Morphological and Chemical Camouflage of The

Total Page:16

File Type:pdf, Size:1020Kb

Morphological and Chemical Camouflage of The /. Moll Stud. (1997), 63,431-439 © The Malacological Society of London 1997 MORPHOLOGICAL AND CHEMICAL CAMOUFLAGE OF THE MEDITERRANEAN NUDIBRANCH DISCODORIS INDECORA ON THE SPONGES IRCINIA VARIABILIS AND IRCINIA FASCICULATA Downloaded from https://academic.oup.com/mollus/article/63/3/431/1073528 by guest on 24 September 2021 A. MARIN1*, M.D. LOPEZ BELLUGA1, G. SCOGNAMIGLIO2 and G. CIMINO2 'Departamento de Ecologia e Hidrologia, Facultad de Biologla, Universidad de Murcia, E-30100 Murcia, Spain. 2Consiglio Nazionale delle Ricerche, Istituto per la Chimica di Molecole di Interesse Biologico, 1-80072-Arco Felice (Na), Naples, Italy (Received 15 March 1996; accepted 27 January 1997) ABSTRACT supported by recording the induction of feeding- deterrence in the fresh-water fish Carassius auratus The nudibranch Discodoris indecora shows a perfect and in the marine fish Chromis chromis and Sparus camouflage on its prey, the dictyoceratid sponge auratus. Ircinia variabilis. Shape and colour of the nudibranch are remarkably similar to that of the sponge which is widespread in the shallow waters of the Mediter- ranean Sea. The metabolite pattern of /. variabilis is INTRODUCTION dominated by unusual molecules, the sesterter- penoids palinurin and variabilin, containing 25 In the evolution of opisthobranch gastropods carbons and displaying at the ends a ^-substituted and especially of nudibranchs, the loss of the furan ring and a tetronic acid. However, a chemical shell has been compensated by the develop- polymorphism has been recently described for /. vari- ment of a wide range of defensive mechanisms. abilis. Some specimens contain either palinurin or Some nudibranchs that feed on cnidarians are variabilin whereas others possess a mixture of both known to store nematocysts within cnidophage sestertepenoids. During the study of Mediterranean cells and use them for their own defence sponges, a linear sesterterpenoid related to palinurin (Thompson, 1960; Greenwood & Mariscal, and variabilin was found in Ircinia fasciculata, that from a taxonomic point of view is closely relatedto 1984). Nudibranchs also retain pigments and Ircinia variabilis. Discodoris indecora shows a typical zooxanthellae from the diet, so they may be defence behaviour when it is disturbed, secreting a camouflaged on the food source (Marin & Ros, copious white slime that contains large amounts of 1991). Certain nudibranchs contain repugnant palinurin and variabilin. Most likely the animal is able substances often obtained from dietary to transfer the sponge metabolites from the digestive sponges. Harris (1971) suggested that this glands to mantle glands. Electron micrographs of the 'physiological exchange' fits the classical con- nudibranch mantle showed the presence of unicell- cept of symbiotic association. ular glands characterized by a cylindrical vacuole with a big nucleus on the basis. The glands were con- Many chemical studies have been performed centrated in the most conspicuous tubercles of the on Mediterranean dorid nudibranchs. In almost dorsal mantle. Probably, the sponge metabolites are all cases, the diet of sponges has been proved by stored in these glands. the comparison of the metabolic patterns dis- Comparative chemical analysis of mucous secre- played by the nudibranch-sponge pair (Cimino tions, dorsal tubercles, mantle, foot, digestive glands & Sodano, 1994). Nudibranchs belonging to the and hepatopancreas of D. indecora confirmed this Family Chromodoridae (genus Hypselodoris hypothesis. Palinurin and fasciculation were, of spp., Chromodoris spp and Cadlina spp.) course, present in the digestive glands but they were display very similar morphological features. also found in the mucus and in the mantle sections However, it seems that the genus Hypselodoris enriched by the above described unicellular glands. spp., with the exception of H. orsini (Cimino, The defensive role of palinurin and variabilin, Fontana, Gimenez, Marin, Mollo, Trivellone & strongly suggested by their anatomical location, was Zubia, 1993), select sponges containing fura- nosesquiterpenoids (Garcfa-G6mez, Cimino & • To whom correipcndcnce ihould be jcnL (Fajc 34-68-363963; E- i kk@f) Medina, 1990; Avila, Cimino, Fontana, Gav- 432 A. MARIN, M.D. LOPEZ BELLUGA, G. SCOGNAMIGLIO & G. CIMINO agnin, Ortea & Trivellone, 1991), whereas