Origins and Affinities of Vertebrates of the North American Sonoran Desert

Total Page:16

File Type:pdf, Size:1020Kb

Origins and Affinities of Vertebrates of the North American Sonoran Desert Journal of Biogeography (1976) 3, 1-18 Originsand affinitiesof vertebratesof the North American SonoranDesert and the Monte Desert of NorthwesternArgentina W. FRANK BLAIR Desert of northern Chile and southern Peru, which ARTHUR C. HULSE is one of the driest areas on earth, to dry habitats Department of Zoology, University of Texas at within the tropics, such as those found in northern Austin, Austin, Texas 78712, U.S.A. Venezuela. Evolutionary studies of desert organisms on each continent are particularly interesting because MICHAEL A. MARES the continents were isolated from one another from Biology Department, University of Pittsburgh, the Triassic to the late Pliocene, when the formation Pittsburgh, Pennsylvania 15260, U.S.A. of the Central American land bridge united both continents and allowed extensive faunal interchange Abstract (Dietz & Holden, 1970; Patterson & Pascual, 1972). Thus one can use the geological record and palae- The Monte Desert of Argentina and the Sonoran ontological data to determine when particular Desert of North America are very similar in most groups of organisms may have had access to desert aspects of their physical environments. The origins regions and compare their degree of adaptation and and the degree of affinity of the faunas of three classes adaptational strategies to arid environments. of vertebrates in the two deserts are discussed. The Monte Desert of northwestern Argentina and Heterotherms show high endemism, with 72 0 % of the the Sonoran Desert of North America are very Monte species either endemic to the Monte or with similar to one another in climate and geomorphology Monte-Chaco distribution and with 61-4% of the (Morello, 1958; Simpson & Vervoorst, 1976). In Sonoran Desert heterotherms endemic to deserts of addition, these deserts are of about the same age and the southwest. Mammals show low endemism and support plant communities of very similar physiog- their desert inhabitantsgenerallybelong to wide-ranging nomies (Solbrig, 1972, 1976, Figs 1, 2). It is largely species. Mammals alone among these vertebratesshow because of these similarities, particularly the abiotic wide disparity between the two deserts in number of ones, that the Origin and Structure of Ecosystems species, with more than twice as many in the Sonoran Subprogram of the U.S. component of the Inter- Desert as in the Monte. national Biological Program chose the two deserts as Desert adaptation seems to have been occurring study sites for an investigation into patterns and over much of western North America throughout processes of convergent evolution of ecosystems. much of the Cenozoic and in the present Monte- Since convergence requires that floras and faunas be Chaco-Patagonia region since at least the Miocene. phylogenetically distinct, it was necessary to compare The only species and most of the genera shared the origins and affinities of the organisms occurring between the two deserts are wide ranging or volant in both deserts. This report reviews the faunal make- mammals. Only one of seven families of anurans is up, origins, and taxonomic relationships of three common to both deserts. Reptiles have many families classes of terrestrial vertebrates of the disjunct in common, while mammals of the two deserts have deserts. relatively few families in common. Methods Introduction The North American desert system is well studied as North and South America contain a number of arid far as vertebrate distribution patterns are concerned. and semi-arid regions, ranging from the Atacama We have consulted a number of references in 1 1 2 W. Frank Blair, Arthur C. Hulse and Michael A. Mares .a Fig. 1. Hillside in Sonoran Desert near Tucson, Arizona. Columnar cactus is Cereiusgiganteus. Fig. 2. Hillside in Monte Desert near Andalgala, Catamarca Province, Argentina. Columnar cactus is Trichocereiusterschecki. Origins of desert vertebrates 3 compiling faunal lists for the various arid and semi- tional species, would be found in this general area. arid areas of North America (principally Lowe. We therefore feel that the exclusion of this area will 1964; Stebbins, 1951, 1954 for reptiles and amphi- not greatly affect