Deep-Sea Life
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Order BERYCIFORMES ANOPLOGASTRIDAE Fangtooths (Ogrefish) by J.A
click for previous page 1178 Bony Fishes Order BERYCIFORMES ANOPLOGASTRIDAE Fangtooths (ogrefish) by J.A. Moore, Florida Atlantic University, USA iagnostic characters: Small (to about 160 mm standard length) beryciform fishes.Body short, deep, and Dcompressed, tapering to narrow peduncle. Head large (1/3 standard length). Eye smaller than snout length in adults, but larger than snout length in juveniles. Mouth very large and oblique, jaws extend be- hind eye in adults; 1 supramaxilla. Bands of villiform teeth in juveniles are replaced with large fangs on dentary and premaxilla in adults; vomer and palatines toothless. Deep sensory canals separated by ser- rated ridges; very large parietal and preopercular spines in juveniles of one species, all disappearing with age. Gill rakers as clusters of teeth on gill arch in adults (lath-like in juveniles). No true fin spines; single, long-based dorsal fin with 16 to 20 rays; anal fin very short-based with 7 to 9 soft rays; caudal fin emarginate; pectoral fins with 13 to 16 soft rays; pelvic fins with 7 soft rays. Scales small, non-overlapping, spinose, goblet-shaped in adults; lateral line an open groove partially bridged by scales; no enlarged ventral keel scutes. Colour: entirely dark brown or black in adults. Habitat, biology, and fisheries: Meso- to bathypelagic, at depths of 75 to 5 000 m. Carnivores, with juveniles feeding on mainly crustaceans and adults mainly on fishes. May sometimes swim in small groups. Uncommon deep-sea fishes of no commercial importance. Remarks: The family was revised recently by Kotlyar (1986) and contains 1 genus with 2 species throughout the tropical and temperate latitudes. -
RRS Discovery Cruise 260
RRS Discovery Cruise 260 Metabolism, activity and distribution patterns in demersal deep-sea fish 6th-24th March 2002 Principal Scientist: Dr Martin A Collins Cover picture: A wave breaking over the stern of Discovery during cruise 260 (Ian Hudson). 2 Discovery 250 Scientific Party Martin Collins Aberdeen University Monty Priede Aberdeen University Phil Bagley Aberdeen University David Bailey Aberdeen University Camila Henriques Aberdeen University Kirsty Kemp Aberdeen University Richard Paterson Aberdeen University Emma Battle Aberdeen University Steve Hoskin Aberdeen University Rob McAllen Aberdeen University Alan Jamieson Aberdeen University Kostas Christodoulou IMBC, Crete/ Aberdeen University Ben Boorman Southampton Oceanography Centre Ian Hudson Southampton Oceanography Centre Rhian Waller Southampton Oceanography Centre Francisco Benitez Southampton Oceanography Centre Dan Mayor Southampton Oceanography Centre Sandrine le Polain University of Louvain Bertrand Genard University of Louvain Amanda Brindley Queen Mary College, London Hans-Joachen Wagner University of Tübingen Uli Mattheus University of Tübingen Xiaohong Deng University of Maryland Darren Young UKORS (TLO) Jeff Bicknell UKORS Rob Mclaughlan UKORS Phil Taylor UKORS Simon Dodd UKORS Ships Company Robin Plumley Master Peter Seargeant Chief Officer John Mitchell 2nd Officer Peter Reynolds 3rd Officer Jet Jethwa Chief Engineer Ian Slater 2nd Engineer Steve Bell 3rd Engineer John Harnett 3rd Engineer Dave Stewart ETO Mick Trevaskis CPOD (Bosun) Peter Bennet POD Dave Buffery -
Development of Species-Specific Edna-Based Test Systems For
