Merian, in masses from the south, as is the case today, I wish you a very informative read, order to learn more about the development the mounds grew more slowly or not at all. of cold-water corals. In their study, she and Depending on the prevalent climate, the her colleagues trace how this development front between these water masses shifted has progressed over the past 120,000 years from north to south, and vice versa, and Michael Schulz (Director) off Mauretania. They identified phases in the corals were alternately enveloped by which the growth of the mounds stagna- oxygen-rich or oxygen-poor waters. ted, and other periods when the growth www.marum.de/en/Discover/Coral-mound.html [ Training ] Arctic” (ArcTrain) for another four and a its international character,” says Prof. Dr. DFG extends ArcTrain half years. During the next phase until Michal Kučera, spokesperson for ArcTrain. 2022 the positions and research work of “Through research residencies at part- The German Research Foundation (DFG) 12 PhD students will be financed. Together ner universities, early career researchers will finance the MARUM-based Internati- with colleagues from Canada they will acquire insights into the expertise of our onal Research Training Group “Processes personally experience­­ and investigate the Canadian partners, and strengthen their and impacts of climate change in the Arctic region on land and from the sea. “The academic networks.” North Atlantic Ocean and the Canadian special strength of the Training Group is www.marum.de/en/education-career/ArcTrain-2.html [ Expeditions ] Destination: Henry Seamount An extinct submarine volcano off the Canary Islands is the focus of an expedi- tion by MARUM scientists. On board the research vessel Meteor the team, headed by Dr. Andreas Klügel from the Department of Geosciences at the University of Bremen, is studying the Henry Seamount, a 126 million-year-old volcano southeast of the Canary Island El Hierro, at a water depth of 3,600 meters. During an earlier Meteor cruise here, mussel shells and rock samples were collected that indicated the presence of cold seeps. The autonomous underwater vehicle MARUM-Seal, among other tools, will be deployed during the mapping. The autonomous underwater vehicle MARUM-Seal is made ready for deployment. Photo: A. Klügel www.marum.de/en/Research/M146.html [ Research ] [ Research ] North-Atlantic monitoring and modeling New class of biocatalysts Enzymes are of crucial importance for the in earlier investigations. However, it was When the circulation in the North Atlantic breakdown of algal biomass in the ocean. previously not understood exactly how Ocean changes, it also affects the climate Scientists from Bremen and Greifswald the microbial degradation takes place. The in Europe. How exactly, that is the focus of have been able to prove this for the first team has now been able to demons trate the joint research project Regional Atlantic time in comprehensive experiments. They the specific func tions of certain bacterial Circulation and Global Change (RACE). have discovered a completely new sub-class enzymes for the first time. With the help of “In order to better understand the ocean of biocatalysts that are involved in the oxygen these enzymes catalyze an impor- currents, we need continuous long-term breakdown of sugars by marine bacteria. tant chemical step in the conversion of the monitoring with high temporal resolution “These enzymes are very important for our carbohydrates. over decades, and realistic, high-resolution understanding of the carbon cycle in the ocean and climate models,” says Prof. Dr. ocean. They show us how marine bacteria Monika Rhein from MARUM, coordinator of deal with highly stable carbon sources in the joint research project. order to metabolize them,” explains Dr. Scientific expertise is pooled, which enables Jan-Hendrik Hehemann from MARUM. In close cooperation in the development and the world ocean, algae store approximately use of complex monitoring technologies. the same amount of carbon each year as all The Federal Ministry of Education and land vegetation combined. In doing so, the Research has been funding the project since algae produce large amounts of carbohy- 2006 in order to gain reliable long-term drates, which are subsequently broken data. down by bacteria and represent an impor- The focus of the Parliamentary Evening Bacteria living on red seaweed (picture) tant source of energy for the entire food at the Bremen State Representation in digest its cell walls with a newly discovered web in the sea. The marine bacteria that Berlin was the successes and future tasks class of enzymes. are active in this breakdown were identified of German marine research in the face of climate change. The meeting was organized by the German Climate Consortium (DKK), [ Training ] [ Research ] the German