Type Classes and Subtyping Two Different Approaches of Polymorphism
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1=Haskell =1=Making Our Own Types and Typeclasses
Haskell Making Our Own Types and Typeclasses http://igm.univ-mlv.fr/~vialette/?section=teaching St´ephaneVialette LIGM, Universit´eParis-Est Marne-la-Vall´ee November 13, 2016 Making Our Own Types and Typeclasses Algebraic data types intro So far, we've run into a lot of data types: Bool, Int, Char, Maybe, etc. But how do we make our own? One way is to use the data keyword to define a type. Let's see how the Bool type is defined in the standard library. data Bool= False| True data means that we're defining a new data type. Making Our Own Types and Typeclasses Algebraic data types intro data Bool= False| True The part before the = denotes the type, which is Bool. The parts after the = are value constructors. They specify the different values that this type can have. The | is read as or. So we can read this as: the Bool type can have a value of True or False. Both the type name and the value constructors have to be capital cased. Making Our Own Types and Typeclasses Algebraic data types intro We can think of the Int type as being defined like this: data Int=-2147483648|-2147483647| ...|-1|0|1|2| ...| 2147483647 The first and last value constructors are the minimum and maximum possible values of Int. It's not actually defined like this, the ellipses are here because we omitted a heapload of numbers, so this is just for illustrative purposes. Shape let's think about how we would represent a shape in Haskell. -
A Polymorphic Type System for Extensible Records and Variants
A Polymorphic Typ e System for Extensible Records and Variants Benedict R. Gaster and Mark P. Jones Technical rep ort NOTTCS-TR-96-3, November 1996 Department of Computer Science, University of Nottingham, University Park, Nottingham NG7 2RD, England. fbrg,[email protected] Abstract b oard, and another indicating a mouse click at a par- ticular p oint on the screen: Records and variants provide exible ways to construct Event = Char + Point : datatyp es, but the restrictions imp osed by practical typ e systems can prevent them from b eing used in ex- These de nitions are adequate, but they are not par- ible ways. These limitations are often the result of con- ticularly easy to work with in practice. For example, it cerns ab out eciency or typ e inference, or of the di- is easy to confuse datatyp e comp onents when they are culty in providing accurate typ es for key op erations. accessed by their p osition within a pro duct or sum, and This pap er describ es a new typ e system that reme- programs written in this way can b e hard to maintain. dies these problems: it supp orts extensible records and To avoid these problems, many programming lan- variants, with a full complement of p olymorphic op era- guages allow the comp onents of pro ducts, and the al- tions on each; and it o ers an e ective type inference al- ternatives of sums, to b e identi ed using names drawn gorithm and a simple compilation metho d. -
Assignment 6: Subtyping and Bidirectional Typing
Assignment 6: Subtyping and Bidirectional Typing 15-312: Foundations of Programming Languages Joshua Dunfield ([email protected]) Out: Thursday, October 24, 2002 Due: Thursday, November 7 (11:59:59 pm) 100 points total + (up to) 20 points extra credit 1 Introduction In this assignment, you will implement a bidirectional typechecker for MinML with , , +, 1, 0, , , and subtyping with base types int and float. ! ∗ 8 9 Note: In the .sml files, most changes from Assignment 4 are indicated like this: (* new asst6 code: *) ... (* end asst6 code *) 2 New in this assignment Some things have become obsolete (and have either been removed or left • in a semi-supported state). Exceptions and continuations are no longer “officially” supported. One can now (and sometimes must!) write type annotations e : τ. The • abstract syntax constructor is called Anno. The lexer supports shell-style comments in .mml source files: any line • beginning with # is ignored. There are now two valid syntaxes for functions, the old syntax fun f (x:t1):t2 is e end • and a new syntax fun f(x) is e end. Note the lack of type anno- tations. The definition of the abstract syntax constructor Fun has been changed; its arguments are now just bindings for f and x and the body. It no longer takes two types. 1 The old syntax fun f(x:t1):t2 is e end is now just syntactic sugar, transformed by the parser into fun f(x) is e end : t1 -> t2. There are floating point numbers, written as in SML. There is a new set of • arithmetic operators +., -., *., ˜. -
Java Secrets.Pdf
