Class Notes on Type Inference 2018 Edition Chuck Liang Hofstra University Computer Science
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lackwit: a Program Understanding Tool Based on Type Inference
Lackwit: A Program Understanding Tool Based on Type Inference Robert O’Callahan Daniel Jackson School of Computer Science School of Computer Science Carnegie Mellon University Carnegie Mellon University 5000 Forbes Avenue 5000 Forbes Avenue Pittsburgh, PA 15213 USA Pittsburgh, PA 15213 USA +1 412 268 5728 +1 412 268 5143 [email protected] [email protected] same, there is an abstraction violation. Less obviously, the ABSTRACT value of a variable is never used if the program places no By determining, statically, where the structure of a constraints on its representation. Furthermore, program requires sets of variables to share a common communication induces representation constraints: a representation, we can identify abstract data types, detect necessary condition for a value defined at one site to be abstraction violations, find unused variables, functions, used at another is that the two values must have the same and fields of data structures, detect simple errors in representation1. operations on abstract datatypes, and locate sites of possible references to a value. We compute representation By extending the notion of representation we can encode sharing with type inference, using types to encode other kinds of useful information. We shall see, for representations. The method is efficient, fully automatic, example, how a refinement of the treatment of pointers and smoothly integrates pointer aliasing and higher-order allows reads and writes to be distinguished, and storage functions. We show how we used a prototype tool to leaks to be exposed. answer a user’s questions about a 17,000 line program We show how to generate and solve representation written in C. -
Scala−−, a Type Inferred Language Project Report
Scala−−, a type inferred language Project Report Da Liu [email protected] Contents 1 Background 2 2 Introduction 2 3 Type Inference 2 4 Language Prototype Features 3 5 Project Design 4 6 Implementation 4 6.1 Benchmarkingresults . 4 7 Discussion 9 7.1 About scalac ....................... 9 8 Lessons learned 10 9 Language Specifications 10 9.1 Introdution ......................... 10 9.2 Lexicalsyntax........................ 10 9.2.1 Identifiers ...................... 10 9.2.2 Keywords ...................... 10 9.2.3 Literals ....................... 11 9.2.4 Punctions ...................... 12 9.2.5 Commentsandwhitespace. 12 9.2.6 Operations ..................... 12 9.3 Syntax............................ 12 9.3.1 Programstructure . 12 9.3.2 Expressions ..................... 14 9.3.3 Statements ..................... 14 9.3.4 Blocksandcontrolflow . 14 9.4 Scopingrules ........................ 16 9.5 Standardlibraryandcollections. 16 9.5.1 println,mapandfilter . 16 9.5.2 Array ........................ 16 9.5.3 List ......................... 17 9.6 Codeexample........................ 17 9.6.1 HelloWorld..................... 17 9.6.2 QuickSort...................... 17 1 of 34 10 Reference 18 10.1Typeinference ....................... 18 10.2 Scalaprogramminglanguage . 18 10.3 Scala programming language development . 18 10.4 CompileScalatoLLVM . 18 10.5Benchmarking. .. .. .. .. .. .. .. .. .. .. 18 11 Source code listing 19 1 Background Scala is becoming drawing attentions in daily production among var- ious industries. Being as a general purpose programming language, it is influenced by many ancestors including, Erlang, Haskell, Java, Lisp, OCaml, Scheme, and Smalltalk. Scala has many attractive features, such as cross-platform taking advantage of JVM; as well as with higher level abstraction agnostic to the developer providing immutability with persistent data structures, pattern matching, type inference, higher or- der functions, lazy evaluation and many other functional programming features. -
First Steps in Scala Typing Static Typing Dynamic and Static Typing
CS206 First steps in Scala CS206 Typing Like Python, Scala has an interactive mode, where you can try What is the biggest difference between Python and Scala? out things or just compute something interactively. Python is dynamically typed, Scala is statically typed. Welcome to Scala version 2.8.1.final. In Python and in Scala, every piece of data is an object. Every scala> println("Hello World") object has a type. The type of an object determines what you Hello World can do with the object. Dynamic typing means that a variable can contain objects of scala> println("This is fun") different types: This is fun # This is Python The + means different things. To write a Scala script, create a file with name, say, test.scala, def test(a, b): and run it by saying scala test.scala. print a + b In the first homework you will see how to compile large test(3, 15) programs (so that they start faster). test("Hello", "World") CS206 Static typing CS206 Dynamic and static typing Static typing means that every variable has a known type. Dynamic typing: Flexible, concise (no need to write down types all the time), useful for quickly writing short programs. If you use the wrong type of object in an expression, the compiler will immediately tell you (so you get a compilation Static typing: Type errors found during compilation. More error instead of a runtime error). robust and trustworthy code. Compiler can generate more efficient code since the actual operation is known during scala> varm : Int = 17 compilation. m: Int = 17 Java, C, C++, and Scala are all statically typed languages. -
