Does Logging, Vegetation Type Or Fire Influence Outbreaks?

Total Page:16

File Type:pdf, Size:1020Kb

Does Logging, Vegetation Type Or Fire Influence Outbreaks? Australian Forestry 2004 Vol. 67, No. 2 pp. 101–113 101 Spatial analysis of an outbreak of Uraba lugens (Lepidoptera: Noctuidae) in the south- west of Western Australia: does logging, vegetation type or fire influence outbreaks? J.D. Farr1, D. Swain2 and F. Metcalf3 1Science Division, Department of Conservation and Land Management, Brain St, Manjimup, Western Australia 6258, Australia Email: [email protected] 2Forest Management Branch, Department of Conservation and Land Management, Brain St, Manjimup, WA 6258, Australia 3Fire Management Services, Department of Conservation and Land Management, 17 Dick Perry Av., Kensington, WA 6151, Australia Revised manuscript received 29 September 2003 Summary The aerial observations revealed that areas of severe defoliation existed as distinct localities in the southern jarrah forest, north- There was an outbreak of gumleaf skeletoniser (GLS, Uraba west of Manjimup and north of Walpole (Strelein 1988a; Abbott lugens Walker) in the southern jarrah forest in 1982–1988. Aerial 1992a,b). The extent of marked defoliation in successive outbreak and observational survey data were used in a Geographic years expanded from 90 000 ha in 1983 to 300 000 ha in 1985 Information System analysis of the possible impact of forest (Abbott 1987, 1990) such that the infestation was advancing on management practices on this insect. In addition, this allowed approximately a north-easterly front (Strelein 1988a; Abbott 1992b). investigation of the influence of vegetation type on the distribution of GLS. A total area of 6.7 million ha was interrogated, including Jarrah is an important Australian hardwood and its exploitation 89 900 ha of land infested with GLS. Neither logging nor has played a major role in the development of WA since the prescribed burning induced increases in GLS populations. settlement of Perth by Europeans in 1829. It occurs in the south- However, a decrease in area infested with GLS was indicated for western corner of the state, extending from Gingin (80 km north prescribed burning up to 3 y prior to the outbreak. Interrogation of Perth) southwards to Albany, with the exception of some eastern of vegetation complexes indicated that the GLS outbreak was outlying populations (Abbott and Loneragan 1986). The climate initiated on marginal jarrah forest on poorly drained sites that are is mediterranean with hot dry summers and cool wet winters. The prone to inundation in winter and drought in summer. In addition, jarrah forest is divided into two main regions, northern and southern, bivoltine GLS populations were discovered on the fringes of the demarcated by the Blackwood and Preston Rivers. southern jarrah forest during the observational surveys. This In the northern jarrah forest significant exploitation began in the supports the hypothesis that bivoltine GLS were more prevalent 1850s when a convict transportation scheme provided much- in the southern jarrah forest during the outbreak as opposed to needed labour for the developing colony (Mills 1989). In contrast, univoltine GLS during non-outbreak periods. although settlement of the southern jarrah forest began in the Keywords: insect pests; population dynamics; defoliation; outbreak; 1850s, the primary attraction was grazing land and minimal landforms; vegetation types; forest management; logging; controlled disturbance of the jarrah forest occurred (Berry 1987). Significant burning; gumleaf skeletoniser; Uraba lugens; jarrah; Eucalyptus disturbance of the southern jarrah forest began in 1911 with the marginata; marri; Corymbia calophylla; Western Australia extension of the railway south of the Blackwood River from Bridgetown to Jardee and the establishment of two sawmills Introduction (Jardee and Pemberton) to supply sleepers for the Australian transcontinental railway (Berry 1987; Mills 1989). Cutting in A severe outbreak of Uraba lugens Walker (gumleaf skeletoniser, jarrah forest was effectively uncontrolled until 1920, following GLS) occurred on jarrah (Eucalyptus marginata Donn ex Smith) the passing of the Forests Act in 1918 and the