the Bergh, 1881 in order to: clarify its feeding genus Chromodoris spp. select sponges possess- habits; investigate the transfer of dietary ing diterpenoids (Molinski, Faulkner, He, Van metabolites to mantle glands; place Discodoris Duyne & Clardy, 1986; Gavagnin, Vardaro, indecora in a hypothetical evolutionary Avila, Cimino & Ortea, 1992) and, finally, scenario of dorid nudibranchs. Cadlina species, possessing a more complex radula (Andersen, Pika, Dumdei & Burgoyne, 1993), can eat different kinds of sponges. The transfer of the sponge metabolites from the MATERIALS AND METHODS digestive glands to some dorsal formations Downloaded from https://academic.oup.com/mollus/article/63/3/431/1073528 by guest on 24 September 2021 (Mantle Dermal Formation) has been previ- Collection of molluscs ously suggested (Avila, Cimino, Fontana, Gav- The nudibranch Discodoris indecora was collected on agnin, Ortea & Trivellone, 1991) but only the sponges lrcinia variabihs (Schulze, 1879) and /. recently has it been rigorously proved fasciculata (Pallas, 1766) which were removed from (Fontana, Gim6nez, Marin, Mollo, Cimino, shallow rocks (1-2 m depth) during April to Septem- 1994). In the case of H. orsirti, the transfer of ber 1993 and 1994 in Spain (Mazarr6n and Torre- the dietary components is also accompanied by vieja, Murcia) and Italy (Naples and Taranto). A population of D. indecora was also found upon /. chemical transformation of the extremely reac- fasciculata. Nudibranchs and sponges were frozen as tive main sponge metabolite, scalaradial, first in soon as possible after collection. Some nudibranchs deoxoscalarin and then in 6-ketodeoxoscalaria were disturbed in order to obtain defensive secre- (Cimino, Fontana, Gimdnez, Marin, Mollo, tions. Trivellone & Zubia, 1993). The main biological role of these sponge Transmission electron microscopy metabolites sequestered by chromodorid gastropods is the protection against potential Nudibranchs were narcotized in 7.5% MgCl2 and predators. A more complex habit is shown by pieces of mantle were excised and fixed in for 1 h in Phyllidia species (family Phyllidiidae), analo- cold (1-4°C) 2.5% Millonig's phosphate-buffered glutaraldehyde (pH 7.2-8.2). Fixation was followed gous to chromodorid gastropods, transfer by a 24 h wash in 2.5% NaHCO and then post-fixed sponge compounds to the mantle and into the 3 in 2% OsO4 in 1.25% NaHCO3 for 1 h. The tissues mucus, whereas Dendrodoris spp. is able were dehydrated in an ethanol series and embedded to biosynthesize 'de novo' icthyodeterrent in Epon. Ultrathin sections were stained with uranyl molecules (Cimino, De Rosa, De Stefano, acetate and lead citrate. Sodano & Villani, 1983). Strangely enough, the Mediterranean Doripsilla aereolata contains in its hermaphrodite glands the same mixture of Extraction and isolation of metabolites sesquiterpenoids esters found in Dendrodoris, Frozen animals were carefully dissected to remove but notal metabolites are quite different mantle, foot, digestive gland and reproductive (Okuda, Scheuer, Hochlowski, Walker, & organs. These were extracted with acetone. The Faulkner, 1983). sponges were cut into small pieces and then extracted with acetone. The extraction was repeated three From an evolutionary point of view, dorid times. The solvent was then removed in vacua and the gastropods with notal spicules are situated aqueous residues were extracted with ether and then between non spiculated nudibranchs and the with n-butanol. Each extract was chromatographed ancestral shelled forms. Until now, only a few on silica gel plates (Merck F^) in chloroform- studies have been performed on Mediterranean methanol (95:5). The chromatograms were checked molluscs with notal spicules. Doris verrucosa for fluorescent compounds by exposure under u.v. contains some unusual diacylglycerols, whereas light and furans by spraying with Ehrlich reagent. Peltodoris atromaculata (Bergh, 1880) even Compounds from the crude extract were purified by though its digestive gland contains some silica gel chromatography and structurally elucidated by proton nuclear magnetic resonance ('H-NMR) dietaric polyacetylenes from the sponge Pet- spectrometry. rosia ficiformis, is not able to transfer these compounds to the mantle (Cimino, Gavagnin, Sodano, Puliti, Mattia & Mazzarella, 1988; PaJatabdity and toxicity bwassays Castiello, Cimino, De Rosa, De Stefano & Sodano, 1980). Discodoris indecora is similar to Ichthyotoxicity assays were