Merit Backbone Network Houghton Calumet

Total Page:16

File Type:pdf, Size:1020Kb

Merit Backbone Network Houghton Calumet KEWEENAW Merit Backbone Network Houghton Calumet Duluth Ontonagon HOUGHTON Superior Baraga orion Odanah LUCE WakefieldONTONAGON Covington Marquette Sault Ste. Marie, Canada Ashland GOGEBIC BARAGA Ironwood Gwinn Seney Eckerman IRON Sault Ste. Munising MARQUETTE Marie Internet Traffic Crystal ALGER CHIPPEWA Watersmeet DICKINSON SCHOOLCRAFT Falls MACKINAC DELTA Equinix Chicago Sagola St. Ignace Manistique AT&T 10 Gbps Iron Mountain Mackinaw City Non-transit peers 52 Gbps Powers Cheboygan Escanaba 710 N. Lakeshore Dr., Chicago EMMET Indian Rogers City MENOMINEE Petoskey River Charlevoix Onaway Posen Internet2 30 Gbps CHEBOYGAN PRESQUE ISLE CHARLEVOIX ALPENA R&E Peers 30 Gbps Marinette Menominee Gaylord Alpena Hillman Traverse City ANTRIM OTSEGO MONTMORENCY OSCODA Cleveland LEELANAU Grayling Mio Internet2 30 Gbps Beulah GRAND Kalkaska BENZIE TRAVERSE KALKASKA CRAWFORD ALCONA Hurricane Electric 10 Gbps Rose City Green Bay Lake Houghton Oscoda Manistee City Lake West Cadillac Branch WEXFORD MISSAUKEE ROSCOMMON OGEMAW IOSCO Tawas MANISTEE City * Merit provides services in all of Michigan’s LAKE OSCEOLA CLARE GLADWIN ARENAC counties, which are labeled in grey. Luther Gladwin Ludington Clare BAY 10 x MASON Big ISABELLA MIDLAND Bay OCEANA NEWAYGO Rapids HURON Midland City Map Key SANILAC MECOSTA Mt. Pleasant Saginaw MiLR DWDM, 100 Gbps GRATIOT 10 Gbps DecaMAN Howard TUSCOLA LAPEER City SAGINAW Muskegon MUSKEGON MONTCALM ST. CLAIR Merit Fiber - local access & long haul, speeds 1-10 Gbps SHIAWASSEE Flint Lapeer Allendale Grand IONIA Marysville Rapids Corunna Merit Fiber - local access, 1 Gbps GENESEE Holland Clinton Metro Fiber Ring, 10-100 Gbps Zeeland OTTAWA KENT 10 x CLINTON OAKLAND Twp. Lansing/ LIVINGSTON Rochester MACOMB East Lansing 10 x Southfield EATON ALLEGAN BARRY INGHAM 10 x Ann Detroit Marshall Arbor Benton Kalamazoo 10G Jackson 10 x Harbor 10 x Windsor, Canada WASHTENAW WAYNE VAN BURE10N xKALAMAZOO CALHOUN JACKSON Cassopolis Coldwater 10 Gbps 10 x Adrian orion Berrien Centreville Springs Hillsdale Monroe BERRIEN CASS ST. JOSEPH BRANCH MONROE 600 W Chicago St. HILLSDALE LENAWEE Chicago Toledo Cleveland Lima Equinix 710 N Lakeshore Dr. 10 Gbps 10 Gbps March 4, 2015 Chicago Chicago Southeast West Saginaw Michigan Michigan Big Rapids Lakeview Merit Backbone Lapeer Fiber Rings Flint Howard March 4, 2015 Marysville City Muskegon Grand Clinton Rapids Holland East Lansing Twp. Allendale 10x Rochester x 10x 10 Ann Southfield ASE Detroit Plainwell Arbor 1G 10x Windsor Kalamazoo 10x 1G Dearborn Mid Ypsilanti St. Johns OPT-E 1G Michigan 50M Adrian AFRVPN Corunna 10 Monroe x 10x Toledo Lansing Map Key MiLR DWDM, 100 Gbps Merit Fiber - local access & long haul, speeds 1-10 Gbps 10x Merit Fiber - local access, 1Gbps Jackson Backbone Telco Link Marshall Metro Fiber Ring, 10-70 Gbps Charlevoix Petoskey Merit Network, Inc. 1000 Oakbrook Drive, Suite 200, Charlevoix Ann Arbor, Michigan 48104-6794 Hillsdale Phone: (734) 527-5700 Area Fax: (734) 527-5790 E-mail: [email protected].