formation of the in the south-west of Western Australia (WA) during 1982–1988 Forests Department (Berry 1987; Mills 1989; Heberle 1997). (Strelein 1988a; Abbott 1990, 1992a). Prior to this, GLS was Thus, by 1920 parts of the northern jarrah forest had been exploited observed to attack isolated rural trees, but otherwise was not with uncontrolled cutting for over 70 y and parts of the southern considered a problem in WA. Although GLS is briefly mentioned jarrah forest for nearly ten. In the 1920s, dedication of State forest in a 1960 Forests Department questionnaire as a potential future was initiated, cutting was restricted to over-mature trees and a problem and by Jenkins and Curry (1971), the only previous record system of tree marking to control cutting was established (Havel of an outbreak was in 1947 between Calingiri and Cowaramup 1989; Heberle 1997). In addition, a fire management strategy was (Agriculture Western Australia, Insect Collection records; Western developed involving fire exclusion in young regrowth and low- Australian Department of Agriculture 1948). Nevertheless severe intensity fire in older regrowth and virgin mature forest (McCaw defoliation by GLS in January 1983 led to a scorched appearance and Burrows 1989). Prior to European settlement, the Aboriginal of jarrah crowns, enabling the detection of high population areas practice of frequent burning of the forest maintained its open ‘park- from the air. This event was regarded as unprecedented in jarrah like’ structure (Hallam 1975; Ward et al. 2001). Graziers and karri forests and caused considerable consternation. perpetuated the burning practices used by Aboriginal people, 102 Analysis of an outbreak of Uraba in WA particularly in the southern forests and associated coastal woodlands. But, with the expansion of European settlement and the ever-increasing accumulation of logging debris, fuel loads in the jarrah forest dramatically increased and wildfires were intense WA and devastating (McCaw and Burrows 1989; Burrows et al. 1995). From 1920 to the mid-1950s control burning was mainly restricted ANDREW to strategic strips around forest compartments. In 1954 a new fire BARLEE YANMAH LOCALITY EASTER GORDON management policy was developed involving broadscale fuel Manjimup reduction burning in spring, and this practice was expanded and IFFLEY refined over the ensuing years (McCaw and Burrows 1989) such that fire became an integral part of forest management in the jarrah GIBLETT CAREY forest. SUTTON GLS is a well-known defoliator of eucalypts and related species Pemberton throughout Australia (Brimblecombe 1962; Campbell 1962; Harris 1972, 1974; Harris et al. 1977; Elliot and Bashford 1979; Strelein 1988a) and more recently New Zealand (Bain 2001). WELD JOHNSTON Outbreaks in eastern Australia have been associated with drought MOSSOP WYE DEEP and flood cycles (Campbell 1962; Harris 1972; Harris et al. 1977). N LONDON Other studies suggest a decreased ability of the host plant to protect FRANKLAND SOHO PINGERUP COLLIS THAMES itself, due to environmental conditions such as drought, may induce TRENT GLS population increase (Cobbinah et al. 1982; Farr 1985). In Severe GLS defoliation GLS 1983 defoliation 1983 eastern Australia, outbreaks are favoured where there are trees growing close together with overlapping crowns, abundant low SCALE 0 20 Kilometres undamaged foliage, dense young regeneration and abundant litter Walpole on the forest floor (Campbell 1962; Harris 1975). Therefore, forest management practices such as logging and prescribed burning Figure 1. Gumleaf skeletoniser infestation in the southern jarrah forest may influence GLS populations. In the southern jarrah forests of in 1983, determined from aerial surveillance. (From Strelein 1988a). WA, however, there are subtle differences in the biology and behaviour of GLS. Pupation is not predominantly in the forest floor; larvae feed higher in the canopy than do eastern Australian height-class and vegetation complex (Mattiske and Havel 1998) populations; and GLS is predominantly univoltine compared with — were then cross tabulated with the GLS infestation theme and the bivoltine eastern coastal bio-morph on which most of the areas where overlap occurred were summed. Because logging outbreak studies have been made (Farr 2002). history in FMIS is categorised in sequences of 10 y, interrogation of logging history was limited to this time span. The forest species This paper therefore examines the spatial distribution of GLS both height class theme describes the potential height of native tree species during and following the outbreak in south-western WA, and based on the codominant height of a stand at maturity. These data investigates the extent to which logging, fire or vegetation type were interpreted from 1950s and 1960s aerial photographs (scale influenced the population. 