conducted with the fish Gambusia affinis, Chromis chromis and Spams P. atromaculata, a selective predator of auratus, following the procedure described by sponges. Gunthorpe & Cameron (1987), and using the toxicity We have investigated Discodoris indecora ranking denned by Coll et al. (1982). DEFENCE ALLOMONES OF DISCODORIS INDECORA 433 RESULTS which lies inside the cell (Fig. 2). At the distal tip of the gland, the cytoplasm possesses ovoid Defensive behaviour vacuoles which coalesce towards the cell The body colour of D. indecora is golden- membrane (Fig. 2). In addition, smooth muscle brown with yellow and opaque white pigment fibres pass through and surrounding the con- on the top of many of the mantle tubercles. The nective matrix. mantle is covered
Recommended publications
  • Sea Slugs – Divers' Favorites, Taxonomists' Problems
    Aquatic Science & Management, Vol. 1, No. 2, 100-110 (Oktober 2013) ISSN 2337-4403 Pascasarjana, Universitas Sam Ratulangi e-ISSN 2337-5000 http://ejournal.unsrat.ac.id/index.php/jasm/index jasm-pn00033 Sea slugs – divers’ favorites, taxonomists’ problems Siput laut – disukai para penyelam, masalah bagi para taksonom Kathe R. Jensen Zoological Museum (Natural History Museum of Denmark), Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark E-mail: [email protected] Abstract: Sea slugs, or opisthobranch molluscs, are small, colorful, slow-moving, non-aggressive marine animals. This makes them highly photogenic and therefore favorites among divers. The highest diversity is found in tropical waters of the Indo-West Pacific region. Many illustrated guidebooks have been published, but a large proportion of species remain unidentified and possibly new to science. Lack of funding as well as expertise is characteristic for taxonomic research. Most taxonomists work in western countries whereas most biodiversity occurs in developing countries. Cladistic analysis and molecular studies have caused fundamental changes in opisthobranch classification as well as “instability” of scientific names. Collaboration between local and foreign scientists, amateurs and professionals, divers and academics can help discovering new species, but the success may be hampered by lack of funding as well as rigid regulations on collecting and exporting specimens for taxonomic research. Solutions to overcome these obstacles are presented. Keywords: mollusca; opisthobranchia; biodiversity; citizen science; taxonomic impediment Abstrak: Siput laut, atau moluska golongan opistobrancia, adalah hewan laut berukuran kecil, berwarna, bergerak lambat, dan tidak bersifat agresif. Alasan inilah yang membuat hewan ini sangat fotogenik dan menjadi favorit bagi para penyelam.
    [Show full text]
  • Nudibranchs—Splendid Sea Slugs
    Nudibranchs—Splendid Sea Slugs View the video “Nudibranchs” to learn about the adaptations of nudibranchs—colorful sea slugs with a remarkable means of defense. SUBJECT NUDIBRANCHS Science Watch it online at http://www.pbs.org/kqed/oceanadventures/video/nudibranchs GRADE LEVEL 5–10 Video length: 1 minute 52 seconds STANDARDS National Science Education BACKGROUND INFORMATION Standards Nudibranchs are sea slugs. They are soft-bodied animals, and like Grades 5–8 clams, snails and squid, they are mollusks. Nudibranchs belong to www.nap.edu/readingroom/books/ phylum Mollusca, class Gastropoda, order Nudibranchia. Found nses/6d.html#ls in oceans all over the world, they range in size from .25 inch to longer than a foot. There are more than 3,000 known species of Life Science – nudibranchs, and they come in all colors, from bright blue to pink Content Standard C: to white with orange polka dots. Regulation and Behavior Diversity and Adaptations Nudibranchs get their name from the feathery gills exposed on their of Organisms backs. The word nudibranch actually means “naked gills.” The two Ocean Literacy Essential most common groups of nudibranchs are the dorids and aeolids. Principles and Fundamental Dorids have a circular tuft of gills on their back that can be withdrawn Concepts: into their body. Aeolids have fingerlike projections, called cerata, www.coexploration.org/ that function as gills and are always exposed. Cerata also contain oceanliteracy/ branches of the digestive tract. Essential Principle #5: To find food, nudibranchs use their rhinophores—organs that sense The ocean supports a great chemical signals in the water. Most dorid nudibranchs feed on diversity of life and ecosystems.
