Light;Emitting Diode

Total Page:16

File Type:pdf, Size:1020Kb

Light;Emitting Diode 02/05/09 http://en.wikipedia.org/wiki/Lightemitting_diode #1 Lightemitting diode From Wikipedia, the free encyclopedia A lightemittingdiode ( LED ) (pronounced /ˌɛliːˈdiː/), [1 ] is a semiconductor diode that emits light when an electric current is applied in the forward direction of the device, as in the simple LED circuit. The effect is a form of electroluminescence where incoherent and narrow spectrum light is emitted from the pn junction in a solid state material. LEDs are widely used as indicator lights on electronic devices and increasingly in higher power applications such as flashlights and area LED schematic symbol lighting. An LED is usually a small area (less than 1 mm 2 ) light source, often with optics added directly on top of the chip to shape its radiation pattern and assist in reflection. [2 ] [3 ] The color of the emitted light depends on the composition and condition of the semiconducting material used, and can be infrared, visible, or ultraviolet. Besides lighting, interesting applications include using UVLEDs for sterilization of water and disinfection of devices, [4 ] and as a grow light to enhance photosynthesis in plants. [5 ] Contents 1 History 1.1 Discoveries and early devices LED displays allow for smaller sets of 1.2 Practical use interchangeable LEDs to be one large display. 1.3 Continuing development 2 Technology 2.1 Light extraction 2.2 Efficiency and operational parameters 2.3 Electrical polarity 2.4 Failure modes 3 Colors and materials 3.1 Ultraviolet and blue LEDs 3.2 White light LEDs 3.2.1 RGB Systems 3.2.2 Phosphor based LEDs 3.3 Organic lightemitting diodes (OLEDs) 3.4 Quantum Dot LEDs (experimental) 4 Types 4.1 Miniature LEDs 4.2 Flashing LEDs 4.3 High power LEDs 4.4 Multicolor LEDs 4.5 Alphanumeric LED displays 5 Considerations for use 5.1 Power sources 5.2 Lighting LEDs on mains 5.3 Advantages of using LEDs 5.4 Disadvantages of using LEDs 6 Applications 6.1 Indicators and signs 6.2 Lighting 6.3 Smart lighting 6.4 Nonvisual applications 6.5 Light sources for machine vision systems 7 Examples of use 7.1 Christmas lights 8 See also 9 References 10 External links History Discoveries and early devices The first known report of a lightemitting solidstate diode was made in 1907 by the British experimenter H. J. Round of Marconi Labs when he noticed electroluminescence produced from a crystal of silicon carbide while using a cat'swhisker detector. [6 ] Russian Oleg Vladimirovich Losev independently created the first LED in the mid 1920s; his research, though distributed in Russian, German and British scientific journals, was ignored, [7 ] [8 ] and no practical use was made of the discovery for several decades. Rubin Braunstein of the Radio Corporation of America reported on infrared emission from gallium arsenide (GaAs) and other semiconductor alloys in 1955. [9 ] Braunstein observed infrared emission generated by simple diode structures using GaSb, GaAs, InP, and GeSi alloys at room temperature and at 77 kelvin. In 1961, experimenters Bob Biard and Gary Pittman working at Texas Instruments, [10 ] found that gallium arsenide gave off infrared radiation when electric current was applied. Biard and Pittman were able to establish the priority of their work and received the patent for the infrared lightemitting diode. 02/05/09 http://en.wikipedia.org/wiki/Lightemitting_diode #2 The first practical visiblespectrum (red) LED was developed in 1962 by Nick Holonyak Jr., while working at General Electric Company. He later moved to the University of Illinois at UrbanaChampaign. [11 ] Holonyak is seen as the "father of the lightemitting diode". [12 ] M. George Craford, a former graduate student of Holonyak's, invented the first yellow LED and 10x brighter red and redorange LEDs in 1972. [13 ] Up to 1968 visible and infrared LEDs were extremely costly, on the order of US $200 per unit, and so had little practical application. [14 ] The Monsanto Corporation was the first organization to massproduce visible LEDs, using gallium arsenide phosphide in 1968 to produce red LEDs suitable for indicators. [15 ] Hewlett Packard (HP) introduced lightemitting diodes in 1968, initially using GaAsP material supplied by Monsanto. The technology proved to have major applications for alphanumeric displays and was integrated into HP’s early handheld calculators. Practical use The first commercial LEDs were commonly used as replacements for incandescent indicators, and in sevensegment displays, first in expensive equipment such as laboratory and electronics test equipment, then later in such appliances as TVs, radios, telephones, calculators, and even watches (see list of signal applications). These red LEDs were bright enough only for use as indicators, as the light output was not enough to illuminate an area. Later, other colors became widely available and also appeared in appliances and equipment. As the LED materials technology became more advanced, the light output was increased, while maintaining the efficiency and