1:15 840) and mapped to produce a 1:25 000 scale Aerial Photography Interpretation (API) map series (Bradshaw et al. 1997). Materials and methods Vegetation complexes are based on Mattiske and Havel (1998) and cross-referenced with soils and landforms classified by Logging and vegetation interrogation Churchward et al. (1988) and Churchward (1992). Climatic zones follow Mattiske (1997): hyper-humid refers to annual rainfall Aerial survey maps of the GLS outbreak for 1983–1986 inclusive >1100 mm and total summer evaporation of <450 mm; per-humid (Abbott 1987; Strelein 1988a) were digitised and recorded
Recommended publications
  • Report October 2017
    Defoliation of jarrah in the Leeuwin-Naturaliste region of Western Australia September-October 2017 Version: 1.1 Approved by: Last Updated: 6 October 2017 Custodian: Allan J. Wills Review date: October 2018 Version Date approved Approved by Brief Description number DD/MM/YYYY 1.1 Defoliation of jarrah in the Leeuwin- Naturaliste region of Western Australia September-October 2017 Allan J. Wills and Janet D. Farr Occasional report October 2017 Department of Biodiversity, Conservation and Attractions Locked Bag 104 Bentley Delivery Centre WA 6983 Phone: (08) 9219 9000 Fax: (08) 9334 0498 www.dbca.wa.gov.au © Department of Biodiversity, Conservation and Attractions on behalf of the State of Western Australia 2017 October 2017 This work is copyright. You may download, display, print and reproduce this material in unaltered form (retaining this notice) for your personal, non-commercial use or use within your organisation. Apart from any use as permitted under the Copyright Act 1968, all other rights are reserved. Requests and enquiries concerning reproduction and rights should be addressed to the Department of Biodiversity, Conservation and Attractions. This report was prepared by Allan J. Wills and Janet D. Farr Questions regarding the use of this material should be directed to: Allan J. Wills Senior Technical Officer Science and Conservation Division Department of Parks and Wildlife Locked Bag 104 Bentley Delivery Centre WA 6983 Phone: 0438996352 Email: [email protected] The recommended reference for this publication is: Wills AJ & Farr JD (2017). Defoliation of jarrah in the Leeuwin-Naturaliste region of Western Australia September-October 2017. Department of Biodiversity, Conservation and Attractions, Perth.
    [Show full text]
  • Trees for Farm Forestry: 22 Promising Species
    Forestry and Forest Products Natural Heritage Trust Helping Communities Helping Australia TREES FOR FARM FORESTRY: 22 PROMISING SPECIES Forestry and Forest Products TREES FOR FARM FORESTRY: Natural Heritage 22 PROMISING SPECIES Trust Helping Communities Helping Australia A report for the RIRDC/ Land & Water Australia/ FWPRDC Joint Venture Agroforestry Program Revised and Edited by Bronwyn Clarke, Ian McLeod and Tim Vercoe March 2009 i © 2008 Rural Industries Research and Development Corporation. All rights reserved. ISBN 1 74151 821 0 ISSN 1440-6845 Trees for Farm Forestry: 22 promising species Publication No. 09/015 Project No. CSF-56A The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication. The Commonwealth of Australia, the Rural Industries Research and Development Corporation (RIRDC), the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person, arising directly or indirectly from any act or omission, or for any consequences of any such act or omission, made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, RIRDC, the authors or contributors. The Commonwealth of Australia does not necessarily endorse the views in this publication.