    [Show full text]
  • New Records of Biuve Fulvipunctata (Baba, 1938) (Gastropoda
    Biodiversity Journal, 2020, 11 (2): 587–591 https://doi.org/10.31396/Biodiv.Jour.2020.11.2.587.591 New records of Biuve fulvipunctata (Baba, 1938) (Gastropoda Cephalaspidea) and Taringa tritorquis Ortea, Perez et Llera, 1982 (Gastropoda Nudibranchia) in the Ionian coasts of Sicily, Mediterranean Sea Andrea Lombardo* & Giuliana Marletta Department of Biological, Geological and Environmental Sciences, Section of Animal Biology, University of Catania, via Androne 81, 95124 Catania, Italy *corresponding author, e-mail: [email protected]. ABSTRACT In the present paper, two sea slug species, Biuve fulvipunctata (Baba, 1938) (Gastropoda Cepha- laspidea) and Taringa tritorquis Ortea, Perez & Llera, 1982 (Gastropoda Nudibranchia), are re- ported for the second time in the Ionian coasts of Sicily (Italy). Biuve fulvipunctata is an Indo-West Pacific cefalaspidean, previously reported for Italian territorial waters only in Faro Lake (Messina, Sicily). Taringa tritorquis is a species originally described for Canary Islands and hitherto found in Sicily and probably in Madeira. Both species are easily identifiable for their characteristic external morphology. Indeed, B. fulvipunctata shows a W-shaped pattern of white pigment on the head, while T. tritorquis presents rhinophore and gill sheaths with spiculous tubercles crown-shaped and an orange-yellowish body coloring. Since B. fulvipuctata has been previously reported in Faro Lake, probably, the specimen reported in this note could have been taken in veliger stage through the Strait of Messina currents. Otherwise, the veliger has been carried attached to the keel of boats. Instead, it is still unclear if T. tritorquis could be a native or non-indigenous species of the Mediterranean Sea.
    [Show full text]
  • Marine Invertebrate Field Guide
    Marine Invertebrate Field Guide Contents ANEMONES ....................................................................................................................................................................................... 2 AGGREGATING ANEMONE (ANTHOPLEURA ELEGANTISSIMA) ............................................................................................................................... 2 BROODING ANEMONE (EPIACTIS PROLIFERA) ................................................................................................................................................... 2 CHRISTMAS ANEMONE (URTICINA CRASSICORNIS) ............................................................................................................................................ 3 PLUMOSE ANEMONE (METRIDIUM SENILE) ..................................................................................................................................................... 3 BARNACLES ....................................................................................................................................................................................... 4 ACORN BARNACLE (BALANUS GLANDULA) ....................................................................................................................................................... 4 HAYSTACK BARNACLE (SEMIBALANUS CARIOSUS) .............................................................................................................................................. 4 CHITONS ...........................................................................................................................................................................................
    [Show full text]
  • Diversity of Norwegian Sea Slugs (Nudibranchia): New Species to Norwegian Coastal Waters and New Data on Distribution of Rare Species
    Fauna norvegica 2013 Vol. 32: 45-52. ISSN: 1502-4873 Diversity of Norwegian sea slugs (Nudibranchia): new species to Norwegian coastal waters and new data on distribution of rare species Jussi Evertsen1 and Torkild Bakken1 Evertsen J, Bakken T. 2013. Diversity of Norwegian sea slugs (Nudibranchia): new species to Norwegian coastal waters and new data on distribution of rare species. Fauna norvegica 32: 45-52. A total of 5 nudibranch species are reported from the Norwegian coast for the first time (Doridoxa ingolfiana, Goniodoris castanea, Onchidoris sparsa, Eubranchus rupium and Proctonotus mucro- niferus). In addition 10 species that can be considered rare in Norwegian waters are presented with new information (Lophodoris danielsseni, Onchidoris depressa, Palio nothus, Tritonia griegi, Tritonia lineata, Hero formosa, Janolus cristatus, Cumanotus beaumonti, Berghia norvegica and Calma glau- coides), in some cases with considerable changes to their distribution. These new results present an update to our previous extensive investigation of the nudibranch fauna of the Norwegian coast from 2005, which now totals 87 species. An increase in several new species to the Norwegian fauna and new records of rare species, some with considerable updates, in relatively few years results mainly from sampling effort and contributions by specialists on samples from poorly sampled areas. doi: 10.5324/fn.v31i0.1576. Received: 2012-12-02. Accepted: 2012-12-20. Published on paper and online: 2013-02-13. Keywords: Nudibranchia, Gastropoda, taxonomy, biogeography 1. Museum of Natural History and Archaeology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway Corresponding author: Jussi Evertsen E-mail: [email protected] IntRODUCTION the main aims.