the reliability to an acceptable level. The invention and development of the high power white light LED led to use for illumination (see list of illumination applications). Some police vehicle lightbars incorporate LEDs. Most LEDs were made in the very common 5 mm T1¾ and 3 mm T1 packages, but with increasing power output, it has become increasingly necessary to shed excess heat in order to maintain reliability, so more complex packages have been adapted for efficient heat dissipation. Packages for stateoftheart high power LEDs bear little resemblance to early LEDs. Continuing development The first highbrightness blue LED was demonstrated by Shuji Nakamura of Nichia Corporation and was based on InGaN borrowing on critical developments in GaN nucleation on sapphire substrates and the demonstration of ptype doping of GaN which were developed by Isamu Akasaki and H. Amano in Nagoya. In 1995, Alberto Barbieri at the Cardiff University Laboratory (GB) investigated the efficiency and reliability of highbrightness LEDs demonstrated a very impressive result by using a transparent contact made of indium tin oxide (ITO) on (AlGaInP/GaAs) LED. The existence of blue LEDs and high efficiency LEDs quickly led to the development of the first white LED, which employed a Y 3 Al 5 O 12 :Ce, or " YAG", phosphor coating to mix yellow (downconverted) light with blue to produce light that appears white. Nakamura was awarded the 2006 Millennium Technology Prize for his invention. [16 ] The development of LED technology has caused their efficiency and light output to increase exponentially, with a doubling occurring about every 36 months since the 1960s, in a similar way to Moore's law. The advances are generally attributed to the parallel development of other semiconductor technologies and advances in optics and material science. This trend is normally called Haitz's Law after Dr. Roland Haitz. Technology Like a normal diode, the LED consists of a chip of semiconducting material impregnated, or doped , with impurities to create a pn junction . As in other diodes, current flows easily from the pside, or anode, to the nside, or cathode, but not in the reverse direction. Chargecarriers—electrons and holes—flow into the junction from electrodes with different voltages. When an electron meets a hole, it falls into a lower energy level, and releases energy in the form of a photon. The wavelength of the light emitted, and therefore its color, depends on the band gap energy of the materials forming the pn junction . In silicon or germanium diodes, the electrons and holes recombine by a nonradiative transition which produces no optical emission, because these are indirect band gap materials. The materials used for the LED have a direct band gap with energies corresponding to nearinfrared, visible or nearultraviolet light. LED development began with infrared and red devices made with gallium arsenide. Advances in materials science have made possible the production of devices with evershorter wavelengths, producing light in a variety of colors. LEDs are usually built on an ntype substrate, with an electrode attached to the ptype layer deposited on its surface. Ptype substrates, while less common, occur as well. Many commercial LEDs, especially GaN/InGaN, also use sapphire substrate. Light extraction The refractive index of most LED semiconductor materials is quite high, so in almost all cases the light from the LED is coupled into a much lowerindex medium. The large index Parts of a LED difference makes the reflection quite substantial (per the Fresnel coefficients). The produced light gets partially reflected back into the semiconductor, where it may be absorbed and turned into additional heat; this is usually one of the dominant causes of LED inefficiency. Often more than half of the emitted light is reflected back at the LEDpackage and packageair interfaces. The reflection is most commonly reduced by using a domeshaped (halfsphere) package with the diode in the center so that the outgoing light rays strike the surface perpendicularly, at which angle the reflection is minimized. Substrates that are transparent to the emitted wavelength, and backed by a reflective layer, increase the LED efficiency. The 02/05/09 http://en.wikipedia.org/wiki/Lightemitting_diode #3 refractive index of the package material should also match the index of the semiconductor, to minimize backreflection. An antireflection coating may be added as well. The package may be colored, but this is only for cosmetic The inner workings of an LED reasons or to improve the contrast ratio; the color of the packaging does not substantially affect the color of the light emitted. Other strategies for reducing the impact of the interface reflections include designing the LED to reabsorb and reemit the reflected light (called photon recycling ) and manipulating the microscopic structure of the surface to reduce the reflectance, by introducing random roughness, creating programmed moth eye surface patterns. Recently photonic crystal have also been used to minimize backreflections.