REPORT SNO 7544-2020 Development of species-specific eDNA-based test systems for monitoring of non-indigenous Decapoda in Danish marine waters © Henrik Carl, Natural History Museum, Denmark History © Henrik Carl, Natural NIVA Denmark Water Research REPORT Main Office NIVA Region South NIVA Region East NIVA Region West NIVA Denmark Gaustadalléen 21 Jon Lilletuns vei 3 Sandvikaveien 59 Thormøhlensgate 53 D Njalsgade 76, 4th floor NO-0349 Oslo, Norway NO-4879 Grimstad, Norway NO-2312 Ottestad, Norway NO-5006 Bergen Norway DK 2300 Copenhagen S, Denmark Phone (47) 22 18 51 00 Phone (47) 22 18 51 00 Phone (47) 22 18 51 00 Phone (47) 22 18 51 00 Phone (45) 39 17 97 33 Internet: www.niva.no Title Serial number Date Development of species-specific eDNA-based test systems for monitoring 7544-2020 22 October 2020 of non-indigenous Decapoda in Danish marine waters Author(s) Topic group Distribution Steen W. Knudsen and Jesper H. Andersen – NIVA Denmark Environmental monitor- Public Peter Rask Møller – Natural History Museum, University of Copenhagen ing Geographical area Pages Denmark 54 Client(s) Client's reference Danish Environmental Protection Agency (Miljøstyrelsen) UCB and CEKAN Printed NIVA Project number 180280 Summary We report the development of seven eDNA-based species-specific test systems for monitoring of marine Decapoda in Danish marine waters. The seven species are 1) Callinectes sapidus (blå svømmekrabbe), 2) Eriocheir sinensis (kinesisk uldhånds- krabbe), 3) Hemigrapsus sanguineus (stribet klippekrabbe), 4) Hemigrapsus takanoi (pensel-klippekrabbe), 5) Homarus ameri- canus (amerikansk hummer), 6) Paralithodes camtschaticus (Kamchatka-krabbe) and 7) Rhithropanopeus harrisii (østameri- kansk brakvandskrabbe). -
A Practical Handbook for Determining the Ages of Gulf of Mexico And
A Practical Handbook for Determining the Ages of Gulf of Mexico and Atlantic Coast Fishes THIRD EDITION GSMFC No. 300 NOVEMBER 2020 i Gulf States Marine Fisheries Commission Commissioners and Proxies ALABAMA Senator R.L. “Bret” Allain, II Chris Blankenship, Commissioner State Senator District 21 Alabama Department of Conservation Franklin, Louisiana and Natural Resources John Roussel Montgomery, Alabama Zachary, Louisiana Representative Chris Pringle Mobile, Alabama MISSISSIPPI Chris Nelson Joe Spraggins, Executive Director Bon Secour Fisheries, Inc. Mississippi Department of Marine Bon Secour, Alabama Resources Biloxi, Mississippi FLORIDA Read Hendon Eric Sutton, Executive Director USM/Gulf Coast Research Laboratory Florida Fish and Wildlife Ocean Springs, Mississippi Conservation Commission Tallahassee, Florida TEXAS Representative Jay Trumbull Carter Smith, Executive Director Tallahassee, Florida Texas Parks and Wildlife Department Austin, Texas LOUISIANA Doug Boyd Jack Montoucet, Secretary Boerne, Texas Louisiana Department of Wildlife and Fisheries Baton Rouge, Louisiana GSMFC Staff ASMFC Staff Mr. David M. Donaldson Mr. Bob Beal Executive Director Executive Director Mr. Steven J. VanderKooy Mr. Jeffrey Kipp IJF Program Coordinator Stock Assessment Scientist Ms. Debora McIntyre Dr. Kristen Anstead IJF Staff Assistant Fisheries Scientist ii A Practical Handbook for Determining the Ages of Gulf of Mexico and Atlantic Coast Fishes Third Edition Edited by Steve VanderKooy Jessica Carroll Scott Elzey Jessica Gilmore Jeffrey Kipp Gulf States Marine Fisheries Commission 2404 Government St Ocean Springs, MS 39564 and Atlantic States Marine Fisheries Commission 1050 N. Highland Street Suite 200 A-N Arlington, VA 22201 Publication Number 300 November 2020 A publication of the Gulf States Marine Fisheries Commission pursuant to National Oceanic and Atmospheric Administration Award Number NA15NMF4070076 and NA15NMF4720399. -
Early Stages of Fishes in the Western North Atlantic Ocean Volume
ISBN 0-9689167-4-x Early Stages of Fishes in the Western North Atlantic Ocean (Davis Strait, Southern Greenland and Flemish Cap to Cape Hatteras) Volume One Acipenseriformes through Syngnathiformes Michael P. Fahay ii Early Stages of Fishes in the Western North Atlantic Ocean iii Dedication This monograph is dedicated to those highly skilled larval fish illustrators whose talents and efforts have greatly facilitated the study of fish ontogeny. The works of many of those fine illustrators grace these pages. iv Early Stages of Fishes in the Western North Atlantic Ocean v Preface The contents of this monograph are a revision and update of an earlier atlas describing the eggs and larvae of western Atlantic marine fishes occurring between the Scotian Shelf and Cape Hatteras, North