Marine Research Consortium Training for young academics Accurate chronologies (KDM) and RACE. Monika Rhein explained, the long-term At the fourth ECORD Training Course, held High-resolution age models are essential monitoring of these realms is an important at MARUM, 30 participants from 14 coun- for understanding the details of how clima- task for RACE. Networking in research is tries learned about the high standards of te changes affect ecosystems. Short-term indispensable in order “to recognize the the International Ocean Discovery Program warming events 56 million years ago, du- anthropogenic impact on Gulf Stream circu- (IODP). Step by step they were taught how ring the early Eocene, are accompanied by lation at an early stage against a backdrop to sample and analyze cores. The course an extraordinary increase in greenhouse ga- of immense natural fluctuations, and to prepares scientists not only for participa- ses. Dr. Thomas Westerhold and Dr. Ursula substantially improve climate forecasts for tion on IODP expeditions, but for all types Röhl of MARUM, together with colleagues Germany”. Prof. Dr. Anya Waite (AWI), Prof. of offshore drilling projects. In September, from the USA, have now produced a de- Dr. Mojib Latif (GEOMAR) and Dr. Karl-Eu- interested scientists can take part in the tailed synchronization between terrestrial gen Huthmacher (Federal Ministry of ECORD Summer School 2018. For two weeks drill cores from Wyoming and data from the Education and Research) also participated they will be actively learning about fluids deep sea. It revises earlier findings on exact in the discussions with Monika Rhein. and gas hydrates in the seafloor. Applica- temporal sequences, documents the pro- tions must be submitted no later than 4 cesses in unprecedented detail, and for the www.marum.de/en/Research/RACE.html May. first time documents simultaneous changes www.marum.de/ECORD-training.html in life on the land and in the deep sea. Page 2 MARUM-Newsletter “The ocean in depth!” April 2018 [ MARUM visual ] Deep-sea prawns Prawns on a sponge in the Greenland Sea, west of Spitsbergen at a depth of 2,430 meters. Photo: ROV MARUM-Quest, Expedition PS93-2, RV Polarstern [ Expeditions ] Sonne research cruise to island arcs in the South Pacific Hot water rises from the seafloor like dozens of volcanoes on the ocean floor. The hot seeps, and change the composition dark smoke. It is released by submarine Kermadec Arc was also the target of Expedi- of the oceans. We use special gas-tight volcanoes between 700 and 1,800 meters tion SO253 in 2017. water-samplers to recover and preserve un- below the surface. An international group During Expedition SO263 of the research diluted hydrothermal water directly at the of scientists wants to investigate exactly vessel Sonne the team visits the most seep site,” explains Alexander Diehl from what this water contains and how far the northerly part of the Tonga Arc and the MARUM. “With conventional samplers, the dissolved materials in it are distributed northeastern Lau Basin.
Recommended publications
  • Deep-Sea Life Issue 14, January 2020 Cruise News E/V Nautilus Telepresence Exploration of the U.S
    Deep-Sea Life Issue 14, January 2020 Welcome to the 14th edition of Deep-Sea Life (a little later than anticipated… such is life). As always there is bound to be something in here for everyone. Illustrated by stunning photography throughout, learn about the deep-water canyons of Lebanon, remote Pacific Island seamounts, deep coral habitats of the Caribbean Sea, Gulf of Mexico, Southeast USA and the North Atlantic (with good, bad and ugly news), first trials of BioCam 3D imaging technology (very clever stuff), new deep pelagic and benthic discoveries from the Bahamas, high-risk explorations under ice in the Arctic (with a spot of astrobiology thrown in), deep-sea fauna sensitivity assessments happening in the UK and a new photo ID guide for mesopelagic fish. Read about new projects to study unexplored areas of the Mid-Atlantic Ridge and Azores Plateau, plans to develop a water-column exploration programme, and assessment of effects of ice shelf collapse on faunal assemblages in the Antarctic. You may also be interested in ongoing projects to address and respond to governance issues and marine conservation. It’s all here folks! There are also reports from past meetings and workshops related to deep seabed mining, deep-water corals, deep-water sharks and rays and information about upcoming events in 2020. Glance over the many interesting new papers for 2019 you may have missed, the scientist profiles, job and publishing opportunities and the wanted section – please help your colleagues if you can. There are brief updates from the Deep- Ocean Stewardship Initiative and for the deep-sea ecologists amongst you, do browse the Deep-Sea Biology Society president’s letter.