discernible patterns of colonization bians; Hall & Kelson, 1959 for mammals). The or taxonomic relationships of the faunas of the fauna of the Monte Desert and adjacent areas is disjunct deserts. For both the Monte and the much more poorly known, and we have relied Sonoran Desert our discussions concern the lowland heavily on our own field experience in the area tc desert faunas and exclude those of the mountain compile species lists. We have also used various ranges that are found in both of these regions. published references to supplement our observations (Barrio, 1964a, b; 1965a, b; 1968; Cei, 1955a, b, 1959, 1962; Freiberg, 1942; Gallardo, 1966; Peters Categories for vertebrate distribution patterns (see & Orejas-Miranda, 1970; Peters & Donoso-Barros, Figs 3 and 4) 1970; Reig & Cei, 1963 for reptiles and amphibians; Cabrera, 1957, 1960 for mammals). Various divisions of the Sonoran and Monte (1) Sonoran-Endemic: Sonoran biotic province as deserts and adjacent areas were used in describing delimited by Dice (1939), which includes the Mojave vertebrate distribution patterns. We realize that any Desert. such subdivisions of areas which may not in actuality (2) Sonoran-Chihuahuan: Category 1 plus arid and be sharply delineated one from another is artificial to semi-arid regions of New Mexico, Texas, Chihuahua a certain extent. Nevertheless, since a species (Mexico) south of Zacatecas, San Luis Potosi. inhabiting a desert may possess a geographic (3) Sonoran-Chihuahuan-Grasslands: Category 2 distribution extending well beyond the desert's plus the Great Plains Grasslands. boundaries, it is necessary to examine its overall (4) Sonoran-Great Basin: Category 1 plus the Great habitat requirements, and those of its genus (or Basin Desert. family) in order to determine how that particular (5) Sonoran-Great Basin-Chihuahuan: Categories species managed to invade the desert in the first 2 and 4 combined. place. Naturally there is additional error in trans- (6) Sonoran-Thorn Scrub: Category 1 plus adjacent ferring records of occurrence from distribution maps thorn scrub habitat along the western Mexican to habitat maps. Since we are dealing with extensive Lowlands. areas, however (e.g. the Chihuahuan or Sonoran (7) All deserts-Grasslands: Category 5 plus Great deserts), and since we have some knowledge of the Plains Grasslands. ecological requirements of the great majority of (8) Widespread: Ranges well beyond deserts and vertebrates discussed, we feel that errors of this type grasslands. are minimized. We have not included Baja California as part of (1) Monte-Endemic: Morello's (1958) northern, the Sonoran Desert, nor do we discuss the origins of western, and eastern limits of the Monte, south to its fauna. We have deleted this area in order to avoid southern Mendoza and northeastern La Pampa. the confouh4ing effects of evolution on a peninsula (2) Monte-Chaco: western lImits of Monte east to and its offshore islands. No comparable area exists San Luis, northern Cordoba, to Corrientes through in or near the Monte Desert, and since we hope to Santa Fe, Chaco, Formoas and Paraguay northward. determine whether the origins and overall distri- (3) Monte-Pampas-Patagonia: Category 3 minus bution patterns of vertebrates in both deserts are the Chaco. similar, the inclusion of the northern peninsula (4) Monte-Chaco-Pampas-Patagonia: Category 2 would only seem to add noise to our analyses. then south and east through La Pampa; Buenos We have also excluded the vertebrates of the Aires through Neuquen, Rio Negro, Chubut and southern Monte (south of southern Mendoza) from Santa Cruz. the Monte endemic category. This is primarily (5) Monte-Chaco-Cordillera: Category 2 plus the because we are not personally familiar with the slopes of the Andean or pre-Andean chain. patterns of faunal occurrence in the southern portion (6) Monte-Cordillera: Category 1 plus slopes of of the desert, particularly as far as distributional Andean or pre-Andean chain. limits are concerned. Available references indicate, (7) Widespread: ranges well beyond the preceding however, that few endemics, and indeed few addi- areas. 