Multi-Level Constraints
Multi-Level Constraints Tony Clark1 and Ulrich Frank2 1 Aston University, UK, [email protected] 2 University of Duisburg-Essen, DE, [email protected] Abstract. Meta-modelling and domain-specific modelling languages are supported by multi-level modelling which liberates model-based engi- neering from the traditional two-level type-instance language architec- ture. Proponents of this approach claim that multi-level modelling in- creases the quality of the resulting systems by introducing a second ab- straction dimension and thereby allowing both intra-level abstraction via sub-typing and inter-level abstraction via meta-types. Modelling ap- proaches include constraint languages that are used to express model semantics. Traditional languages, such as OCL, support intra-level con- straints, but not inter-level constraints. This paper motivates the need for multi-level constraints, shows how to implement such a language in a reflexive language architecture and applies multi-level constraints to an example multi-level model. 1 Introduction Conceptual models aim to bridge the gap between natural languages that are required to design and use a system and implementation languages. To this end, general-purpose modelling languages (GPML) like the UML consist of concepts that represent semantic primitives such as class, attribute, etc., that, on the one hand correspond to concepts of foundational ontologies, e.g., [4], and on the other hand can be nicely mapped to corresponding elements of object-oriented programming languages. Since GPML can be used to model a wide range of systems, they promise at- tractive economies of scale. At the same time, their use suffers from the fact that they offer generic concepts only. -
Union Types for Semistructured Data
Edinburgh Research Explorer Union Types for Semistructured Data Citation for published version: Buneman, P & Pierce, B 1999, Union Types for Semistructured Data. in Union Types for Semistructured Data: 7th International Workshop on Database Programming Languages, DBPL’99 Kinloch Rannoch, UK, September 1–3,1999 Revised Papers. Lecture Notes in Computer Science, vol. 1949, Springer-Verlag GmbH, pp. 184-207. https://doi.org/10.1007/3-540-44543-9_12 Digital Object Identifier (DOI): 10.1007/3-540-44543-9_12 Link: Link to publication record in Edinburgh Research Explorer Document Version: Peer reviewed version Published In: Union Types for Semistructured Data General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 27. Sep. 2021 Union Typ es for Semistructured Data Peter Buneman Benjamin Pierce University of Pennsylvania Dept of Computer Information Science South rd Street Philadelphia PA USA fpeterbcpiercegcisupenn edu Technical -
Typescript-Handbook.Pdf
This copy of the TypeScript handbook was created on Monday, September 27, 2021 against commit 519269 with TypeScript 4.4. Table of Contents The TypeScript Handbook Your first step to learn TypeScript The Basics Step one in learning TypeScript: The basic types. Everyday Types The language primitives. Understand how TypeScript uses JavaScript knowledge Narrowing to reduce the amount of type syntax in your projects. More on Functions Learn about how Functions work in TypeScript. How TypeScript describes the shapes of JavaScript Object Types objects. An overview of the ways in which you can create more Creating Types from Types types from existing types. Generics Types which take parameters Keyof Type Operator Using the keyof operator in type contexts. Typeof Type Operator Using the typeof operator in type contexts. Indexed Access Types Using Type['a'] syntax to access a subset of a type. Create types which act like if statements in the type Conditional Types system. Mapped Types Generating types by re-using an existing type. Generating mapping types which change properties via Template Literal Types template literal strings. Classes How classes work in TypeScript How JavaScript handles communicating across file Modules boundaries. The TypeScript Handbook About this Handbook Over 20 years after its introduction to the programming community, JavaScript is now one of the most widespread cross-platform languages ever created. Starting as a small scripting language for adding trivial interactivity to webpages, JavaScript has grown to be a language of choice for both frontend and backend applications of every size. While the size, scope, and complexity of programs written in JavaScript has grown exponentially, the ability of the JavaScript language to express the relationships between different units of code has not. -
Djangoshop Release 0.11.2