    [Show full text]
  • In Vitro Propagation of Eucalyptus Spec1es•
    McComb, J.A., Bennett, I.J. and Tonkin, C. (1996) In vitro propagation of Eucalyptus species. In: Taji, A. and Williams, R., (eds.) Tissue culture of Australian plants. University of New England, Armidale, NSW, Australia, pp. 112-156 Chapter 4 In vitro propagation of Eucalyptus spec1es• 2 1 J.A. McComb1, I.J. Bennett and C. Tonkin 1 School of Biological and Environmental Sciences, Murdoch University, Murdoch, WA 6150. 2 school of Applied Science, Edith Cowan University, Mount Lawley, WA 6050 Australia. Contents • Introduction • Two case studies of the application of tissue culture • Eucalypts important in plantations • Tissue culture of other species of eucalypts • Conclusion KEY WORDS: Eucalyptus, eucalypt, micropropagation, clonal field trials, Phytophthora cinnamomi, root architecture, in vitro rooting, salt tolerance, transformation, protoplasts. LIST OF ABBREVIATIONS: AFOCEL Association Foret Cellulose BAP Benzy!amino-purine BT Bacillus thuringensis CSIRO Commonwealth Scientific and Industrial Research Organisation GA3 Gibberellin A3 IAA Indole acetic acid IBA Indole butyric acid MS Murashige and Skoog (1962) medium NAA Naphthalene acetic acid RR Resistant jarrah seedlings from families on average, resistant to dieback RS Resistant jarrah seedlings from families on average, susceptible to dieback ss Susceptible jarrah seedlings from families on average, susceptible to die back LIST OF SPECIES (see end of chapter). 112 In vitro propagation of Eucalyptus species Introduction The importance of eucalypts and reasons for tissue culture Eucalypts are Australia's most distinctive plant group. They are contained within the genus Eucalyptus which consists of over 500 named species, with more as yet unnamed (Brooker & Kleinig 1983; 1990 Chippendale 1988). The natural distribution of the genus is almost completely confined to the Australian continent and Tasmania with only two species, E.
    [Show full text]
  • Gumleaf Skeletoniser Biocontrol: a Lesson in Patience
    THE JOINT FORCES OF CSIRO & SCION Lisa Berndt, Michelle Watson and Tara Murray Ensis Forest Biosecurity and Protection BiologicalBiological controlcontrol ofof gumleafgumleaf skeletoniser,skeletoniser, paropsisparopsis andand buddleiabuddleia March 2007 THE JOINT FORCES OF CSIRO & SCION Gumleaf skeletoniser Uraba lugens (Nolidae) • Australian eucalypt defoliator • In Auckland since 2001 • Spreading to Waikato, Northland, BOP • Threat to plantations, amenity trees, public health • Attacking new host plant species THE JOINT FORCES OF CSIRO & SCION GLS biocontrol • 4 potential parasitoids identified • ERMA permission to import 2004 • Develop rearing & host testing methods 2004-2007 (2 species) Eriborus sp. Photos: Geoff Allen & John Barran Euplectrus sp. Cotesia urabae Dolichogenidea eucalypti THE JOINT FORCES OF CSIRO & SCION Success: rearing • Rearing method finally successful • Solving mating problems key THE JOINT FORCES OF CSIRO & SCION Success: host testing • Methods developed • Nearly complete for two species • Nine more species to test • Strong preference for uraba THE JOINT FORCES OF CSIRO & SCION Paropsis biocontrol • Major eucalypt pest • Previously controlled by parasitoid Enoggera nissaui • Biocontrol disrupted by hyperparasitoid in North Island since 2002 Enoggera nassaui on P. charybdis egg • Second parasitoid (Neopolycystus insectifurax) not as effective • Most plantations sprayed annually now THE JOINT FORCES OF CSIRO & SCION Paropsis charybdis Current research • PhD student Tara Murray (2nd year) • Studying biology of hyperparasitoid
    [Show full text]
  • The Influence of Induced Host Moisture Stress on the Growth and Development of Western Spruce Bud Worm and Armillaria Ostoyae on Grand Fir Seedlings
    AN ABSTRACT OF THE THESIS OF Catherine Gray Parks for the degree of Doctor of Philosophy in the Department of Forest Science, presented on April 28, 1993. Title: The Influence of Induced Host Moisture Stress on the Growth and Development of Western Spruce Budworm and Armillaria ostoyae on Grand Fir Seedlings. Abstract Approved: John D. Waistad This greenhouse study evaluates the influence of separately and simultaneously imposed water stress, western spruce budworm (Choristorneura occidentalis Freeman) defoliation, and inoculation with the root pathogen, Armillaria ostoyae (Romagn.) Herink, on the growth and biochemical features of Abies .grandis (Dougl.) Lindi. Seedling biomass, plant moisture status, bud phenology, and allocation patterns of phenolics, carbohydrates, and key nutrients (nitrogen, phosphorus, potassium and sulfur) are reported. Hypotheses are developed and testedon the impacts of water-stress, defoliation, and