4 W. Frank Blair, Arthur C. Hulse and Michael A. Mares Geographic origins of the desert vertebrates deserts represent an extreme in aridity within much broader regions of deficient but less severely deficient The evolution of desert-adapted species will be moisture. Transitions from these less arid areas to conditioned by a variety of factors, in addition to the the deserts are typically gradual (e.g. from arid Chaco physical characteristics of the desert environment. to Monte) and desert endemics may have distri- Among terrestrial vertebrates, one set of factors is butions that deviate from map lines delineating purely phyletic, with the various classes expectedly actual desert boundaries (Kuchler, 1964; Cabrera, showing very different patterns of adaptation simply 1971). because of their different physiologies and morpho- logies. Another set of factors is biogeographical. What is the nature of source areas where selection Anurans may have produced attributes that are pre-adaptive for the evolution of desert species? Biogeographic Endemic species of anurans are few in both deserts factors of ecological and physical barriers and of (Tables 1 and 2). The Monte has no endemic anuran long-range dispersal assume importance in com- among
Recommended publications
  • Rain Shadows
    WEB TUTORIAL 24.2 Rain Shadows Text Sections Section 24.4 Earth's Physical Environment, p. 428 Introduction Atmospheric circulation patterns strongly influence the Earth's climate. Although there are distinct global patterns, local variations can be explained by factors such as the presence of absence of mountain ranges. In this tutorial we will examine the effects on climate of a mountain range like the Andes of South America. Learning Objectives • Understand the effects that topography can have on climate. • Know what a rain shadow is. Narration Rain Shadows Why might the communities at a certain latitude in South America differ from those at a similar latitude in Africa? For example, how does the distribution of deserts on the western side of South America differ from the distribution seen in Africa? What might account for this difference? Unlike the deserts of Africa, the Atacama Desert in Chile is a result of topography. The Andes mountain chain extends the length of South America and has a pro- nounced influence on climate, disrupting the tidy latitudinal patterns that we see in Africa. Let's look at the effects on climate of a mountain range like the Andes. The prevailing winds—which, in the Andes, come from the southeast—reach the foot of the mountains carrying warm, moist air. As the air mass moves up the wind- ward side of the range, it expands because of the reduced pressure of the column of air above it. The rising air mass cools and can no longer hold as much water vapor. The water vapor condenses into clouds and results in precipitation in the form of rain and snow, which fall on the windward slope.
    [Show full text]
  • Amit Wasnik & Shubham Jain
    - Amit Wasnik & Shubham Jain What is a Biome? A biome is a geographic area characterized by specific kinds of plants and animals. Deserts, tropical rainforests, and tundra are all types of biomes. In the desert biome many organisms have learned to adapt to the hot climate and lack of supplements. Deserts are formed by mountains blocking the path of precipitation . Deserts can be hot or cold but they are always dry. They receive less than 25 cm of precipitation annually. They cover 22 million km2 or 1/5 of the earth’s surface. Hot Desert eg. Thar, in Rajasthan, India Rub-ab-khali, Saudi Arab . Cold Desert eg. Gobi desert, Mangolia Ica desert, Peru A Desert’s CharacteristicsCharacteristics Climate Seasons Animals Adaptations Plants Significance to humans ClimateClimate The desert is the hottest biome on Earth. It also has its extremes. It can be over 50 degrees during the day and below 32 degrees at night. Less than 25 cm or rainfall every year. The amount of rainfall varies, but when it rains…it POURS!!!! After a storm, the desert may not see any rain for weeks or months. The animals include snakes, owls, mice, armadillo lizards, fennec foxes, gila monsters, bats, and vultures. EndangeredEndangered AnimalsAnimals Black Rhino The major causes of endangered animals Grevy’s in the desert are Zebra mainly poachers and unexpected drought. King Cheetah PlantPlant LifeLife ofof DesertsDeserts There are several plants that are able to survive in the desert. Most plants survive by their long roots to reach underground water sources. A Variety of cactuses Prickly Pear Dragon Tree Octillo Plant Desert Spoon Boojum i.