djangoSHOP Release 0.11.2 Oct 27, 2017 Contents 1 Software Architecture 1 2 Unique Features of django-SHOP5 3 Upgrading 7 4 Tutorial 9 5 Reference 33 6 How To’s 125 7 Development and Community 131 8 To be written 149 9 License 155 Python Module Index 157 i ii CHAPTER 1 Software Architecture The django-SHOP framework is, as its name implies, a framework and not a software which runs out of the box. Instead, an e-commerce site built upon django-SHOP, always consists of this framework, a bunch of other Django apps and the merchant’s own implementation. While this may seem more complicate than a ready-to-use solution, it gives the programmer enormous advantages during the implementation: Not everything can be “explained” to a software system using graphical user interfaces. After reaching a certain point of complexity, it normally is easier to pour those requirements into executable code, rather than to expect yet another set of configuration buttons. When evaluating django-SHOP with other e-commerce solutions, I therefore suggest to do the following litmus test: Consider a product which shall be sold world-wide. Depending on the country’s origin of the request, use the native language and the local currency. Due to export restrictions, some products can not be sold everywhere. Moreover, in some countries the value added tax is part of the product’s price, and must be stated separately on the invoice, while in other countries, products are advertised using net prices, and tax is added later on the invoice. -
Certifying Ocaml Type Inference (And Other Type Systems)
Certifying OCaml type inference (and other type systems) Jacques Garrigue Nagoya University http://www.math.nagoya-u.ac.jp/~garrigue/papers/ Jacques Garrigue | Certifying OCaml type inference 1 What's in OCaml's type system { Core ML with relaxed value restriction { Recursive types { Polymorphic objects and variants { Structural subtyping (with variance annotations) { Modules and applicative functors { Private types: private datatypes, rows and abbreviations { Recursive modules . Jacques Garrigue | Certifying OCaml type inference 2 The trouble and the solution(?) { While most features were proved on paper, there is no overall specification for the whole type system { For efficiency reasons the implementation is far from the the theory, making proving it very hard { Actually, until 2008 there were many bug reports A radical solution: a certified reference implementation { The current implementation is not a good basis for certification { One can check the expected behaviour with a (partial) reference implementation { Relate explicitly the implementation and the theory, by developing it in Coq Jacques Garrigue | Certifying OCaml type inference 3 What I have be proving in Coq 1 Over the last 2 =2 years (on and off) { Built a certified ML interpreter including structural polymorphism { Proved type soundness and adequacy of evaluation { Proved soundness and completeness (principality) of type inference { Can handle recursive polymorphic object and variant types { Both the type checker and interpreter can be extracted to OCaml and run { Type soundness was based on \Engineering formal metatheory" Jacques Garrigue | Certifying OCaml type inference 4 Related works About core ML, there are already several proofs { Type soundness was proved many times, and is included in "Engineering formal metatheory" [2008] { For type inference, both Dubois et al. -
Assignment 6: Subtyping and Bidirectional Typing
Assignment 6: Subtyping and Bidirectional Typing 15-312: Foundations of Programming Languages Joshua Dunfield ([email protected]) Out: Thursday, October 24, 2002 Due: Thursday, November 7 (11:59:59 pm) 100 points total + (up to) 20 points extra credit 1 Introduction In this assignment, you will implement a bidirectional typechecker for MinML with , , +, 1, 0, , , and subtyping with base types int and float. ! ∗ 8 9 Note: In the .sml files, most changes from Assignment 4 are indicated like this: (* new asst6 code: *) ... (* end asst6 code *) 2 New in this assignment Some things have become obsolete (and have either been removed or left • in a semi-supported state). Exceptions and continuations are no longer “officially” supported. One can now (and sometimes must!) write type annotations e : τ. The • abstract syntax constructor is called Anno. The lexer supports shell-style comments in .mml source files: any line • beginning with # is ignored. There are now two valid syntaxes for functions, the old syntax fun f (x:t1):t2 is e end • and a new syntax fun f(x) is e end. Note the lack of type anno- tations. The definition of the abstract syntax constructor Fun has been changed; its arguments are now just bindings for f and x and the body. It no longer takes two types. 1 The old syntax fun f(x:t1):t2 is e end is now just syntactic sugar, transformed by the parser into fun f(x) is e end : t1 -> t2. There are floating point numbers, written as in SML. There is a new set of • arithmetic operators +., -., *., ˜. -
Presentation on Ocaml Internals
