Genetic Admixture Increases Phenotypic Diversity in the Nectar Yeast Metschnikowia Reukaufii * Sergio Alvarez-Perez A, B, 1, Manpreet K
Fungal Ecology 49 (2021) 101016 Contents lists available at ScienceDirect Fungal Ecology journal homepage: www.elsevier.com/locate/funeco Genetic admixture increases phenotypic diversity in the nectar yeast Metschnikowia reukaufii * Sergio Alvarez-Perez a, b, 1, Manpreet K. Dhami c, d, , 1, María I. Pozo e, Sam Crauwels a, ** Kevin J. Verstrepen f, Carlos M. Herrera g, Bart Lievens a, Hans Jacquemyn e, a Laboratory for Process Microbial Ecology and Bioinspirational Management, Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium b Department of Animal Health, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain c Biocontrol & Molecular Ecology, Manaaki Whenua Landcare Research, Lincoln, New Zealand d Department of Biology, Stanford University, Stanford, CA, USA e Laboratory of Plant Conversation and Population Biology, Biology Department, KU Leuven, Leuven, Belgium f VIB e KU Leuven Center for Microbiology & CMPG Laboratory of Genetics and Genomics, Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium g Estacion Biologica de Donana,~ CSIC, Sevilla, Spain article info abstract Article history: Understanding the relationship between population genetic structure and phenotypic diversity is a Received 24 February 2020 fundamental question in evolutionary biology. Yeasts display wide genetic diversity and exhibit Received in revised form remarkably diverse heterotrophic metabolisms that allow a variety of niche occupations. However, little 5 October 2020 is known about how intra-species genetic population structure is related to trait diversity in yeasts. In Accepted 23 October 2020 this study, we investigated the link between intra-species genetic population structure and trait diversity Available online 11 November 2020 in the floral nectar-inhabiting yeast Metschnikowia reukaufii (Ascomycota).