Carolina (Fahay, 1983). The three-fold increase in the total num- ber of species covered in the current compilation is the result of both a larger study area and a recent increase in published ontogenetic studies of fishes by many authors and students of the morphology of early stages of marine fishes. It is a tribute to the efforts of those authors that the ontogeny of greater than 70% of species known from the western North Atlantic Ocean is now well described. Michael Fahay 241 Sabino Road West Bath, Maine 04530 U.S.A. vi Acknowledgements I greatly appreciate the help provided by a number of very knowledgeable friends and colleagues dur- ing the preparation of this monograph. Jon Hare undertook a painstakingly critical review of the entire monograph, corrected omissions, inconsistencies, and errors of fact, and made suggestions which markedly improved its organization and presentation. -
Ices/Nafo Wgdec Report 2015
ICES/NAFO WGDEC REPORT 2015 ICES ADVISORY COMMITTEE ICES CM 2015/ACOM:27 Report of the ICES/NAFO Joint Working Group on Deep-water Ecology (WGDEC) 16–20 February 2015 Horta, Azores, Portugal International Council for the Exploration of the Sea Conseil International pour l’Exploration de la Mer H. C. Andersens Boulevard 44–46 DK-1553 Copenhagen V Denmark Telephone (+45) 33 38 67 00 Telefax (+45) 33 93 42 15 www.ices.dk [email protected] Recommended format for purposes of citation: ICES. 2015. Report of the ICES/NAFO Joint Working Group on Deep-water Ecology (WGDEC), 16–20 February 2015, Horta, Azores, Portugal. ICES CM 2015/ACOM:27. 113 pp. For permission to reproduce material from this publication, please apply to the Gen- eral Secretary. The document is a report of an Expert Group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council. © 2015 International Council for the Exploration of the Sea ICES/NAFO WGDEC REPORT 2015 | i Contents Executive summary ................................................................................................................ 4 Opening of the meeting ........................................................................................................ 5 1 Adoption of the agenda ................................................................................................ 6 2 Provide all available new information on distribution of VMEs in the North Atlantic with a view to advising on any new closures to bottom fisheries or revision of existing closures to bottom fisheries (NEAFC standing request). In addition, provide new information on location of habitats sensitive to particular fishing activities (i.e. vulnerable marine ecosystems, VMEs) within EU waters (EC request) ................................... 8 2.1 Introduction ........................................................................................................... 8 2.2 Areas within the NEAFC regulatory area ........................................................ -
Changes in Biomass and Chemical Composition During Lecithotrophic Larval Development of the Southern Stone Crab Paralomis Granulosa
MARINE ECOLOGY PROGRESS SERIES Vol. 257: 189–196, 2003 Published August 7 Mar Ecol Prog Ser Changes in biomass and chemical composition during lecithotrophic larval development of the southern stone crab Paralomis granulosa Javier A. Calcagno1,*, Sven Thatje2, Klaus Anger3, Gustavo A. Lovrich4, Antje Kaffenberger3 1Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Intendente Güiraldes 2160, Lab 64, 4to Piso, Pab II, Cdad Universitaria C1428EHA, Buenos Aires, Argentina 2Alfred Wegener Institute for Polar and Marine Research, PO Box 120 161, 27515 Bremerhaven, Germany 3Biologische Anstalt Helgoland, Stiftung Alfred Wegener Institute for Polar and Marine Research, 27498 Helgoland, Germany 4Consejo Nacional de Investigaciones Científicas y Técnicas, Centro Austral de Investigaciones Científicas, CADIC, CC 92, V9410BFD Ushuaia, Tierra del Fuego, Argentina ABSTRACT: Changes in biomass and elemental composition (dry mass, W; carbon, C; nitrogen, N; hy- drogen, H) were