OCaml Internals Implementation of an ML descendant Theophile Ranquet Ecole Pour l’Informatique et les Techniques Avancées SRS 2014 [email protected] November 14, 2013 2 of 113 Table of Contents Variants and subtyping System F Variants Type oddities worth noting Polymorphic variants Cyclic types Subtyping Weak types Implementation details α ! β Compilers Functional programming Values Why functional programming ? Allocation and garbage Combinatory logic : SKI collection The Curry-Howard Compiling correspondence Type inference OCaml and recursion 3 of 113 Variants A tagged union (also called variant, disjoint union, sum type, or algebraic data type) holds a value which may be one of several types, but only one at a time. This is very similar to the logical disjunction, in intuitionistic logic (by the Curry-Howard correspondance). 4 of 113 Variants are very convenient to represent data structures, and implement algorithms on these : 1 d a t a t y p e tree= Leaf 2 | Node of(int ∗ t r e e ∗ t r e e) 3 4 Node(5, Node(1,Leaf,Leaf), Node(3, Leaf, Node(4, Leaf, Leaf))) 5 1 3 4 1 fun countNodes(Leaf)=0 2 | countNodes(Node(int,left,right)) = 3 1 + countNodes(left)+ countNodes(right) 5 of 113 1 t y p e basic_color= 2 | Black| Red| Green| Yellow 3 | Blue| Magenta| Cyan| White 4 t y p e weight= Regular| Bold 5 t y p e color= 6 | Basic of basic_color ∗ w e i g h t 7 | RGB of int ∗ i n t ∗ i n t 8 | Gray of int 9 1 l e t color_to_int= function 2 | Basic(basic_color,weight) −> 3 l e t base= match weight with Bold −> 8 | Regular −> 0 in 4 base+ basic_color_to_int basic_color 5 | RGB(r,g,b) −> 16 +b+g ∗ 6 +r ∗ 36 6 | Grayi −> 232 +i 7 6 of 113 The limit of variants Say we want to handle a color representation with an alpha channel, but just for color_to_int (this implies we do not want to redefine our color type, this would be a hassle elsewhere). -
Bidirectional Typing
Bidirectional Typing JANA DUNFIELD, Queen’s University, Canada NEEL KRISHNASWAMI, University of Cambridge, United Kingdom Bidirectional typing combines two modes of typing: type checking, which checks that a program satisfies a known type, and type synthesis, which determines a type from the program. Using checking enables bidirectional typing to support features for which inference is undecidable; using synthesis enables bidirectional typing to avoid the large annotation burden of explicitly typed languages. In addition, bidirectional typing improves error locality. We highlight the design principles that underlie bidirectional type systems, survey the development of bidirectional typing from the prehistoric period before Pierce and Turner’s local type inference to the present day, and provide guidance for future investigations. ACM Reference Format: Jana Dunfield and Neel Krishnaswami. 2020. Bidirectional Typing. 1, 1 (November 2020), 37 pages. https: //doi.org/10.1145/nnnnnnn.nnnnnnn 1 INTRODUCTION Type systems serve many purposes. They allow programming languages to reject nonsensical programs. They allow programmers to express their intent, and to use a type checker to verify that their programs are consistent with that intent. Type systems can also be used to automatically insert implicit operations, and even to guide program synthesis. Automated deduction and logic programming give us a useful lens through which to view type systems: modes [Warren 1977]. When we implement a typing judgment, say Γ ` 4 : 퐴, is each of the meta-variables (Γ, 4, 퐴) an input, or an output? If the typing context Γ, the term 4 and the type 퐴 are inputs, we are implementing type checking. If the type 퐴 is an output, we are implementing type inference. -
1 Polymorphism in Ocaml 2 Type Inference
CS 4110 – Programming Languages and Logics Lecture #23: Type Inference 1 Polymorphism in OCaml In languages like OCaml, programmers don’t have to annotate their programs with 8X: τ or e »τ¼. Both are automatically inferred by the compiler, although the programmer can specify types explicitly if desired. For example, we can write let double f x = f (f x) and OCaml will figure out that the type is ('a ! 'a) ! 'a ! 'a which is roughly equivalent to the System F type 8A: ¹A ! Aº ! A ! A We can also write double (fun x ! x+1) 7 and OCaml will infer that the polymorphic function double is instantiated at the type int. The polymorphism in ML is not, however, exactly like the polymorphism in System F. ML restricts what types a type variable may be instantiated with. Specifically, type variables can not be instantiated with polymorphic types. Also, polymorphic types are not allowed to appear on the left-hand side of arrows—i.e., a polymorphic type cannot be the type of a function argument. This form of polymorphism is known as let-polymorphism (due to the special role played by let in ML), or prenex polymorphism. These restrictions ensure that type inference is decidable. An example of a term that is typable in System F but not typable in ML is the self-application expression λx: x x. Try typing fun x ! x x in the top-level loop of OCaml, and see what happens... 2 Type Inference In the simply-typed lambda calculus, we explicitly annotate the type of function arguments: λx : τ: e.