Recommended publications
  • Nixie Clock Type ‘Frank 3’
    Assembly Instructions And User Guide Nixie Clock Type ‘Frank 3’ Software version: 5R Hardware Revision: 12 Dec 07, 7 Jan 08 Nixie Clock ‘Frank 3’ - 1 - Table of Contents 1. INTRODUCTION ................................................................3 1.1 About the clock...............................................................3 1.2 Clock features.................................................................3 1.3 Safety ...........................................................................4 2. TOOLS AND EQUIPMENT REQUIRED ............................... 5 2.1 Tools required to assemble the PCB...................................5 2.2 Materials you will need ....................................................6 2.3 Other items you will need ................................................6 3. LIST OF COMPONENTS.......................................................6 3.1 Table of components .......................................................6 3.2 Parts list ................................................................. 7 3.3 How to identify the correct components .............................8 4. ASSEMBLY OF THE PCB ......................................................9 4.1 Diodes D1-D4 .................................................................9 4.2 Diode D5 .......................................................................9 4.3 IC2 and C3.....................................................................9 4.4 IC1 and Q1 .................................................................. 10 4.5 C1, C2 and
    [Show full text]
  • Nixie QTC Plus’ for Parts Bag Serial Numbers from 000 to 185 Onwards
    Assembly Instructions And User Guide Nixie Clock Type ‘Nixie QTC Plus’ For Parts Bag Serial Numbers from 000 to 185 onwards Nixie Tube Clock ‘Nixie QTC+’ - 1 - Issue 1 (29 August 2018) www.pvelectronics.co.uk REVISION HISTORY Issue Date Reason for Issue Number Draft 1 29 August 2018 New document Nixie Tube Clock ‘Nixie QTC+’ - 2 - Issue 1 (29 August 2018) www.pvelectronics.co.uk 1. INT RODUCTION 1.1 Nixie QTC Plus - Features Hours, Minutes and Seconds display Drives a wide range of medium sized solder-in tubes Uses a Quartz Crystal Oscillator as the timebase 12 or 24 hour modes Programmable leading zero blanking Date display in either DD.MM.YY or MM.DD.YY or YY.MM.DD format Programmable date display each minute Scrolling display of date or standard display Alarm, with programmable snooze period Optional GPS / WiFi / XTERNA synchronisation with status indicator LED Dedicated DST button to switch between DST and standard time Supercapacitor backup. Keeps time during short power outages Simple time setting using two buttons Configurable for leading zero blanking Double dot colon neon lamps 11 colon neon modes including AM / PM indication (top / bottom or left / right), railroad (slow or fast) etc. Seconds can be reset to zero to precisely the set time Programmable night mode - blanked or dimmed display to save tubes or prevent sleep disturbance Rear Indicator LEDs dim at night to prevent sleep disturbance Weekday aware ‘Master Blank’ function to turn off tubes and LEDs on weekends or during working hours Separate modes for colon neons during night mode Standard, fading, or crossfading with scrollback display modes ‘Slot Machine’ Cathode poisoning prevention routine Programmable RGB tube lighting – select your favourite colour palette 729 colours possible.