studied in the laboratory during complete larval and early juvenile development of the southern stone crab Paralomis granulosa (Jacquinot). At 6 ± 0.5°C; total larval development from hatching to metamorphosis lasted ca. 56 d, comprising 2 demersal zoeal stages and a benthic mega- lopa, with mean stage durations of 5, 11 and 45 d, respectively. All larval stages of P. granulosa are lecithotrophic, and first feeding and growth were consistently observed immediately after meta- morphosis to the first juvenile crab stage. Regardless of presence or absence of food, W, C, N, and H decreased throughout larval development. Also the C:N mass ratio decreased significantly, from 7.2 at hatching to 4.2 at metamorphosis, indicating that a large initial lipid store remaining from the egg yolk was gradually utilised as an internal energy source. -
Octopoda: Opisthoteuthidae: Grimpoteuthis Sp.)
Marine Biology (2020) 167:82 https://doi.org/10.1007/s00227-020-03701-1 SHORT NOTE First in situ observation of Cephalopoda at hadal depths (Octopoda: Opisthoteuthidae: Grimpoteuthis sp.) Alan J. Jamieson1 · Michael Vecchione2 Received: 6 March 2020 / Accepted: 7 May 2020 / Published online: 26 May 2020 © The Author(s) 2020 Abstract The Cephalopoda are not typically considered characteristic of the benthic fauna at hadal depths (depths exceeding 6000 m), yet occasional open-net trawl samples have implied that they might be present to ~ 8000 m deep. Previous in situ photographic evidence has placed the deepest cephalopod at 5145 m. The discrepancies between the two have meant that the maximum depth for cephalopods has gone unresolved. In this study we report on unequivocal sightings, by HD video lander, of a cephalopod at hadal depths. The demersal cirrate octopod Grimpoteuthis sp. was observed at both 5760 and 6957 m in the Indian Ocean. These observations extend the known maximum depth range for cephalopods by 1812 m and increase the potential benthic habitat available to cephalopods from 75 to 99% of the global seafoor. Introduction which are known to attach their eggs to the seafoor, was found in the intestine of the snailfish Pseudoliparis The total bathymetric range of marine organisms is often (Careproctus) amblystomopsis from the same trench at difficult to resolve accurately because sampling effort 7210–7230 m (Birstein and Vinogradov 1955) which also becomes less frequent with increasing depth. One impor- indicated a hadal distribution (Akimushkin 1963). Finally, tant group with ambiguous records of maximum depth is the in 1975 a specimen of Grimpoteuthis sp. -
Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences. -
How to Become a Crab: Phenotypic Constraints on a Recurring Body Plan
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 December 2020 doi:10.20944/preprints202012.0664.v1 How to become a crab: Phenotypic constraints on a recurring body plan Joanna M. Wolfe1*, Javier Luque1,2,3, Heather D. Bracken-Grissom4 1 Museum of Comparative Zoology and Department of Organismic & Evolutionary Biology, Harvard University, 26 Oxford St, Cambridge, MA 02138, USA 2 Smithsonian Tropical Research Institute, Balboa–Ancon, 0843–03092, Panama, Panama 3 Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06520-8109, USA 4 Institute of Environment and Department of Biological Sciences, Florida International University, Biscayne Bay Campus, 3000 NE 151 Street, North Miami, FL 33181, USA * E-mail: [email protected] Summary: A fundamental question in biology is whether phenotypes can be predicted by ecological or genomic rules. For over 140 years, convergent evolution of the crab-like body plan (with a wide and flattened shape, and a bent abdomen) at least five times in decapod crustaceans has been known as ‘carcinization’. The repeated loss of this body plan has been identified as ‘decarcinization’. We offer phylogenetic strategies to include poorly known groups, and direct evidence from fossils, that will resolve the pattern of crab evolution and the degree of phenotypic variation within crabs. Proposed ecological advantages of the crab body are summarized into a hypothesis of phenotypic integration suggesting correlated evolution of the carapace shape and abdomen. Our premise provides fertile ground for future studies of the genomic and developmental basis, and the predictability, of the crab-like body form. Keywords: Crustacea, Anomura, Brachyura, Carcinization, Phylogeny, Convergent evolution, Morphological integration 1 © 2020 by the author(s). -