    [Show full text]
  • Sharkcam Fishes
    SharkCam Fishes A Guide to Nekton at Frying Pan Tower By Erin J. Burge, Christopher E. O’Brien, and jon-newbie 1 Table of Contents Identification Images Species Profiles Additional Info Index Trevor Mendelow, designer of SharkCam, on August 31, 2014, the day of the original SharkCam installation. SharkCam Fishes. A Guide to Nekton at Frying Pan Tower. 5th edition by Erin J. Burge, Christopher E. O’Brien, and jon-newbie is licensed under the Creative Commons Attribution-Noncommercial 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/4.0/. For questions related to this guide or its usage contact Erin Burge. The suggested citation for this guide is: Burge EJ, CE O’Brien and jon-newbie. 2020. SharkCam Fishes. A Guide to Nekton at Frying Pan Tower. 5th edition. Los Angeles: Explore.org Ocean Frontiers. 201 pp. Available online http://explore.org/live-cams/player/shark-cam. Guide version 5.0. 24 February 2020. 2 Table of Contents Identification Images Species Profiles Additional Info Index TABLE OF CONTENTS SILVERY FISHES (23) ........................... 47 African Pompano ......................................... 48 FOREWORD AND INTRODUCTION .............. 6 Crevalle Jack ................................................. 49 IDENTIFICATION IMAGES ...................... 10 Permit .......................................................... 50 Sharks and Rays ........................................ 10 Almaco Jack ................................................. 51 Illustrations of SharkCam
    [Show full text]
  • Biodiversity Journal, 2020, 11 (4): 861–870
    Biodiversity Journal, 2020, 11 (4): 861–870 https://doi.org/10.31396/Biodiv.Jour.2020.11.4.861.870 The biodiversity of the marine Heterobranchia fauna along the central-eastern coast of Sicily, Ionian Sea Andrea Lombardo* & Giuliana Marletta Department of Biological, Geological and Environmental Sciences - Section of Animal Biology, University of Catania, via Androne 81, 95124 Catania, Italy *Corresponding author: [email protected] ABSTRACT The first updated list of the marine Heterobranchia for the central-eastern coast of Sicily (Italy) is here reported. This study was carried out, through a total of 271 scuba dives, from 2017 to the beginning of 2020 in four sites located along the Ionian coasts of Sicily: Catania, Aci Trezza, Santa Maria La Scala and Santa Tecla. Through a photographic data collection, 95 taxa, representing 17.27% of all Mediterranean marine Heterobranchia, were reported. The order with the highest number of found species was that of Nudibranchia. Among the study areas, Catania, Santa Maria La Scala and Santa Tecla had not a remarkable difference in the number of species, while Aci Trezza had the lowest number of species. Moreover, among the 95 taxa, four species considered rare and six non-indigenous species have been recorded. Since the presence of a high diversity of sea slugs in a relatively small area, the central-eastern coast of Sicily could be considered a zone of high biodiversity for the marine Heterobranchia fauna. KEY WORDS diversity; marine Heterobranchia; Mediterranean Sea; sea slugs; species list. Received 08.07.2020; accepted 08.10.2020; published online 20.11.2020 INTRODUCTION more researches were carried out (Cattaneo Vietti & Chemello, 1987).