    [Show full text]
  • Nixie Clock Type 'Nixie QTC Plus'
    Assembly Instructions And User Guide Nixie Clock Type ‘Nixie QTC Plus’ For Parts Bag Serial Numbers from 1000 onwards Nixie Tube Clock ‘Nixie QTC+’ - 1 - Issue 3 (13 June 2019) www.pvelectronics.co.uk REVISION HISTORY Issue Date Reason for Issue Number 3 13 June 2019 Added support for Dekatron Sync Pulse 2 01 October 2018 C5 changed to 15pF Draft 1 29 August 2018 New document Nixie Tube Clock ‘Nixie QTC+’ - 2 - Issue 3 (13 June 2019) www.pvelectronics.co.uk 1. INTRODUCTION 1.1 Nixie QTC Plus - Features Hours, Minutes and Seconds display Drives a wide range of medium sized solder-in tubes Uses a Quartz Crystal Oscillator as the timebase 12 or 24 hour modes Programmable leading zero blanking Date display in either DD.MM.YY or MM.DD.YY or YY.MM.DD format Programmable date display each minute Scrolling display of date or standard display Alarm, with programmable snooze period Optional GPS / WiFi / XTERNA synchronisation with status indicator LED Dedicated DST button to switch between DST and standard time Supercapacitor backup. Keeps time during short power outages Simple time setting using two buttons Configurable for leading zero blanking Double dot colon neon lamps 11 colon neon modes including AM / PM indication (top / bottom or left / right), railroad (slow or fast) etc. Seconds can be reset to zero to precisely the set time Programmable night mode - blanked or dimmed display to save tubes or prevent sleep disturbance Rear Indicator LEDs dim at night to prevent sleep disturbance Weekday aware ‘Master Blank’ function to turn off tubes and LEDs on weekends or during working hours Separate modes for colon neons during night mode Standard, fading, or crossfading with scrollback display modes ‘Slot Machine’ Cathode poisoning prevention routine Programmable RGB tube lighting – select your favourite colour palette 729 colours possible.
    [Show full text]
  • Build Yourself a Nixie Clock! You May Have Seen Them in Old Sci-Fi Movies and Wondered How They Worked
    Build yourself a nixie clock! You may have seen them in old sci-fi movies and wondered how they worked. Well, here is your chance to experiment with nixie tubes by building your own nixie clock. igital displays such as LEDs and LCDs are everywhere nowadays, Dbut have you ever wondered what was used before these technologies came along? There were several commonly used dig- ital displays—in fact, you may have even owned a digital clock with a mechanical display, where small tiles or cards were flipped over to show the number required. However, there was another type of display quite common before LEDs and LCDs took over—nixie tubes. What is a nixie tube, you ask? Well, nixies are a special type of neon bulb. You have most likely seen the small tific American, June 1973, pp. 66). the am/pm indicator, the colons, and the orange-glowing neon bulbs found in some brightness of the blue LEDs under the powerpoints which are used as power-on A warning nixie tubes. indicators. These consist of a small glass Like other neon tubes, nixies use high The inputs of all the latches are con- bulb filled with neon gas. Inside the bulb voltage. They need around 140 volts or nected in parallel, so they all see the same are two wire electrodes, and when a high more to strike, and then maintain around data, but only the latch who’s control line voltage is present across the electrodes, 120 volts or so across the tube while run- is strobed transfers the input data to its the neon gas between them glows a warm ning, but these figures vary a bit.