Java Secrets by Elliotte Rusty Harold IDG Books, IDG Books Worldwide, Inc. ISBN: 0764580078 Pub Date: 05/01/97 Buy It Preface About the Author Part I—How Java Works Chapter 1—Introducing Java SECRETS A Little Knowledge Can Be a Dangerous Thing What’s in This Book? Part I: How Java Works Part II: The sun Classes Part III: Platform-Dependent Java Why Java Secrets? Broader applicability More power Inspiration Where Did the Secrets Come From? Where is the documentation? The source code The API documentation What Versions of Java Are Covered? Some Objections Java is supposed to be platform independent Why aren’t these things documented? FUD (fear, uncertainty, and doubt) How secret is this, anyway? Summary Chapter 2—Primitive Data Types Bytes in Memory Variables, Values, and Identifiers Place-Value Number Systems Binary notation Hexadecimal notation Octal notation Integers ints Long, short, and byte Floating-Point Numbers Representing floating-point numbers in binary code Special values Denormalized floating-point numbers CHAR ASCII ISO Latin-1 Unicode UTF8 Boolean Cross-Platform Issues Byte order Unsigned integers Integer widths Conversions and Casting Using a cast The mechanics of conversion Bit-Level Operators Some terminology Bitwise operators Bit shift operators Summary Chapter 2—Primitive Data Types Bytes in Memory Variables, Values, and Identifiers Place-Value Number Systems Binary notation Hexadecimal notation Octal notation Integers ints Long, short, and byte Floating-Point Numbers Representing floating-point numbers in binary code -
Lecture Slides
Outline Meta-Classes Guy Wiener Introduction AOP Classes Generation 1 Introduction Meta-Classes in Python Logging 2 Meta-Classes in Python Delegation Meta-Classes vs. Traditional OOP 3 Meta-Classes vs. Traditional OOP Outline Meta-Classes Guy Wiener Introduction AOP Classes Generation 1 Introduction Meta-Classes in Python Logging 2 Meta-Classes in Python Delegation Meta-Classes vs. Traditional OOP 3 Meta-Classes vs. Traditional OOP What is Meta-Programming? Meta-Classes Definition Guy Wiener Meta-Program A program that: Introduction AOP Classes One of its inputs is a program Generation (possibly itself) Meta-Classes in Python Its output is a program Logging Delegation Meta-Classes vs. Traditional OOP Meta-Programs Nowadays Meta-Classes Guy Wiener Introduction AOP Classes Generation Compilers Meta-Classes in Python Code Generators Logging Delegation Model-Driven Development Meta-Classes vs. Traditional Templates OOP Syntactic macros (Lisp-like) Meta-Classes The Problem With Static Programming Meta-Classes Guy Wiener Introduction AOP Classes Generation Meta-Classes How to share features between classes and class hierarchies? in Python Logging Share static attributes Delegation Meta-Classes Force classes to adhere to the same protocol vs. Traditional OOP Share code between similar methods Meta-Classes Meta-Classes Guy Wiener Introduction AOP Classes Definition Generation Meta-Classes in Python Meta-Class A class that creates classes Logging Delegation Objects that are instances of the same class Meta-Classes share the same behavior vs. Traditional OOP Classes that are instances of the same meta-class share the same behavior Meta-Classes Meta-Classes Guy Wiener Introduction AOP Classes Definition Generation Meta-Classes in Python Meta-Class A class that creates classes Logging Delegation Objects that are instances of the same class Meta-Classes share the same behavior vs. -
(901133) Instructor: Eng
home Al-Albayt University Computer Science Department C++ Programming 1 (901133) Instructor: Eng. Rami Jaradat [email protected] 1 home Subjects 1. Introduction to C++ Programming 2. Control Structures 3. Functions 4. Arrays 5. Pointers 6. Strings 2 home 1 - Introduction to C++ Programming 3 home What is computer? • Computers are programmable devices capable of performing computations and making logical decisions. • Computers can store, retrieve, and process data according to a list of instructions • Hardware is the physical part of the compute: keyboard, screen, mouse, disks, memory, and processing units • Software is a collection of computer programs, procedures and documentation that perform some tasks on a computer system 4 home Computer Logical Units • Input unit – obtains information (data) from input devices • Output unit – outputs information to output device or to control other devices. • Memory unit – Rapid access, low capacity, stores information • Secondary storage unit – cheap, long-term, high-capacity storage, stores inactive programs • Arithmetic and logic unit (ALU) – performs arithmetic calculations and logic decisions • Central processing unit (CPU): – supervises and coordinates the other sections of the computer 5 home Computer language • Machine languages: machine dependent, it consists of strings of numbers giving machine specific instructions: +1300042774 +1400593419 +1200274027 • Assembly languages: English-like abbreviations representing elementary operations, assemblers convert assembly language to machine -
Haskell-Style Type Classes with Isabelle/Isar