    [Show full text]
  • Trait Decoupling Promotes Evolutionary Diversification of The
    Trait decoupling promotes evolutionary diversification of the trophic and acoustic system of damselfishes rspb.royalsocietypublishing.org Bruno Fre´de´rich1, Damien Olivier1, Glenn Litsios2,3, Michael E. Alfaro4 and Eric Parmentier1 1Laboratoire de Morphologie Fonctionnelle et Evolutive, Applied and Fundamental Fish Research Center, Universite´ de Lie`ge, 4000 Lie`ge, Belgium 2Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland Research 3Swiss Institute of Bioinformatics, Ge´nopode, Quartier Sorge, 1015 Lausanne, Switzerland 4Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA Cite this article: Fre´de´rich B, Olivier D, Litsios G, Alfaro ME, Parmentier E. 2014 Trait decou- Trait decoupling, wherein evolutionary release of constraints permits special- pling promotes evolutionary diversification of ization of formerly integrated structures, represents a major conceptual the trophic and acoustic system of damsel- framework for interpreting patterns of organismal diversity. However, few fishes. Proc. R. Soc. B 281: 20141047. empirical tests of this hypothesis exist. A central prediction, that the tempo of morphological evolution and ecological diversification should increase http://dx.doi.org/10.1098/rspb.2014.1047 following decoupling events, remains inadequately tested. In damselfishes (Pomacentridae), a ceratomandibular ligament links the hyoid bar and lower jaws, coupling two main morphofunctional units directly involved in both feeding and sound production. Here, we test the decoupling hypothesis Received: 2 May 2014 by examining the evolutionary consequences of the loss of the ceratomandib- Accepted: 9 June 2014 ular ligament in multiple damselfish lineages. As predicted, we find that rates of morphological evolution of trophic structures increased following the loss of the ligament.
    [Show full text]
  • South Carolina Department of Natural Resources
    FOREWORD Abundant fish and wildlife, unbroken coastal vistas, miles of scenic rivers, swamps and mountains open to exploration, and well-tended forests and fields…these resources enhance the quality of life that makes South Carolina a place people want to call home. We know our state’s natural resources are a primary reason that individuals and businesses choose to locate here. They are drawn to the high quality natural resources that South Carolinians love and appreciate. The quality of our state’s natural resources is no accident. It is the result of hard work and sound stewardship on the part of many citizens and agencies. The 20th century brought many changes to South Carolina; some of these changes had devastating results to the land. However, people rose to the challenge of restoring our resources. Over the past several decades, deer, wood duck and wild turkey populations have been restored, striped bass populations have recovered, the bald eagle has returned and more than half a million acres of wildlife habitat has been conserved. We in South Carolina are particularly proud of our accomplishments as we prepare to celebrate, in 2006, the 100th anniversary of game and fish law enforcement and management by the state of South Carolina. Since its inception, the South Carolina Department of Natural Resources (SCDNR) has undergone several reorganizations and name changes; however, more has changed in this state than the department’s name. According to the US Census Bureau, the South Carolina’s population has almost doubled since 1950 and the majority of our citizens now live in urban areas.
    [Show full text]
  • Mollusca: Nudibranchia) Del Grupo “Verrucosa” En El Mar Caribe
    Avicennia 20: 21-22 2017 Avicennia © 2017 Avicennia y autores Revista de Biodiversidad Tropical ISNN 1134 - 1785 (www.avicennia.es) Descripción de un nuevo dórido (Mollusca: Nudibranchia) del grupo “verrucosa” en el mar Caribe. Jesús Ortea1 y José Espinosa2 1Departamento BOS, Universidad de Oviedo, Asturias, España 2 Instituto de Oceanología, Avda. 1ª nº 18406, E. 184 y 186, Playa, La Habana, Cuba Resumen: A partir de ejemplares colectados en Costa Rica, Cuba y Guadalupe se describe una nueva especie de dórido, del grupo “verrucosa”, realizando su estudio anatómico y aportando ilustraciones en color del animal vivo. Abstract: From the specimens collected in Costa Rica, Cuba and Guadalupe, a new dorid species, from the “verrucosa” group, is described, performing its anatomical study and providing color illustrations of the living animal. Mollusca, Heterobranchia, Doris, new species, Costa Rica, Cuba, Guadalupe, Caribbean Sea. Key Words: Como grupo verrucosa, sensu lato, se pueden conside- Descripción: El cuerpo del animal en movimiento es rar a un conjunto de especies enmascaradas de dóridos muy alargado en relación a su anchura (L/A de 2´6-3´3) (según el concepto de Ballesteros, Llera & Ortea, 1984) y el pie sobresale por detrás cuando repta. La coloración de coloración amarillo-verdosa, más o menos contras- de noto apenas varía con el aumento de talla, en los me- tada y con gruesos tubérculos de distintas alturas en el nores de 5 mm es blanquecina o amarillo pálido, con las noto, siendo mayores los más centrales. Este morfo se re- vísceras rosadas visibles por transparencia del manto y pite en numerosos mares del mundo, siendo frecuentes los tubérculos del noto blancos o amarillentos con un grá- las referencias a D.