    [Show full text]
  • M66 Final.Pdf (Download)
    METEOR-Berichte 09-2 SUBFLUX Cruise No. 66 August 12 – December 22, 2005, Las Palmas (Spain) – Talcahuano (Chile) Warner Brückmann, Monika Rhein, Gregor Rehder, Jörg Bialas, Achim Kopf Editorial Assistance: Andreas Krell Alfred-Wegener-Institut für Polar- und Meeresforschung, Bremerhaven Leitstelle METEOR Institut für Meereskunde der Universität Hamburg 2009 The METEOR-Berichte are published at irregular intervals. They are working papers for people who are occupied with the respective expedition and are intended as reports for the funding institutions. The opinions expressed in the METEOR-Berichte are only those of the authors. The reports can be obtained from: Universität Hamburg Zentrum für Meeres- und Klimaforschung Institut für Meereskunde Leitstelle METEOR/MERIAN Bundesstr. 53 20146 Hamburg Germany The reports are available in PDF format from http://www.dfg-ozean.de/. The METEOR expeditions are funded by the Deutsche Forschungsgemeinschaft and the Bundesministerium für Bildung und Forschung. Addresses of the editors: Dr. Warner Brückmann Tel: +49 (0)431 600 2819 Leibniz-Institut für Meereswissenschaften Fax: +49 (0)431 600 2916 IFM-GEOMAR Email: [email protected] Wischhofstr. 1-3 24148 Kiel Germany Prof. Dr. Monika Rhein Tel: +49 (0)421 218 2408 Universität Bremen Fax: +49 (0)421 218 7018 Institut für Umweltphysik (IUP) Email: [email protected] Abteilung Ozeanographie Otto-Hahn-Allee 28359 Bremen Germany Prof. Dr. Gregor Rehder Tel: +49 (0)381 5197 336 Leibniz-Institut für Ostseeforschung Fax: +49 (0)381 5197 302 Seestraße 15 Email: [email protected] 18119 Rostock Germany Dr. Jörg Bialas Tel: +49 (0)431 600-2329 Leibniz-Institut für Meereswissenschaften Fax: +49 (0)431 600-2922 IFM-GEOMAR Email: [email protected] Wischhofstr.
    [Show full text]
  • Western South Pacific Regional Workshop in Nadi, Fiji, 22 to 25 November 2011
    SPINE .24” 1 1 Ecologically or Biologically Significant Secretariat of the Convention on Biological Diversity 413 rue St-Jacques, Suite 800 Tel +1 514-288-2220 Marine Areas (EBSAs) Montreal, Quebec H2Y 1N9 Fax +1 514-288-6588 Canada [email protected] Special places in the world’s oceans The full report of this workshop is available at www.cbd.int/wsp-ebsa-report For further information on the CBD’s work on ecologically or biologically significant marine areas Western (EBSAs), please see www.cbd.int/ebsa south Pacific Areas described as meeting the EBSA criteria at the CBD Western South Pacific Regional Workshop in Nadi, Fiji, 22 to 25 November 2011 EBSA WSP Cover-F3.indd 1 2014-09-16 2:28 PM Ecologically or Published by the Secretariat of the Convention on Biological Diversity. Biologically Significant ISBN: 92-9225-558-4 Copyright © 2014, Secretariat of the Convention on Biological Diversity. Marine Areas (EBSAs) The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the Convention on Biological Diversity concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of Special places in the world’s oceans its frontiers or boundaries. The views reported in this publication do not necessarily represent those of the Secretariat of the Areas described as meeting the EBSA criteria at the Convention on Biological Diversity. CBD Western South Pacific Regional Workshop in Nadi, This publication may be reproduced for educational or non-profit purposes without special permission from the copyright holders, provided acknowledgement of the source is made.