Pseudoliparis Swirei Sp. Nov.: a Newly-Discovered Hadal Snailfish (Scorpaeniformes: Liparidae) from the Mariana Trench
Zootaxa 4358 (1): 161–177 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2017 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4358.1.7 http://zoobank.org/urn:lsid:zoobank.org:pub:84494502-9E85-49DA-8530-092AF8918D88 Pseudoliparis swirei sp. nov.: A newly-discovered hadal snailfish (Scorpaeniformes: Liparidae) from the Mariana Trench MACKENZIE E. GERRINGER1, THOMAS D. LINLEY2, ALAN J. JAMIESON2, ERICA GOETZE1 & JEFFREY C. DRAZEN1 1Dept. Of Oceanography, University of Hawaiʻi at Mānoa, HI 96822. E-mail: [email protected], [email protected], [email protected] 2School of Marine Science and Technology, Ridley Building, Newcastle University, Newcastle Upon Tyne, UK. NE1 7RU. E-mail: [email protected], [email protected] Abstract Pseudoliparis swirei sp. nov. is described from 37 individuals collected in the Mariana Trench at depths 6898–7966 m. The collection of this new species is the deepest benthic capture of a vertebrate with corroborated depth data. Here, we describe P. swirei sp. nov. and discuss aspects of its morphology, biology, distribution, and phylogenetic relationships to other hadal liparids based on analysis of three mitochondrial genes. Pseudoliparis swirei sp. nov. is almost certainly en- demic to the Mariana Trench, as other hadal liparids appear isolated to a single trench/ trench system in the Kermadec, Macquarie, South Sandwich, South Orkney, Peru-Chile, Kurile-Kamchatka and Japan trenches. The discovery of another hadal liparid species, apparently abundant at depths where other fish species are few and only found in low numbers, pro- vides further evidence for the dominance of this family among the hadal fish fauna. -
Marine Fishes of the Azores: an Annotated Checklist and Bibliography
MARINE FISHES OF THE AZORES: AN ANNOTATED CHECKLIST AND BIBLIOGRAPHY. RICARDO SERRÃO SANTOS, FILIPE MORA PORTEIRO & JOÃO PEDRO BARREIROS SANTOS, RICARDO SERRÃO, FILIPE MORA PORTEIRO & JOÃO PEDRO BARREIROS 1997. Marine fishes of the Azores: An annotated checklist and bibliography. Arquipélago. Life and Marine Sciences Supplement 1: xxiii + 242pp. Ponta Delgada. ISSN 0873-4704. ISBN 972-9340-92-7. A list of the marine fishes of the Azores is presented. The list is based on a review of the literature combined with an examination of selected specimens available from collections of Azorean fishes deposited in museums, including the collection of fish at the Department of Oceanography and Fisheries of the University of the Azores (Horta). Personal information collected over several years is also incorporated. The geographic area considered is the Economic Exclusive Zone of the Azores. The list is organised in Classes, Orders and Families according to Nelson (1994). The scientific names are, for the most part, those used in Fishes of the North-eastern Atlantic and the Mediterranean (FNAM) (Whitehead et al. 1989), and they are organised in alphabetical order within the families. Clofnam numbers (see Hureau & Monod 1979) are included for reference. Information is given if the species is not cited for the Azores in FNAM. Whenever available, vernacular names are presented, both in Portuguese (Azorean names) and in English. Synonyms, misspellings and misidentifications found in the literature in reference to the occurrence of species in the Azores are also quoted. The 460 species listed, belong to 142 families; 12 species are cited for the first time for the Azores.