root inoculation, on westernspruce budworm growth and development, and Armillaria ostoyae-caused mortality and infection. Western spruce budworm larvae fedon water-stressed seedlings had higher survival rates, grew faster, and produced largerpupae than those fed on well- watered seedlings. There is no clear reason for the positive insectresponse, but changes in foliage nutrient patterns and phenolic chemistryare indicated. Insect caused defoliation has been earlier reported to enhance successful colonization of Armillaria spp. on deciduous trees in the forests of the northeastern United States. The positive response of the fungus was attributed to a weakened tree condition. Conversely, although this study conclusively found water-limited trees to have increased susceptibility to A. ostoyae, defoliation significantly lowered Armillaria-caused infection and mortality. The decline in infection success is attributed to defoliation-caused reduction in plant water stress and an alteration of root carbohydrate chemistry.
    [Show full text]
  • Tamarixia Radiata Behaviour Is Influenced by Volatiles from Both
    insects Article Tamarixia radiata Behaviour is Influenced by Volatiles from Both Plants and Diaphorina citri Nymphs Yan-Mei Liu 1,2 , Shu-Hao Guo 1, Fei-Feng Wang 1, Li-He Zhang 2, Chang-Fei Guo 2, Andrew G. S. Cuthbertson 3, Bao-Li Qiu 1,2 and Wen Sang 1,2,* 1 Key Laboratory of Bio-Pesticide Innovation and Application, Department of Entomology, South China Agricultural University, Guangzhou 510640, China; [email protected] (Y.-M.L.); [email protected] (S.-H.G.); wff[email protected] (F.-F.W.); [email protected] (B.-L.Q.) 2 Engineering Research Center of Biological control, Ministry of Education, Guangzhou 510640, China; [email protected] (L.-H.Z.); [email protected] (C.-F.G.) 3 Independent Science Advisor, York YO41 1LZ, UK; [email protected] * Correspondence: [email protected]; Tel.: +86-20-8528-3717 Received: 7 March 2019; Accepted: 13 May 2019; Published: 16 May 2019 Abstract: Tamarixia radiata (Waterston) is an important ectoparasitoid of the Asian citrus psyllid, Diaphorina citri Kuwayama, a globally destructive pest of citrus. In the present study, a Y-tube olfactometer was employed to investigate whether the parasitoid T. radiata is capable of utilizing the odour source emitted by both plants and insect hosts during its foraging. The odour sources included Murraya paniculata (L.) shoots, 1st, 2nd, 3rd, 4th, and 5th D. citri instar nymphs, both individually and in combinations. Moreover, nymph-stage choice for parasitism, including 3rd, 4th, and 5th D. citri instar nymphs, was carried out. The results indicated that female T. radiata were only significantly attracted to volatiles emitted by M.
    [Show full text]
  • Interactions Among Leaf Miners, Host Plants and Parasitoids in Australian Subtropical Rainforest
    Food Webs along Elevational Gradients: Interactions among Leaf Miners, Host Plants and Parasitoids in Australian Subtropical Rainforest Author Maunsell, Sarah Published 2014 Thesis Type Thesis (PhD Doctorate) School Griffith School of Environment DOI https://doi.org/10.25904/1912/3017 Copyright Statement The author owns the copyright in this thesis, unless stated otherwise. Downloaded from http://hdl.handle.net/10072/368145 Griffith Research Online https://research-repository.griffith.edu.au Food webs along elevational gradients: interactions among leaf miners, host plants and parasitoids in Australian subtropical rainforest Sarah Maunsell BSc (Hons) Griffith School of Environment Science, Environment, Engineering and Technology Griffith University Submitted in fulfilment of the requirements of the degree of Doctor of Philosophy February 2014 Synopsis Gradients in elevation are used to understand how species respond to changes in local climatic conditions and are therefore a powerful tool for predicting how mountain ecosystems may respond to climate change. While many studies have shown elevational patterns in species richness and species turnover, little is known about how multi- species interactions respond to elevation. An understanding of how species interactions are affected by current clines in climate is imperative if we are to make predictions about how ecosystem function and stability will be affected by climate change. This challenge has been addressed here by focussing on a set of intimately interacting species: leaf-mining insects, their host plants and their parasitoid predators. Herbivorous insects, including leaf miners, and their host plants and parasitoids interact in diverse and complex ways, but relatively little is known about how the nature and strengths of these interactions change along climatic gradients.