Recommended publications
  • QUILT CIRCLE2020 a Letter from the President
    THE QUILT CIRCLE2020 A Letter From the President This 2020 Quilt Circle edition commemorates the 20th Anniversary of The Quilt. The fabric of our research and education (R&E) networking community has never been stronger. While our Quilt community has evolved in new and exciting ways in the past two decades, we have also been faced with a number of challenges which we take head-on and always with the spirit of collaboration. As we address the unprecedented challenges presented by the current global public health crisis due to the COVID-19 pandemic, the work of our members is more important than ever to the missions of their member communities. U.S. higher education institutions rely on R&E networks to give them a competitive edge in the most impactful scientific research initiatives which is essential in this crisis. We connect the educational institutions that support university medical centers and their associated hospitals. R&E networks also connect tens of thousands of other community anchor institutions, including K-12 schools, public libraries, local/state government, research sites, cultural institutions, public safety, and tribal lands. Being responsive and providing vital networking infrastructure and resources right now to address immediate needs is who we are and what we do. R&E networks are part of our nation’s critical infrastructure. This year’s edition of The Quilt Circle showcases several examples of the key role of R&E network members in both providing and facilitating the use-network infrastructure to further scientific discovery and collaborations at higher education institutions of all sizes.
    [Show full text]
  • On Multi-Point, In-Network Filtering of Distributed Denial-Of-Service Traffic
    On Multi-Point, In-Network Filtering of Distributed Denial-of-Service Traffic Mingwei Zhang∗, Lumin Shi∗, Devkishen Sisodia∗, Jun Li∗, Peter Reihery ∗ University of Oregon fmingwei, luminshi, dsisodia, [email protected] y University of California, Los Angeles [email protected] Abstract—Research has shown that distributed denial-of- in a common language. Further, it is also unknown how these service (DDoS) attacks on the Internet could often be better solutions perform under insufficient knowledge of the attacks handled by enlisting the in-network defense of multiple au- or against intelligent adversaries who can dynamically revise tonomous systems (ASes), rather than relying entirely on the victim’s Internet Service Provider at the edge. Less noticed their attack strategies to escape defense. Without a quantitative but important is the fact that an in-network defense can also comparison, it is hard for a DDoS victim to select the most remove DDoS traffic from the Internet early en route to the suitable solution to achieve its defense goal and meet the victim, thus decreasing the overall load on the Internet and resource requirements. reducing chances of link congestion. However, it is not well In this paper, we introduce a modeling and simulation understood to what degree different in-network defense strategies can achieve such benefits. In this paper, we model the existing framework to systematically evaluate in-network DDoS de- two main categories of in-network DDoS defense algorithms fense algorithms. The framework contains a general model (PushBack, SourceEnd) and propose a new type of algorithm that can describe the attack and defense for various defense (StrategicPoints).
    [Show full text]
  • Internet2: a Comparative Study and Technological Solution to Achieve High Speed Networks
    Himanshu Agarwal / Indian Journal of Computer Science and Engineering Vol 1 No 3, 157-160 INTERNET2: A COMPARATIVE STUDY AND TECHNOLOGICAL SOLUTION TO ACHIEVE HIGH SPEED NETWORKS HIMANSHU AGARWAL Department of Computer Science & Information Technology, Moradabad Institute of Technology, Moradabad-244001 (Uttar Pradesh), India Email: [email protected] Abstract In current Indian scenario whenever it is required to access very large amount of data such as games or some commercial applications through commodity internet (internet1), speed becomes hurdle. It becomes tolerable for some applications but no one wants to bother in case of education and research. Now the world becomes commercialized and don’t want to bother with speed. Therefore the next generation of Internet infrastructure known as Internet2 or UCAID (University Corporation for Advance Internet Development) for 21st century comes in the focus of scientists, to improve quality of life through research and education. In this paper thorough analysis and comparative study of various educational networks, market scenario and Internet2 has been done, so all pros and cons become visualized to get the effect of internet2 in industries, research and development. Keywords: Internet2; Abilene network; gigapops; high speed networks. 1. Introduction Internet2 is a second generation network serving universities and research institutes by moving the data at a rate of 10 gigabits per second and more ,compared with 5.1 or so megabits old fashioned commodity internet. Internet2 moves data 100 to 1,000 times faster than internet1. Its GigaPoPs (points of presence) provide regional high-performance aggregation points; for member institutions, typically local campus networks provide no less than 100 Mbps to the desktop.