    [Show full text]
  • Baja California's Sonoran Desert
    Baja California’s Sonoran Desert By Debra Valov What is a Desert? It would be difficult to find any one description that scarce and sporadic, with an would fit all of the twenty or so deserts found on our annual average of 12-30 cm (4.7- planet because each one is a unique landscape. 12 inches). There are two rainy seasons, December- While an expanse of scorching hot sand dunes with March and July-September, with the northern the occasional palm oasis is the image that often peninsula dominated by winter rains and the south comes to mind for the word desert, in fact, only by summer rains. Some areas experience both about 10% of the world’s deserts are covered by seasons, while in other areas, such as parts of the sand dunes. The other 90% comprise a wide variety Gulf coast region, rain may fail for years on end. of landscapes, among these cactus covered plains, Permanent above-ground water reserves are scarce foggy coastal slopes, barren salt flats, and high- throughout most of the peninsula but ephemeral, altitude, snow-covered plateaus. However, one seasonal pools and rivers do appear after winter characteristic that all deserts share is aridity—any storms in the north or summer storms (hurricanes place that receives less than 10 inches (25 and thunderstorms—chubascos) in the south. There centimeters) of rain per year is generally considered are also a number of permanent oases, most often to be a desert and the world’s driest deserts average formed where aquifers (subterranean water) rise to less than 10 mm (3/8 in.) annually.
    [Show full text]
  • World Heritage Nomination - Iucn Technical Evaluation
    WORLD HERITAGE NOMINATION - IUCN TECHNICAL EVALUATION PENINSULA VALDES (ARGENTINA) 1. DOCUMENTATION i) IUCN/WCMC Data Sheet (11 references). ii) Additional Literature Consulted: Davis, S. ed. 1997. Centres of Plant Diversity. Vol. 3. IUCN/WWF, pp 549-542; Kelleher, Bleakley & Wells. ed. 1995. A Global Representative System of Marine Protected Areas. Vol. 2. IUCN/ WB/GBRMPA, pp 76-83; Stattersfield, Crosby, et al. 1998. Endemic Bird Areas of the World: Priorities for Biodiversity Conservation. Birdlife Conservation Series No. 7, pp 256-258; Reeves & Leatherwood. 1994. Dolphins, Porpoises and Whales – Action Plan for the Conservation of Cetaceans. IUCN/SSC Cetacean Specialist Group, pp 26-30; Bubas. 1996. Orcas de la Península Valdés. 13 p; Conway, R. & K. Payne. 1976. Patagonia: A wild shore where two worlds meet. National Geographic. 3/1976, pp 290-322; Erize. 1966. Sea Mammals of Patagonia. Animals. Vol. 8. No. 18, 4/1966, pp 479-481; CPPS/PNUMA. 1992. Plan de Acción para la Conservación de los Mamíferos Marinos en el Pacífico Sudeste. Informes y Estudios del Programa de Mares Regionales del PNUMA (UNEP), pp 110-155; Administración de Parques Nacionales de la Argentina. 1998. Las Areas Naturales Protegidas de la Argentina. APN/IUCN/FAO, 65 p; Leitch. 1990. South America's National Parks: A Visitor's Guide. The Mountaineers, pp 73-89. iii) Consultations: 5 external reviewers, National Parks Administration of Argentina, National Secretary for Tourism, National Commission of Co-operation with UNESCO, Patagonia Natural Foundation, Direction of Conservation and Tourism of the Chubut Province, EcoValdés Foundation, Superintendent of Península Valdés, National Centre for Patagonia, Association of Landowners of Península Valdés, Association of Artisan Fishermen, University of Patagonia, representative of Puerto Pirámides community, Whale watching tour operators, landowners iv) Field Visit: January 1999.