    [Show full text]
  • Headphone Amp Nixie Tube Thermometer Cardiac Monitor
    61002 [Microcontrollers & Embedded • Analogue • Audio• Digital • Test & Measurement] January 2011 AUS$ 14.50 - NZ$ 17.50 - SAR 102.95 £ 4.80 HI ENERGETIC ✚ Energy Saving Tips edition www.elektor.com Cardiac Monitor Your ECG by ZigBee Nixie Tube Thermometer Retro Temperature Display Headphone Amp Music to your ears ✚ Free Energy From known and unknown sources ✚ Economical Energy Harvesting R04 More solar powered circuits 61002 Microcontrollers Integrate Touch Sensing Quickly and Easily With Microchip’s Range of Low Power, Low Cost Solutions Controllers Digital Signal Analog Memory Microchip’s mTouch™ Sensing Solutions allow designers to integrate touch sensing GET STARTED IN 3 EASY STEPS with application code in a single microcontroller, reducing total system cost. - Learn more at www.microchip.com/mtouch Microchip offers a broad portfolio of low power, low cost & flexible solutions for keys/sliders and - Download App Notes & royalty-free source code touch screen controllers. Get to market faster using our easy GUI-based tools, free source code - Order a development tool and low-cost development tools. Capacitive Touch Keys and Sliders Touch Screen Controllers t Extend battery life with eXtreme Low Power MCUs t Fully processed touch coordinates − Proximity sensing in less than 1 μA t Projected Capacitive technology t High noise immunity and low emissions − Multi-touch enabling gestures t Broad portfolio of MCUs lowers system cost − Low cost MCU implementation Enhanced mTouch Capacitive Evaluation Kit - DM183026-2 − 8, 16 & 32-bit PIC® MCUs
    [Show full text]
  • Light-Emitting Diode - Wikipedia, the Free Encyclopedia
    Light-emitting diode - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Light-emitting_diode From Wikipedia, the free encyclopedia A light-emitting diode (LED) (pronounced /ˌɛl iː ˈdiː/[1]) is a semiconductor Light-emitting diode light source. LEDs are used as indicator lamps in many devices, and are increasingly used for lighting. Introduced as a practical electronic component in 1962,[2] early LEDs emitted low-intensity red light, but modern versions are available across the visible, ultraviolet and infrared wavelengths, with very high brightness. When a light-emitting diode is forward biased (switched on), electrons are able to recombine with holes within the device, releasing energy in the form of photons. This effect is called electroluminescence and the color of the light (corresponding to the energy of the photon) is determined by the energy gap of Red, green and blue LEDs of the 5mm type 2 the semiconductor. An LED is usually small in area (less than 1 mm ), and Type Passive, optoelectronic integrated optical components are used to shape its radiation pattern and assist in reflection.[3] LEDs present many advantages over incandescent light sources Working principle Electroluminescence including lower energy consumption, longer lifetime, improved robustness, Invented Nick Holonyak Jr. (1962) smaller size, faster switching, and greater durability and reliability. LEDs powerful enough for room lighting are relatively expensive and require more Electronic symbol precise current and heat management than compact fluorescent lamp sources of comparable output. Pin configuration Anode and Cathode Light-emitting diodes are used in applications as diverse as replacements for aviation lighting, automotive lighting (particularly indicators) and in traffic signals.
    [Show full text]
  • Digital Display Circuits This Worksheet and All Related Files Are Licensed Under the Creative Commons Attribution License, Versi
    Digital display circuits This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/, or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA. The terms and conditions of this license allow for free copying, distribution, and/or modification of all licensed works by the general public. Resources and methods for learning about these subjects (list a few here, in preparation for your research): 1 Questions Question 1 What is the purpose of a seven-segment decoder circuit? What is a ”seven-segment” display, and why do we need a decoder circuit to drive it? Research the part number for a typical seven-segment decoder circuit (either CMOS or TTL). file 01417 Question 2 A seven segment decoder is a digital circuit designed to drive a very common type of digital display device: a set of LED (or LCD) segments that render numerals 0 through 9 at the command of a four-bit code: Display driver IC Seven-segment display VDD a a . A b . f b c . g Inputs B d . C e . f . D g . e c d The behavior of the display driver IC may be represented by a truth table with seven outputs: one for each segment of the seven-segment display (a through g). In the following table, a ”1” output represents an active display segment, while a ”0” output represents an inactive segment: D C B A a b c d e f g Display 0 0 0 0 1 1 1 1 1 1 0 ”0” 0 0 0 1 0 1 1 0 0 0 0 ”1” 0 0 1 0 1 1 0 1 1 0 1 ”2” 0 0 1 1 1 1 1 1 0 0 1 ”3” 0 1 0 0 0 1 1 0 0 1 1 ”4” 0 1 0 1 1 0 1 1 0 1 1 ”5” 0 1 1 0 1 0 1 1 1 1 1 ”6” 0 1 1 1 1 1 1 0 0 0 0 ”7” 1 0 0 0 1 1 1 1 1 1 1 ”8” 1 0 0 1 1 1 1 1 0 1 1 ”9” Write the unsimplified SOP or POS expressions (choose the most appropriate form) for outputs a, b, c, and e.