    [Show full text]
  • Print This Article
    Mediterranean Marine Science Vol. 15, 2014 A combined approach to assessing the conservation status of Cap des Trois Fourches as a potential MPA: is there a shortage of MPAs in the southern Mediterranean? ESPINOSA F. Laboratorio de Biología Marina, Universidad de Sevilla, Avda. Reina Mercedes 6, 41012, Sevilla NAVARRO-BARRANCO C. Biología Marina, Universidad de Sevilla, Avda. Reina Mercedes 6, 41012, Sevilla GONZÁLEZ A. de Biología Marina, Universidad de Sevilla, Avda. Reina Mercedes 6, 41012, Sevilla MAESTRE M. Laboratorio de Biología Marina, Universidad de Sevilla, Avda. Reina Mercedes 6, 41012, Sevilla GARCÍA-GÓMEZ J. Laboratorio de Biología Marina, Universidad de Sevilla, Avda. Reina Mercedes 6, 41012, Sevilla BENHOUSSA A. Faculty of Sciences, University Mohammed V- Agdal, 4 Avenue Ibn Battouta, B.P. 1014 RP, 10106 Rabat Agdal LIMAM A. RAC/SPA, Boulevard du Leader Yasser Arafat,B.P. 337-1080, Tunis-Cedex BAZAIRI H. Faculty of Sciences, University Mohammed V- Agdal, 4 Avenue Ibn Battouta, B.P. 1014 RP, 10106 Rabat Agdal https://doi.org/10.12681/mms.775 Copyright © 2014 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 30/09/2021 20:40:26 | To cite this article: ESPINOSA, F., NAVARRO-BARRANCO, C., GONZÁLEZ, A., MAESTRE, M., GARCÍA-GÓMEZ, J., BENHOUSSA, A., LIMAM, A., & BAZAIRI, H. (2014). A combined approach to assessing the conservation status of Cap des Trois Fourches as a potential MPA: is there a shortage of MPAs in the southern Mediterranean?. Mediterranean Marine Science, 15(3), 654-666. doi:https://doi.org/10.12681/mms.775 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 30/09/2021 20:40:27 | Research Article Mediterranean Marine Science Indexed in WoS (Web of Science, ISI Thomson) and SCOPUS The journal is available on line at http://www.medit-mar-sc.net Doi: http://dx.doi.org/10.12681/mms.775 A combined approach to assessing the conservation status of Cap des Trois Fourches as a potential MPA: is there a shortage of MPAs in the Southern Mediterranean? F.
    [Show full text]
  • THE LISTING of PHILIPPINE MARINE MOLLUSKS Guido T
    August 2017 Guido T. Poppe A LISTING OF PHILIPPINE MARINE MOLLUSKS - V1.00 THE LISTING OF PHILIPPINE MARINE MOLLUSKS Guido T. Poppe INTRODUCTION The publication of Philippine Marine Mollusks, Volumes 1 to 4 has been a revelation to the conchological community. Apart from being the delight of collectors, the PMM started a new way of layout and publishing - followed today by many authors. Internet technology has allowed more than 50 experts worldwide to work on the collection that forms the base of the 4 PMM books. This expertise, together with modern means of identification has allowed a quality in determinations which is unique in books covering a geographical area. Our Volume 1 was published only 9 years ago: in 2008. Since that time “a lot” has changed. Finally, after almost two decades, the digital world has been embraced by the scientific community, and a new generation of young scientists appeared, well acquainted with text processors, internet communication and digital photographic skills. Museums all over the planet start putting the holotypes online – a still ongoing process – which saves taxonomists from huge confusion and “guessing” about how animals look like. Initiatives as Biodiversity Heritage Library made accessible huge libraries to many thousands of biologists who, without that, were not able to publish properly. The process of all these technological revolutions is ongoing and improves taxonomy and nomenclature in a way which is unprecedented. All this caused an acceleration in the nomenclatural field: both in quantity and in quality of expertise and fieldwork. The above changes are not without huge problematics. Many studies are carried out on the wide diversity of these problems and even books are written on the subject.
    [Show full text]