    [Show full text]
  • Redalyc.The Arid and Dry Plant Formations of South America And
    Darwiniana ISSN: 0011-6793 [email protected] Instituto de Botánica Darwinion Argentina López, Ramiro P.; Larrea Alcázar, Daniel; Macía, Manuel J. The arid and dry plant formations of south America and their floristic connections: new data, new interpretation? Darwiniana, vol. 44, núm. 1, julio, 2006, pp. 18-31 Instituto de Botánica Darwinion Buenos Aires, Argentina Available in: http://www.redalyc.org/articulo.oa?id=66944102 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative DARWINIANA 44(1): 18-31. 2006 ISSN 0011-6793 THE ARID AND DRY PLANT FORMATIONS OF SOUTH AMERICA AND THEIR FLORISTIC CONNECTIONS: NEW DATA, NEW INTERPRETATION? Ramiro P. López1, Daniel Larrea Alcázar2 & Manuel J. Macía3 1Associate Researcher, Herbario Nacional de Bolivia. Campus Universitario, Cotacota, calle 27 s/n, Casilla 3- 35121, La Paz, Bolivia; [email protected]; (author for correspondence). 2Postgrado en Ecología Tropical, Instituto en Ciencias Ambientales y Ecológicas, Universidad de Los Andes. La Hechicera s/n, Mérida 5101, Mérida, Venezuela. 3Real Jardín Botánico de Madrid (CSIC), Plaza de Murillo 2, E-28014 Madrid, España. Abstract. López, R. P., D. Larrea Alcázar & M. J. Macía. 2006. The arid and dry plant formations of South Ame- rica and their floristic connections: new data, new interpretation? Darwiniana 44(1): 18-31. In this study we aimed at testing two hypothesis about the biogeography of South America: (1) the existence of a marked discontinuity in the Andes of central Peru that separates the floras of northern and southern South America and (2) the occurrence of a more or less continuous semi-deciduous forest in South America during the Pleistocene.
    [Show full text]
  • Living in the Desert Desert World Activity
    desert World Activity Living in the desert desert World Activity Living in the desert In this activity your students will be looking at what makes a desert a desert. They will look at hot deserts (like the Arabian Desert) and cold deserts (like the Patagonian desert) and compare and contrast some of the animals that live there. Based on what they have learned they can then design their own fantasy desert animal! In this activity you and your students will: ▶ Learn about the definition of a desert. ▶ Learn about the evolutionary adaptations that ▶ Learn about hot and cold deserts. the animals have made to live in these different desert environments. ▶ Design their own fantasy desert animal. Objectives Carrying out this activity will help students learn about deserts and some of the animals that call them home. They will also learn about how animals cope with the heat and the cold and how this affects the way they look and behave. You can also ask your class to design their own fantasy desert animal showcasing the special adaptations that they have learned about. These can be displayed in the classroom and uploaded to the Roots & Shoots UAE website to share with the world. What do I need to make it work? You do not need anything special for the first part of this activity (which can be done in the classroom), just an internet connection to carry out some background reading, view pictures and watch some video segments. To design their own fantasy desert animal your students can use paper and coloured pens/pencils, or why not incorporate craft materials to make the designs more exciting, or even make a 3-dimensional creature! What things will my students create? ▶ Drawings and/or models of a fantasy desert animal.