    [Show full text]
  • The Seamounts of the Gorringe Bank the Seamounts of the Gorringe Bank the Seamounts of the Gorringe Bank
    THE SEAMOUNTS OF THE GORRINGE BANK THE SEAMOUNTS OF THE GORRINGE BANK THE SEAMOUNTS OF THE GORRINGE BANK Introduction 4 •Oceana expedition and studies 6 •Geographical location 7 1 Geology 8 •Geomorphology, topography and petrology 8 •Seismic activity and tsunamis 12 2 Oceanography 17 •Currents and seamounts 17 •The Mediterranean influence 20 oMeddies 21 •The Atlantic influence 22 •Oxygen levels 23 3 Biology 24 •Endemisms and Biodiversity 27 •List of species 31 •Peculiarities of some of the species on the Gorringe Bank 35 oDescription of the ecosystem observed 36 4 Threats to the biodiversity of Gorringe: fishing 41 5 Conclusions and proposals 46 GLOSSARY 50 BIBLIOGRAPHY 58 3 LAS MONTAÑAS SUBMARINAS DE GORRINGE Introduction A seamount is regarded as a geological elevation that reaches a minimum of 1,000 metres in height and can consist of very different physical, geological and chemical pro- perties. Therefore, seamounts can only exist where there are sea beds more than one kilo- metre deep, or, which is one and the same thing, over 60%–62% of the land surface1. There are also thousands of smaller elevations that tend to be known as abyssal hills (when they are less than 500 metres) or mounds (between 500 and 1,000 metres). Whether in isolation or as part of extensive ranges, there are possibly more than 100,000 sea- mounts around the world2. At present, close to 30,000 of them have been identified, of which around 1,000 can be found in the Atlantic Ocean3, where in addition the largest range in the world can be found; the Mid–Atlantic Ridge, which stretches from Iceland to the Antarctic.
    [Show full text]
  • Henry Seamount, Western Canary Islands
    Henry Seamount, western Canary Islands: Old Structure or recently active volcano? Andreas Klügel (University of Bremen, Department of Geosciences, Bremen, Germany, [email protected]) Thor H. Hansteen (GEOMAR, Volcanology and Petrology, Kiel, Germany, [email protected]) 1. Introduction Fig. 1a: Bathymetric map and age progression of the Henry Seamount is 8 km wide, 660 m high and rises La Palma Canary hotspot track after from 3700 m deep seafloor southeast of El Hierro, the (1.7 Ma) Geldmacher et al., 2005). youngest of the Canary Islands (Fig. 1). Mapping during Radiometric ages are given Charles Darwin cruise CD108 in 1997 revealed that in Ma. There is an age Henry Seamount is dome-shaped with radiating gullies progression from Lars and ridges and shows a sharp break-of-slope with the Seamount in the northeast surrounding flat seafloor (Gee et al., 2001). Because of *128 Ma (68 Ma) to El Hierro in the these characteristics and because low backscatter southwest (1 Ma). indicates several meters of sediment coverage, the seamount was interpreted as an extinct volcanic edifice possibly some 100 ka old. A similar minimum age was El Hierro 0 60 inferred for the southern submarine ridge of El Hierro (1.1 Ma) Henry -3 further to the west. Seamount Fig. 1b: Left: Bathymetric map of the -3600 These interpretations are consistent with high -3400 western Canary Archipelago. Numbers in -32 00 radiometric Ar/Ar ages of submarine samples from the brackets indicate oldest subaerial ages of the *133 Ma 396 397 westernmost Canary Archipelago (P.v.d. Bogaard, islands, and numbers with asterisk are 393 unpubl.