    [Show full text]
  • TB053, Generating High Voltage Using the PIC16C781/782
    M TB053 Generating High Voltage Using the PIC16C781/782 EQUATION 1: Author: Ross Fosler Microchip Technology Inc. di IN L → V VIN = L1 t = iL dt L1 INTRODUCTION The peak current is achieved the moment before Q1 turns off. Equation 2 shows the peak current, where D th The Nixie tube is a device born out of the middle 20 is the duty cycle and T is the period for pulse width century, used to display digital information in a human modulation. readable format. Basically, it is a high voltage numerical display. Today, the Nixie tube has been replaced by EQUATION 2: more efficient, more durable, and longer lasting devices, such as LED displays and LCDs. However, for VIN this Technical Brief, the Nixie tube serves as an excel- DT = IPEAK L lent visual feedback of the PIC16C782’s ability to gen- 1 erate high voltage from a low voltage source. This Technical Brief introduces the boost converter The current in an inductor cannot change instanta- topology operating in Discontinuous mode. As an neously. When Q1 is switched off, the current in L1 con- example, a simple 9V to 170V DC-DC converter is tinues to flow through D1 to the storage capacitor, C1, designed based on this topology, and is used to provide and the load, RL. Thus, the current in the inductor power to a three-digit Nixie tube display. The decreases linearly in time from the peak current. In dis- PIC16C782 is used to control the DC-DC converter and continuous operation, the inductor current actually falls provides data decoding for the display.
    [Show full text]
  • Display Devices
    ELEKTRONIKOS ĮTAISAI 2009 1 DISPLAY DEVICES VGTU EF ESK [email protected] ELEKTRONIKOS ĮTAISAI 2009 2 Display devices Display devices are used for the visual presentation of information. 1. Analog display devices (cathode-ray tubes) • Oscilloscope tubes •TV CRTs 2. Digital display devices • LED (including OLED) displays • VF (vacuum fluorescent ) displays • LCD (liquid crystal) displays • Nixie tube displays and PDPs (plasma display panels) • Electroluminescent displays (ELDs) 3. Others: • Electronic paper • Using principles of nanoelectronics (carbon nanotubes, nanocrystals) • Laser TV VGTU EF ESK [email protected] ELEKTRONIKOS ĮTAISAI 2009 3 Classification of electronic information technologies with high information content; highlighted technologies are treated in this article w4.siemens.de/.../heft2_97/artikel08/index.html VGTU EF ESK [email protected] ELEKTRONIKOS ĮTAISAI 2009 4 Display devices Electronic display devices based on various principles were developed. Active display devices are based on luminescence. Luminescence is the general term used to describe the emission of electromagnetic radiation from a substance due to a non-thermal process. Luminescence occurs from a solid when it is supplied with some form of energy. Photoluminescence arises as a result of absorption of photons. In the case of cathodoluminescence material is excited by bombardment with a beam of electrons. Electroluminescence is a result of excitation from the application of an electric field. Fluorescence persists for a short lifetime of the transition between the two energy levels. Phosphorescence persists for much longer time (more than 10-8 s). Passive display devices reflect or modulate light… VGTU EF ESK [email protected] ELEKTRONIKOS ĮTAISAI 2009 5 Display devices.