    [Show full text]
  • Narratives of Patagonian Exploration Mark W
    University of Richmond UR Scholarship Repository Master's Theses Student Research Fall 8-2001 Going to nowhere : narratives of Patagonian exploration Mark W. Bell Follow this and additional works at: http://scholarship.richmond.edu/masters-theses Part of the English Language and Literature Commons Recommended Citation Bell, Mark W., "Going to nowhere : narratives of Patagonian exploration" (2001). Master's Theses. Paper 1143. This Thesis is brought to you for free and open access by the Student Research at UR Scholarship Repository. It has been accepted for inclusion in Master's Theses by an authorized administrator of UR Scholarship Repository. For more information, please contact [email protected]. Abstract Since its discovery on Magellan's circumnavigation, Patagonia has been treated differently than any other region in the world. Effectively, Patagonia has been left empty or vacated by the North. But this emptiness and blankness have compulsively attracted curious travel writers who have filled the emptiness of Patagonia with self-reflexive projections. From Charles Darwin and W.H. Hudson to Bruce Chatwin and Paul Theroux, Northern commentators have found in Patagonia a landscape that accommodates their desire for self-reflexivity and self-consciousness. Thus, Patagonia has been simultaneously filled and evacuated by the Northern mind. As a result, Patagonia has become increasingly about the self and less about the physical place to the point where Patagonia as a concept has been abstracted and made into a trope or condition. This paper examines the history of Patagonia in literature in English and analyzes how Patagonia has evolved into its modem signification. I certify that I have read this thesis and find that, in scope and quality, it satisfies the requirements for the degree of Master of Arts.
    [Show full text]
  • 01. Antarctica (√) 02. Arabia
    01. Antarctica (√) 02. Arabia: https://en.wikipedia.org/wiki/Arabian_Desert A corridor of sandy terrain known as the Ad-Dahna desert connects the largeAn-Nafud desert (65,000 km2) in the north of Saudi Arabia to the Rub' Al-Khali in the south-east. • The Tuwaiq escarpment is a region of 800 km arc of limestone cliffs, plateaux, and canyons.[citation needed] • Brackish salt flats: the quicksands of Umm al Samim. √ • The Wahiba Sands of Oman: an isolated sand sea bordering the east coast [4] [5] • The Rub' Al-Khali[6] desert is a sedimentary basin elongated on a south-west to north-east axis across the Arabian Shelf. At an altitude of 1,000 m, the rock landscapes yield the place to the Rub' al-Khali, vast wide of sand of the Arabian desert, whose extreme southern point crosses the centre of Yemen. The sand overlies gravel or Gypsum Plains and the dunes reach maximum heights of up to 250 m. The sands are predominantly silicates, composed of 80 to 90% of quartz and the remainder feldspar, whose iron oxide-coated grains color the sands in orange, purple, and red. 03. Australia: https://en.wikipedia.org/wiki/Deserts_of_Australia Great Victoria Western Australia, South Australia 348,750 km2 134,650 sq mi 1 4.5% Desert Great Sandy Desert Western Australia 267,250 km2 103,190 sq mi 2 3.5% Tanami Desert Western Australia, Northern Territory 184,500 km2 71,200 sq mi 3 2.4% Northern Territory, Queensland, South Simpson Desert 176,500 km2 68,100 sq mi 4 2.3% Australia Gibson Desert Western Australia 156,000 km2 60,000 sq mi 5 2.0% Little Sandy Desert Western Australia 111,500 km2 43,100 sq mi 6 1.5% South Australia, Queensland, New South Strzelecki Desert 80,250 km2 30,980 sq mi 7 1.0% Wales South Australia, Queensland, New South Sturt Stony Desert 29,750 km2 11,490 sq mi 8 0.3% Wales Tirari Desert South Australia 15,250 km2 5,890 sq mi 9 0.2% Pedirka Desert South Australia 1,250 km2 480 sq mi 10 0.016% 04.