    [Show full text]
  • Growth of the Internet
    Growth of the Internet K. G. Coffman and A. M. Odlyzko AT&T Labs - Research [email protected], [email protected] Preliminary version, July 6, 2001 Abstract The Internet is the main cause of the recent explosion of activity in optical fiber telecommunica- tions. The high growth rates observed on the Internet, and the popular perception that growth rates were even higher, led to an upsurge in research, development, and investment in telecommunications. The telecom crash of 2000 occurred when investors realized that transmission capacity in place and under construction greatly exceeded actual traffic demand. This chapter discusses the growth of the Internet and compares it with that of other communication services. Internet traffic is growing, approximately doubling each year. There are reasonable arguments that it will continue to grow at this rate for the rest of this decade. If this happens, then in a few years, we may have a rough balance between supply and demand. Growth of the Internet K. G. Coffman and A. M. Odlyzko AT&T Labs - Research [email protected], [email protected] 1. Introduction Optical fiber communications was initially developed for the voice phone system. The feverish level of activity that we have experienced since the late 1990s, though, was caused primarily by the rapidly rising demand for Internet connectivity. The Internet has been growing at unprecedented rates. Moreover, because it is versatile and penetrates deeply into the economy, it is affecting all of society, and therefore has attracted inordinate amounts of public attention. The aim of this chapter is to summarize the current state of knowledge about the growth rates of the Internet, with special attention paid to the implications for fiber optic transmission.
    [Show full text]
  • Broadband for Education: the National Internet2 K20 Initiative’S and WICHE’S Recommendations to the FCC
    Broadband for Education: The National Internet2 K20 Initiative’s and WICHE’s Recommendations to the FCC Who are we? Internet2: We bring together Internet2’s world-class network and research community members with innovators from colleges and universities, primary and secondary schools, libraries, museums and other educational institutions, the full spectrum of America’s education community, including both formal and informal education. The National K20 Initiative extends new technologies, applications, and rich educational content to all students, their families and communities – no matter where they’re located. We have had immense success connecting the institutions above – in fact, over 65,000 institutions are now connected to the National Internet2 network – but to realize fully the potential of Internet2 all institutions must have adequate bandwidth. What follows are principles we endorse and urge the FCC to adopt. We divide our recommendations into two interrelated categories: connectivity and e-rate support. Western Interstate Commission for Higher Education (WICHE): WICHE and its 15 member states work to improve access to higher education and ensure student success. Our student exchange programs, regional initiatives, and our research and policy work allow us to assist constituents in the West and beyond. Equitable access to broadband technology and, in particular, technology-enabled education, is among our strategies. At present much of the West, particularly the “frontier West,” has little or no access to adequate bandwidth. Many of our institutions are not among those connected by and participating in the Internet2 K20 Initiative. The principles and recommendations below would remedy this situation. Our recommendations: (1) Connectivity • Elementary schools, secondary schools, and branch libraries should be connected at 100 Mbps to 10 Gbps.
    [Show full text]
  • May 2013 Report APPENDIX D
    APPENDIX D 2013 ESINet Steering Committee Report to the 130th General Assembly Technical Standards Subcommittee INFRASTRUCTURE EVALUATION An examination of the readiness of the state’s current technology infrastructure to support a statewide emergency services internet protocol network for Next Generation 9-1-1 Services. 0 | P a g e Table of Contents PURPOSE ....................................................................................................................................................... 2 EXISTING TECHNOLOGY INFRASTRUCTURE .................................................................................................. 2 OHIO OFFICE OF INFORMATION TECHNOLOGY ............................................................................................ 3 OIT Telecommunications .............................................................................................................................. 3 Procurement ................................................................................................................................................. 3 DAS Network Contract Management Services ............................................................................................. 4 Contracts by Service ...................................................................................................................................... 4 Reach…. ......................................................................................................................................................... 5 Capacity
    [Show full text]
  • Uen Provides Bandwidth on Demand for the Research Community
    UEN PROVIDES BANDWIDTH ON DEMAND FOR THE RESEARCH COMMUNITY What Our Customers Working with the University of Utah, the Are Saying Utah Education Network has connected the “We were able to start deploying 100G wavelengths alongside our research community with a super-fast, 100G existing 10G wavelengths right transport infrastructure built on Ciena’s 6500 away, giving us a tenfold uplift in available bandwidth capacity for the Packet-Optical Platform. local research community.” The Utah Education Network (UEN) connects all universities, school districts, schools, “It costs the same to buy and turn libraries, and anchor institutions across the state. To meet the needs of super users at up a wavelength on the Ciena the University of Utah and other research institutions, the organization needed to infrastructure as it costs to lease an upgrade its existing 10G network infrastructure. equivalent service from a third-party provider for one year. After that, we Working with the University of Utah and Ciena, with local project support from Ciena only have maintenance costs to partner CenturyLink, UEN deployed new 100G wavelengths to connect the university’s think about, which means we high-performance computing center with its new data center in downtown Salt Lake achieve major ongoing savings.” City. A third 100G connection links the university to the U.S. national research and education network, Internet2. Kevin Quire Manager of Network Engineering The new metro optical network, which is built on Ciena’s 6500, provides virtually Utah Education Network unlimited, on-demand bandwidth for the research community. It will support the diverse research portfolio of researchers and students across Utah for many years to come, offering robust scientific computing and visualization capabilities in the areas of biomedicine, genomics, geophysics, combustion, molecular dynamics, fluid dynamics, and climate modeling.