    [Show full text]
  • Developing Host Range Testing for Cotesia Urabae
    1 Appendix 2 Appendix 2: Risks to non-target species from potential biological control agent Cotesia urabae against Uraba lugens in New Zealand L.A. Berndt, A. Sharpe, T.M. Withers, M. Kimberley, and B. Gresham Scion, Private Bag 3020, Rotorua 3046, New Zealand, [email protected] Introduction Biological control of insect pests is a sustainable approach to pest management that seeks to correct ecological imbalances that many new invaders create on arrival in a new country. This is done by introducing carefully selected natural enemies of the pest, usually from its native range. This method is the only means of establishing and maintaining self-sustaining control of pest insects and it is highly cost effective in the long term (Greathead, 1995). However there is considerable concern for the risk new biological control agents might pose to other species in the country of introduction, and most countries now have regulations to manage decisions on whether to allow biological control introductions (Sheppard et al., 2003). A key component of the research required to gain approval to release a new agent is host range testing, to determine what level of risk the agent might pose to native and valued species in the country of introduction. Although methods for this are well developed for weed biological control, protocols are less established for arthropod biological control, and the challenges in conducting tests are greater (Van Driesche and Murray, 2004; van Lenteren et al., 2006; Withers and Browne, 2004). This is because insect ecology and taxonomy are relatively poorly understood, and there are many more species that need to be considered.
    [Show full text]
  • Developing Species for Woody Biomass Crops in Lower Rainfall Southern Australia Australia F FLORASEARCH 3A
    Developing Species for Woody Biomass Crops in Lower Rainfall Southern Australia Australia F FLORASEARCH 3A Developing Species for Woody Biomass Crops in Lower Rainfall Southern Australia FloraSearch 3a by Trevor J. Hobbs, Michael Bennell and John Bartle (eds) August 2009 RIRDC Publication No 09/043 RIRDC Project No UWA-98A © 2009 Rural Industries Research and Development Corporation. All rights reserved. ISBN 1 74151 846 6 ISSN 1440-6845 Developing Species for Woody Biomass Crops in Lower Rainfall Southern Australia - FloraSearch 3a Publication No. 09/043 Project No. UWA-98A The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication. The Commonwealth of Australia, the Rural Industries Research and Development Corporation (RIRDC), the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person, arising directly or indirectly from any act or omission, or for any consequences of any such act or omission, made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, RIRDC, the authors or contributors. The Commonwealth of Australia does not necessarily endorse the views in this publication.
    [Show full text]
  • Plant Responses to Insect Egg Deposition
    EN60CH26-Hilker ARI 26 November 2014 15:1 Plant Responses to Insect Egg Deposition Monika Hilker1,∗ and Nina E. Fatouros1,2 1Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universitat¨ Berlin, 12163 Berlin, Germany; email: [email protected] 2Laboratory of Entomology, Wageningen University, 6700 EH Wageningen, The Netherlands; email: [email protected] Annu. Rev. Entomol. 2015. 60:493–515 Keywords First published online as a Review in Advance on oviposition, induced plant defense, parasitoids, plant volatiles, priming, October 20, 2014 bacterial symbiont The Annual Review of Entomology is online at ento.annualreviews.org Abstract This article’s doi: Plants can respond to insect egg deposition and thus resist attack by herbiv- 10.1146/annurev-ento-010814-020620 orous insects from the beginning of the attack, egg deposition. We review Copyright c 2015 by Annual Reviews. Annu. Rev. Entomol. 2015.60:493-515. Downloaded from www.annualreviews.org ecological effects of plant responses to insect eggs and differentiate between All rights reserved egg-induced plant defenses that directly harm the eggs and indirect defenses ∗ Corresponding author that involve egg parasitoids. Furthermore, we discuss the ability of plants to take insect eggs as warning signals; the eggs indicate future larval feeding damage and trigger plant changes that either directly impair larval perfor- mance or attract enemies of the larvae. We address the questions of how egg-associated cues elicit plant defenses, how the information that eggs have Access provided by Chinese Academy of Agricultural Sciences (Agricultural Information Institute) on 10/19/16. For personal use only. been laid is transmitted within a plant, and which molecular and chemical plant responses are induced by egg deposition.