    [Show full text]
  • Radiocarbon 2003
    8 "*29",93557 ' : ;; ;(,*"! ( 0<4# =0,M+ ! "" #" ! !$% & ' ( ) *+,+- . / 0 ) 12+,34,35,! !!6557741333 ! " ## !$#!" % "&' %"("$ ' ) )* ( + * , ' ) * + * , - -&./01231241"5 ' 2447)* , ) + * , 5 +5 824479%:1;45448 9-:;45448 + 95< =5 - - ) )> - )> + 5 + ) ? - @@@5 ) 5 A 5 5 @ ) @ * @ 8 = - @& - 9 ) 5 @ ) 3 +* )* ) ) * 5 " O P @@@5 ) 5 A A ) 5 ) # - -( - + * , -D010< @ - -&./01231241"5 5%E1/24..134./0F<=%E1/24..134//DF % G ) 5 5 5 ! + ) ) *- + ) @@@5 ) 5 A A ) 5 5> ) * + ) * 3 -@ = )- 5 - ) 5 + #" ) ) )* *-@ ) )* 5 )% %AA@@@5 ) 5 A = A ) )* @ % !" " #$ " # ! % # 8 9F #" & " & # !" & " 8"9F<"8 R " ? ? M"9F% " % " '" !" !5 Vo l 45 , N r 1 Radiocarbon 2003 CONTENTS EDITORIAL BOARD . iii FROM THE EDITOR . v FROM THE FORMER MANAGING EDITOR . vii ARTICLES Investigation of a Chinese Ink Rubbing by 14C AMS Analysis Hong-Chien Yuan, Walter Kutschera, Tze-Yue Lin, Peter Steier, Christof Vockenhuber, Eva Maria Wild . 1 Radiocarbon Age Offsets Between Living Organisms from the Marine and Continental Reservoir in Coastal Localities of Patagonia (Argentina) Roberto R Cordero, Héctor Panarello, Sonia Lanzelotti, Cristian M Favier Dubois . 9 Radiocarbon
    [Show full text]
  • Dry Lands and Desertification - Willy Verheye
    LAND USE, LAND COVER AND SOIL SCIENCES – Vol. V – Dry Lands and Desertification - Willy Verheye DRY LANDS AND DESERTIFICATION Willy Verheye National Science Foundation Flanders/Belgium, and Geography Department, University of Gent, Belgium Keywords: Aerosols, aridity, crop adaptation, desertification, dust storms, fuel wood, irrigation, land degradation, over-grazing, rangeland, water harvesting, wildfires, and xerophytes Contents 1. Introduction 2. Extension of Dry Lands 3. Definition of Dry Lands and Aridity 3.1. Climate-based Definitions 3.2. Non Climate-based Definitions 4. Main Features of Desert Environments 4.1. Rainfall 4.2. Temperature 4.3. Wind 4.4. Vegetation and Biological Activity 4.5. Soils 4.6. Salinity 4.7. Impact of Man 5. Use and Management of Dry Lands 5.1. Surface Water Management and Water Harvesting 5.2. Groundwater Exploitation and Recharge 5.3. Irrigation and Drainage 5.4. Crop Adaptation 5.5 Soil Fertility Management 5.6. Extensive Grazing 6. Desertification 6.1. Introduction 6.2. Causes ofUNESCO Desertification – EOLSS 6.3. Indicators and Classification of Desertification 6.4 Combating Desertification Glossary Bibliography SAMPLE CHAPTERS Biographical Sketch Summary Dry lands are areas which have no water available to mesophytic plants. Aridity can have a climatic or a plant-physiological basis. Desertification is the process which leads to aridity, either because of a deteriorating rainfall regime or due to a degradation of the environment by human activities. Dry lands extend over approximately 35 % of the ©Encyclopedia of Life Support Systems (EOLSS) LAND USE, LAND COVER AND SOIL SCIENCES – Vol. V – Dry Lands and Desertification - Willy Verheye global land surface.