    [Show full text]
  • The Quilt a Collaboration of U.S. Research and Education Networks
    The Quilt A Collaboration of U.S. Research and Education Networks Slide 1 April 15, 2014 The Quilt The Quilt is a non-profit collaboration of our country’s advanced regional research and education networks. Created in 2000, The Quilt is a member- powered, vibrant forum where leaders from these networks come together to exchange knowledge, experience and ideas to collectively advance networking for research & education. The Quilt aims to influence the national agenda on information technology infrastructure, with particular emphasis on networking for research and education. Through this coalition, Quilt members collaborate to promote the delivery of networking services at lower cost, higher performance and greater reliability and security. Quilt members are our country’s not-for-profit networking organizations serving research and education with similar missions to; support research and education, collaborate, manage advanced networks, provide advanced networking services and further knowledge and innovation. Slide 2 April 15, 2014 Introductions • The U.S. non-profit research and education networks are funded, governed and structured differently. These aspects of the organizations reflect the diverse and complex environments of the communities and states in which they operate. • While diverse in some aspects, these organizations are similarly missioned with common goals which are to provide an advanced network infrastructure, services and applications which support of the research and education goals of the institutions each serve. Slide
    [Show full text]
  • Remarks on the Anniversary of the Merit Computer Network
    Remarks on the Anniversary of the Merit Computer Network James J. Duderstadt President Emeritus and University Professor of Science and Engineering Ann Arbor November 16, 2006 2 Introduction Happy 40th Anniversary!!! • It is an honor to be able to participate in this celebration and well-deserved recognition of the extraordinary impact Merit has had on our state, the nation, and, indeed, the world. • • It is also great to see so many of those responsible for its achievements present…and still ticking! • • Actually, I arrived at Michigan about the same time that Merit was launched, and my career has been not only heavily influenced by at times interwoven with Merit’s. • • Hence, I thought it might be appropriate to take a quick nostalgia trip through these years, commenting on various aspects of Merit’s history from a personal perspective as a user, occasional defender, and strong admirer of the Merit Network. • • Before dredging up what my failing memory has to offer, let me stay in the present mode for just a moment to mention an experience I had just last week. Salzburg Seminar • Just arrived back from Salzburg, where I led a week long session of 45 higher education leaders from 25 nations and all five continents on a discussion of the changing needs and nature of higher education in the face of o rapidly changing demographics o globalization o and the knowledge economy • Whether in developed nations in Europe, Asia, or North America or in developing nations elsewhere, there is a growing recognition of two imperatives o “massification” of teriary education o lifelong learning 3 • And everywhere there is also a recognition that the scaffolding for this effort will be provided by cyberinfrastructure–or as the rest of the world calls it, ICT–information and communications technology.