    [Show full text]
  • Download Date 01/10/2021 07:01:15
    Oceanic intraplate volcanic islands and seamounts in the Canary Current Large Marine Ecosystem Item Type Report Section Authors Mangas, José; Quevedo-González, Luis Á.; Déniz-González, Itahisa Publisher IOC-UNESCO Download date 01/10/2021 07:01:15 Link to Item http://hdl.handle.net/1834/9175 2.2. Oceanic intraplate volcanic islands and seamounts in the Canary Current Large Marine Ecosystem For bibliographic purposes, this article should be cited as: Mangas, J., Quevedo‐González, L. Á. and Déniz‐González, I. 2015. Oceanic intraplate volcanic islands and seamounts in the Canary Current Large Marine Ecosystem. In: Oceanographic and biological features in the Canary Current Large Marine Ecosystem. Valdés, L. and Déniz‐ González, I. (eds). IOC‐UNESCO, Paris. IOC Technical Series, No. 115, pp. 39‐51. URI: http://hdl.handle.net/1834/9175. The publication should be cited as follows: Valdés, L. and Déniz‐González, I. (eds). 2015. Oceanographic and biological features in the Canary Current Large Marine Ecosystem. IOC‐UNESCO, Paris. IOC Technical Series, No. 115: 383 pp. URI: http://hdl.handle.net/1834/9135. The report Oceanographic and biological features in the Canary Current Large Marine Ecosystem and its separate parts are available on‐line at: http://www.unesco.org/new/en/ioc/ts115. The bibliography of the entire publication is listed in alphabetical order on pages 351‐379. The bibliography cited in this particular article was extracted from the full bibliography and is listed in alphabetical order at the end of this offprint, in unnumbered pages. ABSTRACT The Canary Islands and the Cape Verde Islands Volcanic Provinces show sets of islands and seamounts related to magma‐driven processes over tens of millions of years at the Canary and Cape Verde hotspots.
    [Show full text]
  • Dr. Andreas Klügel Fachbereich Geowissenschaften Universität Bremen Klagenfurter Str
    Dr. Andreas Klügel Fachbereich Geowissenschaften Universität Bremen Klagenfurter Str. 2-4 28334 Bremen, Germany Tel.: +49-421-21865402 Fax: +49-421-21865429 email: [email protected] Short Cruise Report R/V METEOR M146 Recife - Las Palmas de Gran Canaria 17th March 2018 - 16th April 2018 Chief Scientist: Dr. Andreas Klügel Captain: Rainer Hammacher Bathymetric map with ship track (red lines) of R/V METEOR cruise M146. The first three working stations were located at a small seamount in international waters between the Cape Verde and Canary Islands, all other stations in the vicinity of Henry Seamount ca. 40 km southeast of El Hierro island. 1 Objectives The research program of cruise M146 had the main objective of discovering and documenting fluid venting sites at Henry Seamount, an extinct 126 Ma old volcano located 40 km to the southeast of El Hierro (Canary Islands, Spain). Evidence of recent fluid discharge at this seamount was provided by rock and shell samples from a reconnaissance dredging campaign during Meteor cruise M66/1 in 2005. The inferred fluid discharge could reflect hydrothermal circulation of seawater through the old oceanic crust, a process that is globally important for cooling of the lithosphere, chemical exchange between crust and ocean, and marine ecosystems. This type of circulation requires basement outcrops through the impermeable sediment cover, which can be provided by seamounts and island flanks. Only few venting seamounts unrelated to active volcanism have been documented so far; these are located on warm and relatively young Pacific crust. Henry Seamount would be the first documented example on old (>60 Ma) oceanic crust.
    [Show full text]
  • A Multiple-Isotope Study from the Loki's Castle Vent Field
    Geobiology (2014), 12, 308–321 DOI: 10.1111/gbi.12086 Barite in hydrothermal environments as a recorder of subseafloor processes: a multiple-isotope study from the Loki’s Castle vent field B. EICKMANN,1,2 I. H. THORSETH,1 M. PETERS,3,4 H. STRAUSS,3 M. BROC€ KER 5 AND R. B. PEDERSEN1 1Department of Earth Science, Centre for Geobiology, University of Bergen, Bergen, Norway 2Department of Geology, University of Johannesburg, Johannesburg, South Africa 3Institut fur€ Geologie und Palaontologie,€ Westfalische€ Wilhelms-Universitat€ Munster,€ Munster,€ Germany 4Centre for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China 5Institut fur€ Mineralogie, Westfalische€ Wilhelms-Universitat€ Munster,€ Munster,€ Germany ABSTRACT Barite chimneys are known to form in hydrothermal systems where barium-enriched fluids generated by leaching of the oceanic basement are discharged and react with seawater sulfate. They also form at cold seeps along continental margins, where marine (or pelagic) barite in the sediments is remobilized because of subseafloor microbial sulfate reduction. We test the possibility of using multiple sulfur isotopes (d34S, D33S, Δ36S) of barite to identify microbial sulfate reduction in a hydrothermal system. In addition to multiple sulfur isotopes, we present oxygen (d18O) and strontium (87Sr/86Sr) isotopes for one of numerous barite chimneys in a low-temperature (~20 °C) venting area of the Loki’s Castle black smoker field at the ultra- slow-spreading Arctic Mid-Ocean Ridge (AMOR). The chemistry of the venting fluids in the barite field identifies a contribution of at least 10% of high-temperature black smoker fluid, which is corroborated by 87Sr/86Sr ratios in the barite chimney that are less radiogenic than in seawater.