    [Show full text]
  • Embedded System Application Ow
    Embedded System 2010 SpringSemester Seoul National University Application [email protected] ower Dept. ofEECS/CSE Naehyuck Chang P 4190.303C ow- L CRT, LCD, OLED and display systems mbedded aboratory E L L P L E Display Devices Bulbs Nixie tube (Numeric Indicator eXperimental-1) - The first electronic digital readout Vacuum fluorescent display Light emitting diode LCD OLED Embedded Low-Power 2 ELPL Laboratory Display System Architecture Principle of operation Single display Group display Massive display More efficient method is required Embedded Low-Power 3 ELPL Laboratory Dynamic Display Spinning dishes Static spinning Spin one dish per hand Dynamic spinning Spine several dishes per hand Use of inertia Static display Display the device the same information at all times Dynamic display Use of human perception Pulse display for illusion For group and massive display Embedded Low-Power 4 ELPL Laboratory Dynamic Display Human eyes cannot perceive a light source that is blinking faster than 30Hz Embedded Low-Power 5 ELPL Laboratory CRT Display Cathode Ray Tube (CRT) Embedded Low-Power 6 ELPL Laboratory CRT Display Horizontal and vertical deflection Intensity BW or color Horizontal deflection control Vertical deflection control Embedded Low-Power 7 ELPL Laboratory CRT Display Raster scan Left to right Top to bottom Rely on afterimage 30Hz or higher refresh rates Video timing Hsync signal for horizontal retrace Vsync signal for vertical retrace Embedded Low-Power 8 ELPL Laboratory CRT Display Sweep signal Saw tooth waveform 15.75KHz saw tooth
    [Show full text]
  • Nixie-Transistor Clock Assembly Manual
    Nixie-Transistor Clock Assembly Manual KABTRONICS INTRODUCTION Manual Version Date PCB version Change Details 1.2 6/6/2011 Version 3 Initial shipments 1.3 1/10/2012 Version 4 Updates from first builders 1.4 7/4/2013 Version 5 PS drive circuit mod, 24 Hour shutoff mod, update schematic and BOM 1.5 6/29/2014 Version 5 Add text for oscillator frequency selection 1.6 4/2/2015 Version 5 Update BOM 1.7 10/8/2016 Version 5 Add SENSE resistor selection text Document 1.7 for PCB version 5 Copyright © October 8, 2016 by KABtronics Nixie Transistor Clock Kit Page 2 KABTRONICS INTRODUCTION Table of Contents INTRODUCTION ........................................................................................................................................ 5 UNPACKING/PARTS LIST .......................................................................................................................... 6 SOLDERING .............................................................................................................................................. 7 UNSOLDERING ................................................................................................................................................. 8 OPTIONAL CLEAN -UP ........................................................................................................................................ 8 BUILD ORDER ........................................................................................................................................... 9 12 VOLT SUPPLY ...........................................................................................................................................
    [Show full text]
  • Nixie Clock Type 'Nixie QTC'
    Assembly Instructions And User Guide Nixie Clock Type ‘Nixie QTC’ Nixie Tube Clock ‘Nixie QTC’ - 1 - Issue 10a (21 March 2014) www.pvelectronics.co.uk REVISION HISTORY Issue Date Reason for Issue Number 10a 21 March 2014 Errors corrected 10 20 March 2014 New tube types added and code configuration procedure 9 03 April 2013 Troubleshooting connections chart added ZM1177 tube procedure clarified 8a 09 September 2013 Improved IN14 cell details 8 21 October 2012 WWVB No Longer supported 7 8 October 2012 ZM1177 Tube details added 6 5 August 2012 Component designation errors corrected 5 27 July 2012 New PCB date 5 July 2012 4 14 June 2012 1st review 3 29 May 2012 Errors in component listing corrected 2 22 May 2012 Anode resistors corrected to 10KΩ 1 20 May 2012 New document Nixie Tube Clock ‘Nixie QTC’ - 2 - Issue 10a (21 March 2014) www.pvelectronics.co.uk 1. INT RODUCTION 1.1 What is Nixie QTC? Nixie QTC takes a new path for Nixie Clocks for mid-sized solder-in tubes. Learning from our past experiences of thousands of kits sold, we recognise a major customer concern and possibly the biggest drawback with solder-in tubes: They are soldered in! Previously, a failed tube always meant a treacherous operation to delicately remove the tube whilst trying to preserve all traces intact. Whilst this was certainly possible, It was never easy, and made it uncomfortable to give a Nixe Clock as a gift in case a tube ever failed. With Nixie QTC (‘Quick Tube Change’), each tube is soldered only to its own mini ‘tube cell’ PCB.
    [Show full text]