    [Show full text]
  • Description of Omnipop for Proposals
    Description of OmniPoP for Proposals Summary The OmniPoP is a collaborative effort between 12 of the member universities of the Big Ten Academic Alliance. Together, these institutions have pooled their efforts to create a high performance shared infrastructure based in the Chicago area. This infrastructure was designed to complement and augment the shared fiber infrastructure that the Big Ten Academic Alliance members had previously purchased. The OmniPoP operates a high capacity switching infrastructure that supports 10 gigabit and 100 gigabit connections to its member institutions and equivalent high capacity links to national research and education networks such as Internet2, ESnet, and Starlight. This allows OmniPoP connections to be leveraged to provide services to large data flows in support of multi-institutional cooperative research efforts. Efforts supported today include interconnections between the Large Hadron Collider (LHC) Tier 2 efforts at the member institutions and the Midwest Openflow Crossroads Initiative (MOXI) project which links several midwest regional networks to the GENI backbone. OmniPoP Infrastructure and Peerings The Omnipop infrastructure consists of a redundant pair of 100 gigabit capable switches. These switches operate from geographically diverse co-location facilities within the Chicago metropolitan areas. These facilities also serve as Points of Presence (PoPs) for other major networks such as Internet2, ESnet (Department of Energy’s Energy Sciences Network), and Starlight (the international peering exchange), enabling seamless cross connections to the major national and international research and education networks that support much of the academic research community. An additional benefit to these facilities is that they offer the opportunity for Big Ten Academic Alliance members to co-locate additional network related equipment in support of their own projects independent of the OmniPoP core infrastructure.
    [Show full text]
  • Marcia A. Mardis
    Marcia A. Mardis 1902 Harriet Dr. Tallahassee FL 32303 734.476.7171 • [email protected] General Information Professional Preparation 2005 Ed.D., Eastern Michigan University. Major: Educational Leadership. summa cum laude. 1992 M.I.L.S., University Of Michigan-Ann Arbor. Major: Library and Information Science. magna cum laude. 1990 Bachelor of Arts, University Of Michigan-Ann Arbor. Major: History. cum laude. Professional Credentials 1992–2014 Michigan Professional Teacher Certification, K-12, History and School Library Media. Professional Experience 2013–present Associate Professor, School of Library and Information Studies, College of Communication & Information, Florida State University. Responsible for research, teaching, and service related to information studies. 2009–2013 Assistant Professor, College of Communication and Information, Florida State University. Responsible for service, teaching and research relating to library studies. 2005–2008 Assistant Professor, School of Library and Information Studies, Wayne State University. Responsible for service, teaching and research relating to library and information studies. 2003–2008 Research Investigator, School of Information, University of Michigan. Responsible for teaching and research relating to library and information studies. 1999–2005 Senior Lecturer, College of Education, Eastern Michigan University. Responsible for teaching relating to teacher education, education administration, and research methods. 1998–2005 Advanced Networking Researcher, Merit Network, Inc, University of Michigan. Responsible for research and engineering relating to digital libraries and broadband networking. 1994–1998 Director of Media Services, Associate Principal, and Director of Debate, The Keystone School. Responsible for administering K-12 school library program, overseeing student conduct, and teaching and coaching speech and debate students. Visiting Professorships 2013 School of Information Studies, Charles Sturt University, Wagga Wagga, Mardis CV • 1 Australia.
    [Show full text]
  • The Evolution of Internet Evidence 1
    Name: Sam Kavande Rocha Enrollment: 2777582 Nombre del curso: Name of professor: Information technologies Tania Zertuche Module: Activity: 1 Evidence 1 Date: 8 / September / 2015 References: The evolution of Internet Evidence 1 1 Table of contents: Introduction Page 2 Topic explanation Page 2 to 3 Conclusions Page 4 Bibliography Page 5 references 2 Introduction: The Internet is evolving. The majority of end-users perceive this evolution in the form of changes and updates to the software and networked applications that they are familiar with, or with the arrival of entirely new applications that change the way they communicate, do business, entertain themselves, and so on. Evolution is a constant feature throughout the network Topic explanation: The history of the Internet begins with the development of electronic computers in the 1950s. Initial concepts of packet networking originated in several computer science laboratories in the United States, Great Britain, and France. The US Department of Defense awarded contracts as early as the 1960s for packet network systems, including the development of the ARPANET (which would become the first network to use the Internet Protocol.) The first message was sent over the ARPANET from computer science Professor Leonard Kleinrock's laboratory at University of California, Los Angeles (UCLA) to the second network node at Stanford Research Institute (SRI). Packet switching networks such as ARPANET, NPL network, CYCLADES, Merit Network, Tymnet, and Telnet, were developed in the late 1960s and early 1970s using a variety of communications protocols. Donald Davies was the first to put theory into practice by 3 designing a packet-switched network at the National Physics Laboratory in the UK, the first of its kind in the world and the cornerstone for UK research for almost two decades.
    [Show full text]