Isar ∀ Isabelle= α λ β → Haskell-style type classes with Isabelle/Isar Florian Haftmann 20 February 2021 Abstract This tutorial introduces Isar type classes, which are a convenient mech- anism for organizing specifications. Essentially, they combine an op- erational aspect (in the manner of Haskell) with a logical aspect, both managed uniformly. 1 INTRODUCTION 1 1 Introduction Type classes were introduced by Wadler and Blott [8] into the Haskell lan- guage to allow for a reasonable implementation of overloading1. As a canon- ical example, a polymorphic equality function eq :: α ) α ) bool which is overloaded on different types for α, which is achieved by splitting introduc- tion of the eq function from its overloaded definitions by means of class and instance declarations: 2 class eq where eq :: α ) α ) bool instance nat :: eq where eq 0 0 = True eq 0 - = False eq - 0 = False eq (Suc n)(Suc m) = eq n m instance (α::eq; β::eq) pair :: eq where eq (x1; y1) (x2; y2) = eq x1 x2 ^ eq y1 y2 class ord extends eq where less-eq :: α ) α ) bool less :: α ) α ) bool Type variables are annotated with (finitely many) classes; these annotations are assertions that a particular polymorphic type provides definitions for overloaded functions. Indeed, type classes not only allow for simple overloading but form a generic calculus, an instance of order-sorted algebra [5, 6, 10]. From a software engineering point of view, type classes roughly correspond to interfaces in object-oriented languages like Java; so, it is naturally desirable that type classes do not only provide functions (class parameters) but also state specifications implementations must obey. -
Explicitly Implicifying Explicit Constructors
Explicitly Implicifying explicit Constructors Document number: P1163R0 Date: 2018-08-31 Project: Programming Language C++, Library Working Group Reply-to: Nevin “☺” Liber, [email protected] or [email protected] Table of Contents Revision History ................................................................................................................ 3 P11630R0 .................................................................................................................................... 3 Introduction ....................................................................................................................... 4 Motivation and Scope ....................................................................................................... 5 Impact On the Standard ................................................................................................... 6 Policy .................................................................................................................................. 7 Design Decisions ................................................................................................................ 8 Technical Specifications ................................................................................................... 9 [template.bitset]........................................................................................................................ 10 [bitset.cons] .............................................................................................................................. -
OMG Meta Object Facility (MOF) Core Specification
Date : October 2019 OMG Meta Object Facility (MOF) Core Specification Version 2.5.1 OMG Document Number: formal/2019-10-01 Standard document URL: https://www.omg.org/spec/MOF/2.5.1 Normative Machine-Readable Files: https://www.omg.org/spec/MOF/20131001/MOF.xmi Informative Machine-Readable Files: https://www.omg.org/spec/MOF/20131001/CMOFConstraints.ocl https://www.omg.org/spec/MOF/20131001/EMOFConstraints.ocl Copyright © 2003, Adaptive Copyright © 2003, Ceira Technologies, Inc. Copyright © 2003, Compuware Corporation Copyright © 2003, Data Access Technologies, Inc. Copyright © 2003, DSTC Copyright © 2003, Gentleware Copyright © 2003, Hewlett-Packard Copyright © 2003, International Business Machines Copyright © 2003, IONA Copyright © 2003, MetaMatrix Copyright © 2015, Object Management Group Copyright © 2003, Softeam Copyright © 2003, SUN Copyright © 2003, Telelogic AB Copyright © 2003, Unisys USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES The material in this document details an Object Management Group specification in accordance with the terms, conditions and notices set forth below. This document does not represent a commitment to implement any portion of this specification in any company's products. The information contained in this document is subject to change without notice. LICENSES The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in the included material of any such copyright holder by reason of having used the specification set forth herein or having conformed any computer software to the specification. -
Metaclasses 4 ◆ Dynamic Binding Implies That Classes Must Have Some ◆ Meta-: Beyond; Transcending; More Comprehensive; E.G., As Memory Representation