    [Show full text]
  • Metallogeny of Hydrothermal Deposits in European Waters
    D3-3: Metallogeny of hydrothermal deposits in European waters MINDeSEA Seabed Mineral Deposits in European Seas: Metallogeny and Geological Potential for Strategic and Critical Raw Materials Deliverable 3.3: Metallogeny of hydrothermal deposits in European waters WP3 lead: Geological Survey of Norway (NGU) - Norway Address: Telephone: Leiv Eirikssons vei 39 +47 990 91 747 (Henrik Schiellerup) PB 6315 Torgarden 7491 Trondheim E-mail: Norway [email protected] WP3: Geological Survey of Norway (NGU): Henrik Schiellerup (WP lead) This project has been supported by the European Union's Horizon 2020 research and innovation programme, GeoERA (Grant Agreement Nº 731166, project GeoE.171.001). D3-3: Metallogeny of hydrothermal deposits in European waters Deliverable number Short Title Metallogeny of hydrothermal deposits in European 3.3 waters Long Title Deliverable 3.3. Metallogeny of hydrothermal deposits in European waters Short Description The current report provides a review of European marine exhalative deposits based on their metallogenic setting. Settings include mid ocean ridge spreading sites, sites related to intra-plate hotspots, and arc/back-arc spreading sites. Keywords GeoERA Raw Materials, SMS, Sulphides, Copper, Zinc, Lead, CRM, Metallogeny Authors / Organisation(s) Editor / Organisation Schiellerup, H. (NGU), Ferreira, P. (LNEG), González, F.J., Marino E., Somoza, L., Geological Survey of Norway (NGU) Medialdea, T. (IGME) File name MINDeSEA_D3-3_WP3-Hydrothermal.doc Deliverable due date Deliverable submitted date (WP leader) 30 December 2020 (M28) 31 May 2021 (M35) Comments History Version Author(s) Status Date Comments Schiellerup, H. (NGU), Ferreira, P. 01 (LNEG), González, F.J., Marino E., final 31 May 2021 Somoza, L., Medialdea, T.
    [Show full text]
  • Fossil Clams from a Serpentinite-Hosted Sedimented
    Fossil clams from a serpentinite-hosted sedimented vent field near the active smoker complex Rainbow, MAR, 36 degrees 13 ’ N: Insight into the biogeography of vent fauna Franck Lartaud, Marc de Rafélis, Graham Oliver, Elena Krylova, Jerome Dyment, Benoit Ildefonse, Remy Thibaud, Pascal Gente, Eva Hoise, Anne-Leila Meistertzheim, et al. To cite this version: Franck Lartaud, Marc de Rafélis, Graham Oliver, Elena Krylova, Jerome Dyment, et al.. Fossil clams from a serpentinite-hosted sedimented vent field near the active smoker complex Rainbow, MAR, 36 degrees 13 ’ N: Insight into the biogeography of vent fauna. Geochemistry, Geophysics, Geosystems, AGU and the Geochemical Society, 2010, 11, pp.Q0AE01. 10.1029/2010GC003079. hal-00523467 HAL Id: hal-00523467 https://hal.archives-ouvertes.fr/hal-00523467 Submitted on 9 Dec 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Article Volume 11 18 August 2010 Q0AE01, doi:10.1029/2010GC003079 ISSN: 1525‐2027 Fossil clams from a serpentinite‐hosted sedimented vent field near the active smoker complex Rainbow,
    [Show full text]
  • The Marine Environment of the Pitcairn Islands