    [Show full text]
  • Chemical Properties of Continental Aerosol Transported Over the Southern Ocean: Patagonian and Namibian Sources
    Chemical properties of continental aerosol transported over the Southern Ocean : Patagonian and Namibian sources Zihan Qu To cite this version: Zihan Qu. Chemical properties of continental aerosol transported over the Southern Ocean : Patago- nian and Namibian sources. Geochemistry. Université Pierre et Marie Curie - Paris VI, 2016. English. NNT : 2016PA066002. tel-01349197 HAL Id: tel-01349197 https://tel.archives-ouvertes.fr/tel-01349197 Submitted on 27 Jul 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 8QLYHUVLWp3LHUUHHW0DULH&XULH (FROHGRFWRUDOH±6FLHQFHVGHO¶HQYLURQQHPHQWGHO¶,OHGH)UDQFH /DERUDWRLUH,QWHUXQLYHUVLWDLUHGHV6\VWqPHV$WPRVSKpULTXHV /,6$ 805 &15683'83(& &KHPLFDOSURSHUWLHVRIFRQWLQHQWDODHURVRO WUDQVSRUWHGRYHUWKH6RXWKHUQ2FHDQ3DWDJRQLDQ DQG1DPLELDQVRXUFHV 3DU=LKDQ48 7KqVHGHGRFWRUDWGH*pRFKLPLH 'LULJpHSDU5pPL/2612HWePLOLH-2851(7 3UpVHQWpHHWVRXWHQXHSXEOLTXHPHQWOH-DQYLHU 'HYDQWXQMXU\FRPSRVpGH 3UpVLGHQW'DPLHQ&$5',1$/3URIHVVHXU830&/2&($1 5DSSRUWHXU$OR\V%25<0DvWUHGH&RQIpUHQFHV8QLY/LOOH/2* 5DSSRUWHXU*DsO/(528;&KDUJpGHUHFKHUFKH&156(FR/DE ([DPLQDWHXU*LOOHV%(5*$0(77,'LUHFWHXUGHUHFKHUFKH&156/,6$ ([DPLQDWHXU-pU{PH*$,//$5'(73URIHVVHXU83',3*3 'LUHFWHXUGHWKqVH5pPL/26123URIHVVHXU83',3*3 &RGLUHFWULFHGHWKqVHePLOLH-2851(70DvWUHGHFRQIpUHQFHV83(&/,6$ I II III Remerciements J’adresse mes premiers remerciements à Rémi LOSNO et Émilie JOURNET pour la direction de ma thèse pendant trois ans. Rémi LOSNO montre toujours sa confiance pendant les travaux de recherche, sa tolérance à nos arguments et parfois mes caprices, sa patience et ses encouragements pendant la direction rigoureuse.
    [Show full text]
  • Seed Reserves in the Central Monte Desert, Argentina: Implications for Granivory
    Journal of Arid Environments (1997) 36: 661–670 Seed reserves in the central Monte Desert, Argentina: implications for granivory Luis Marone & Manuel E. Horno Ecofisiolog´ıa Vegetal, IADIZA, Casilla de Correo 507, 5500 Mendoza, Argentina (Received 29 April 1996, accepted 3 August 1996) It has been suggested that lower rates of granivory in South American warm deserts compared to their North American counterparts arose from a reduction of seed reserves in the former owing to the extinction of argyrolagid marsupials. We measured seed reserves in two habitats of the central Monte Desert in an attempt to detect such seed decline, but to no avail. After moderate rainfall, maximum seed standing crops reached 16,000 and 23,000 seeds m–2 in shrublands and open forests, respectively. Under the canopy of trees and shrubs there were 19,000 and 37,000 seeds m–2; whereas in exposed areas there were c. 10,000 seeds m–2 in both habitats. Seed banks in other South American semi-arid areas showed similar values. Total grass seeds as well as those presumably preferred by ants also seem to be similar in both continents. Hence, granivory in South America, as has been already reported for Australia, is lower than in North America in spite of the great similarity of seed bank sizes. Moreover, argyrolagids were unlikely seed-hoarding grani- vores, therefore some other reason than argyrolagid extinction should be sought to explain the lack of specialized seed-eating mammals, and the smaller overall seed consumption rates in South American deserts. ©1997 Academic Press Limited Keywords: granivory; North and South American deserts; seed banks; argyrolagid extinction Introduction Studies of seed removal show highest intensity of granivory in North American deserts and Israel, intermediate in Australia and the South African Karoo, and lowest in the South American Monte (Mares & Rosenzweig, 1978; Abramsky, 1983; Morton, 1985; Kerley, 1991).
    [Show full text]