® 1 ® Class Representation in Memory? 2 Case Study: Meta Classes ◆ A class is an abstract entity, so why should it be represented in the runtime environment? ◆ Answer: Dynamic Binding! ◆ Class representation in memory ● The actual method bound to a message is determined at run time based on the type (class) of an object. ◆ Class variables and class methods ● There must be a link between the object and its ◆ Meta Classes methods. ● Since these links are the same for all objects of the ◆ 3 Level System same class, it makes sense to share the representation. ◆ ◆ 4 Level System Schematic diagram, common to all OO languages: Method ◆ 5 Level System 1 Method ◆ 1 Level System Class Rep 2 ◆ Msg Object Methods Infinite Levels System Table Methodn oop Õ Ö oop Õ Ö ® A Class as an Object? 3 ® Metaclasses 4 ◆ Dynamic binding implies that classes must have some ◆ Meta-: Beyond; transcending; more comprehensive; e.g., as memory representation. in metalinguistics. ◆ Why not as an object? ◆ Class: generates instances. ◆ Answer: Let's go for it! ◆ Metaclass: a class whose instances are classes. ● Each object o has a pointer to its class object c which is the ◆ Terminal Instance: cannot be instantiated further. object representing the class to which o belongs. Objects Class Classes Terminal Instances Novel Play Instantiable objects Non instantiable objects Macbeth Othello Metaclasses Instances are classes 1984 War & Peace As you like Main Text Book Reference: G.Masini et al. Oliver Twist Object-Oriented Languages, APIC series, No.34 oop Õ Ö oop Õ Ö ® 5 ® 6 Taxonomy of Metaclass Systems The 3 Level System ◆ 1-Level System: Objects only Object ● Each object describes itself INSTANCE _OF ● No need for classes: objects are ìinstantiatedî or ìinheritedî from SUBCLASS _OF other objects Class Example: Self VARIABLES instance_of ,167$1&(B2) ◆ 2-Level System: Objects, Classes METHODS .. -
The Cool Reference Manual∗
The Cool Reference Manual∗ Contents 1 Introduction 3 2 Getting Started 3 3 Classes 4 3.1 Features . 4 3.2 Inheritance . 5 4 Types 6 4.1 SELF TYPE ........................................... 6 4.2 Type Checking . 7 5 Attributes 8 5.1 Void................................................ 8 6 Methods 8 7 Expressions 9 7.1 Constants . 9 7.2 Identifiers . 9 7.3 Assignment . 9 7.4 Dispatch . 10 7.5 Conditionals . 10 7.6 Loops . 11 7.7 Blocks . 11 7.8 Let . 11 7.9 Case . 12 7.10 New . 12 7.11 Isvoid . 12 7.12 Arithmetic and Comparison Operations . 13 ∗Copyright c 1995-2000 by Alex Aiken. All rights reserved. 1 8 Basic Classes 13 8.1 Object . 13 8.2 IO ................................................. 13 8.3 Int................................................. 14 8.4 String . 14 8.5 Bool . 14 9 Main Class 14 10 Lexical Structure 14 10.1 Integers, Identifiers, and Special Notation . 15 10.2 Strings . 15 10.3 Comments . 15 10.4 Keywords . 15 10.5 White Space . 15 11 Cool Syntax 17 11.1 Precedence . 17 12 Type Rules 17 12.1 Type Environments . 17 12.2 Type Checking Rules . 18 13 Operational Semantics 22 13.1 Environment and the Store . 22 13.2 Syntax for Cool Objects . 24 13.3 Class definitions . 24 13.4 Operational Rules . 25 14 Acknowledgements 30 2 1 Introduction This manual describes the programming language Cool: the Classroom Object-Oriented Language. Cool is a small language that can be implemented with reasonable effort in a one semester course. Still, Cool retains many of the features of modern programming languages including objects, static typing, and automatic memory management. -
Generic Immutability and Nullity Types for an Imperative Object-Oriented Programming Language with flexible Initialization
Generic Immutability and Nullity Types for an imperative object-oriented programming language with flexible initialization James Elford June 21, 2012 Abstract We present a type system for parametric object mutability and ref- erence nullity in an imperative object oriented language. We present a simple but powerful system for generic nullity constraints, and build on previous work to provide safe initialization of objects which is not bound to constructors. The system is expressive enough to handle initialization of cyclic immutable data structures, and to enforce their cyclic nature through the type system. We provide the crucial parts of soundness ar- guments (though the full proof is not yet complete). Our arguments are novel, in that they do not require auxiliary runtime constructs (ghost state) in order to express or demonstrate our desired properties. 2 Contents 1 Introduction 4 1.1 In this document . .5 2 Background 6 2.1 Parametric Types . .6 2.1.1 Static Polymorphism through Templates . .7 2.1.2 Static Polymorphism through Generic Types . 12 2.2 Immutability . 18 2.2.1 Immutability in C++ .................... 19 2.2.2 Immutability in Java and C# ............... 21 2.2.3 An extension to Java's immutability model . 21 2.2.4 Parametric Immutability Constraints . 24 2.3 IGJ: Immutability Generic Java .................. 25 2.4 Nullity . 27 2.5 Areas of commonality . 30 3 Goals 32 4 Existing systems in more detail 34 4.1 The initialization problem . 34 4.2 What do we require from initialization? . 35 4.3 Approaches to initialization . 37 4.4 Delay Types and initialization using stack-local regions .