    [Show full text]
  • TAXON:Eucalyptus Nicholii Maiden & Blakely SCORE
    TAXON: Eucalyptus nicholii Maiden SCORE: -1.0 RATING: Low Risk & Blakely Taxon: Eucalyptus nicholii Maiden & Blakely Family: Myrtaceae Common Name(s): narrow-leaf black peppermint Synonym(s): Eucalyptus acaciiformis var. linearis H.Deane & Maiden narrow-leaf peppermint small-leaf peppermint willow peppermint willow-leaf peppermint Assessor: Chuck Chimera Status: Assessor Approved End Date: 16 Dec 2020 WRA Score: -1.0 Designation: L Rating: Low Risk Keywords: Temperate Tree, Naturalized Elsewhere, Non-toxic, Wind-Dispersed. Coppices Qsn # Question Answer Option Answer 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? 103 Does the species have weedy races? Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet (0-low; 1-intermediate; 2-high) (See Appendix 2) Intermediate tropical" for "tropical or subtropical" 202 Quality of climate match data (0-low; 1-intermediate; 2-high) (See Appendix 2) High 203 Broad climate suitability (environmental versatility) y=1, n=0 n Native or naturalized in regions with tropical or 204 y=1, n=0 n subtropical climates Does the species have a history of repeated introductions 205 y=-2, ?=-1, n=0 y outside its natural range? 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 y 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) n 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see Appendix 2) n 304 Environmental weed
    [Show full text]
  • Evidence for Eocene Origin of the Yucca-Yucca Moth Association
    Proc. Natl. Acad. Sci. USA Vol. 96, pp. 9178–9183, August 1999 Evolution Forty million years of mutualism: Evidence for Eocene origin of the yucca-yucca moth association OLLE PELLMYR†‡ AND JAMES LEEBENS-MACK†§ †Department of Biology, Vanderbilt University, Box 1812, Station B, Nashville, TN 37235; and §Department of Biology, Colgate University, Hamilton, NY 13346 Communicated by Ebbe S. Nielsen, Commonwealth Scientific and Industrial Research Organization, Canberra, Australia, June 21, 1999 (received for review October 30, 1998) ABSTRACT The obligate mutualism between yuccas and genera. The present results support the following conclusions: (i) yucca moths is a major model system for the study of coevolving an explosive radiation of the yucca moths and evolution of species interactions. Exploration of the processes that have pollination behavior had occurred no later than 40 million years generated current diversity and associations within this mutu- ago (Mya), (ii) a second burst of yucca moth diversification is alism requires robust phylogenies and timelines for both moths coincident with Pliocene desertification, (iii) derived nonpolli- and yuccas. Here we establish a molecular clock for the moths nating cheater yucca moths have co-occurred with pollinators for based on mtDNA and use it to estimate the time of major life at least 1.26 Ϯ 0.96 My, and (iv) the radiation of yuccas occurred history events within the yucca moths. Colonization of yuccas much earlier than suggested by the sparse fossil record. The -had occurred by 41.5 ؎ 9.8 million years ago (Mya), with rapid emerging picture of early diversification in this obligate mutual life history diversification and the emergence of pollinators ism is consistent with a model of pollinator colonization of partly within 0–6 My after yucca colonization.
    [Show full text]