    The Marine Environment of the Pitcairn Islands by Robert Irving Principal Consultant, Sea-Scope Marine Environmental Consultants, Devon, UK and Terry Dawson SAGES Chair in Global Environmental Change, School of the Environment, University of Dundee, UK Report commissioned by The Pew Environment Group Global Ocean Legacy August 2012 The Marine Environment of the Pitcairn Islands The Marine Environment of the Pitcairn Islands Dedication This book is dedicated to the memory of Jo Jamieson, underwater photographer extraordinaire and Robert Irving’s diving colleague in 1991 on the Sir Peter Scott Commemorative Expedition to the Pitcairn Islands, who sadly died just five years after what she described as “the adventure of her lifetime”. Acknowledgements The authors are grateful for the support of the Pew Environment Group and a Darwin Initiative Overseas Territories Challenge Fund (Ref. no. EIDCF003) awarded to Terence Dawson. In addition, we should like to thank the following for commenting on the final draft of this report: Dr Michael Brooke and Dr Richard Preece (University of Cambridge); Jonathan Hall (RSPB); The Pew Environment Group’s Global Ocean Legacy staff; The Government of the Pitcairn Islands and the Head of its Natural Resources Department (Michele Christian); and especially the entire community of Pitcairn. While the majority of photographs featured in the report have been taken by the authors, we should like to thank the following for the use of their photographs, namely Dr Enric Sala (National Geographic Society), Dr Michael Brooke, Kale Garcia, Jo Jamieson (posthumously), Andrew MacDonald, Dr Richard Preece, Dr Jack Randall, Tubenoses Project ©Hadoram Shirihai and Dr Stephen Waldren.
    [Show full text]
  • 79. Jahrestagung Deutsche Geophysikalische Gesellschaft, 04.-07. März 2019 in Braunschweig : Abstracts Und Autorenverzeichnis
    Stadtplan Braunschweig mit Veranstaltungsorten %'%'"!+'+&%( &)($#( & 79. Jahrestagung (')!)) Deutsche Geophysikalische Gesellschaft %*$)(*'+&%( ()(!& (&& !)%$#!) 04.–07. März 2019 in Braunschweig ,+*)(*'&%$%#"! -,+*)('&%$#"! $!%%)$#! & %) )%(#'"!%$&%( $#(! %# !&%) +%()%% +!(! +$+)('"!%#* %( %++ #%(%& +%()$%()$"!%$+ %$*( Abstracts ISSN 0344-7251 DOI: 10.2312/dgg79 Deutsche Nationalbibliothek Bibliographische Daten unter http://d-nb.info/010965963/about/ html Redaktion: Institut für Geophysik und extraterrestrische Physik TU Braunschweig Mendelssohnstr. 3 38106 Braunschweig 79. Jahrestagung Deutsche Geophysikalische Gesellschaft 04.–07. März 2019 in Braunschweig Abstracts und Autorenverzeichnis 4 Inhaltsverzeichnis Plenarvorträge . 06–09 Die Vermessung der magnetischen Welten: Von Planeten bis Nanopartikel // Vorträge . 10–20 Die Vermessung der magnetischen Welten: Von Planeten bis Nanopartikel // Poster . 21–25 Endlagergeophysik // Vorträge . 26–32 Endlagergeophysik // Poster . 33–38 Geophysik in der Geomorphologie // Vorträge . 39–46 Geophysik in der Geomorphologie // Poster . 47–51 Archäogeophysik // Poster . 52–53 Bohrlochgeophysik // Vorträge . 53–56 Bohrlochgeophysik // Poster . 56–59 Elektromagnetik / Georadar // Vorträge . 60–71 Elektromagnetik / Georadar // Poster . 72–80 Extraterrestrische Physik // Vorträge . 81–85 Geodynamik // Vorträge . 85–90 Geodynamik // Poster . 89–91 Geoelektrik/IP // Vorträge . 92–97 Geoelektrik/IP // Poster . 98–109 Geophysik in der Öffentlichkeit // Vorträge . 109–110 Geophysik in der Öffentlichkeit
    [Show full text]