Beaching Patterns of Plastic Debris Along the Indian Ocean
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fronts in the World Ocean's Large Marine Ecosystems. ICES CM 2007
- 1 - This paper can be freely cited without prior reference to the authors International Council ICES CM 2007/D:21 for the Exploration Theme Session D: Comparative Marine Ecosystem of the Sea (ICES) Structure and Function: Descriptors and Characteristics Fronts in the World Ocean’s Large Marine Ecosystems Igor M. Belkin and Peter C. Cornillon Abstract. Oceanic fronts shape marine ecosystems; therefore front mapping and characterization is one of the most important aspects of physical oceanography. Here we report on the first effort to map and describe all major fronts in the World Ocean’s Large Marine Ecosystems (LMEs). Apart from a geographical review, these fronts are classified according to their origin and physical mechanisms that maintain them. This first-ever zero-order pattern of the LME fronts is based on a unique global frontal data base assembled at the University of Rhode Island. Thermal fronts were automatically derived from 12 years (1985-1996) of twice-daily satellite 9-km resolution global AVHRR SST fields with the Cayula-Cornillon front detection algorithm. These frontal maps serve as guidance in using hydrographic data to explore subsurface thermohaline fronts, whose surface thermal signatures have been mapped from space. Our most recent study of chlorophyll fronts in the Northwest Atlantic from high-resolution 1-km data (Belkin and O’Reilly, 2007) revealed a close spatial association between chlorophyll fronts and SST fronts, suggesting causative links between these two types of fronts. Keywords: Fronts; Large Marine Ecosystems; World Ocean; sea surface temperature. Igor M. Belkin: Graduate School of Oceanography, University of Rhode Island, 215 South Ferry Road, Narragansett, Rhode Island 02882, USA [tel.: +1 401 874 6533, fax: +1 874 6728, email: [email protected]]. -
Reconstruction of Total Marine Fisheries Catches for Madagascar (1950-2008)1
Fisheries catch reconstructions: Islands, Part II. Harper and Zeller 21 RECONSTRUCTION OF TOTAL MARINE FISHERIES CATCHES FOR MADAGASCAR (1950-2008)1 Frédéric Le Manacha, Charlotte Goughb, Frances Humberb, Sarah Harperc, and Dirk Zellerc aFaculty of Science and Technology, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom; [email protected] bBlue Ventures Conservation, Aberdeen Centre, London, N5 2EA, UK; [email protected]; [email protected] cSea Around Us Project, Fisheries Centre, University of British Columbia 2202 Main Mall, Vancouver, V6T 1Z4, Canada ; [email protected]; [email protected] ABSTRACT Fisheries statistics supplied by countries to the Food and Agriculture Organization (FAO) of the United Nations have been shown in almost all cases to under-report actual fisheries catches. This is due to national reporting systems failing to account for Illegal, Unreported and Unregulated (IUU) catches, including the non-commercial component of small-scale fisheries, which are often substantial in developing countries. Fisheries legislation, management plans and foreign fishing access agreements are often influenced by these incomplete data, resulting in poorly assessed catches and leading to serious over-estimations of resource availability. In this study, Madagascar’s total catches by all fisheries sectors were estimated back to 1950 using a catch reconstruction approach. Our results show that while the Malagasy rely heavily on the ocean for their protein needs, much of this extraction of animal protein is missing in the official statistics. Over the 1950-2008 period, the reconstruction adds more than 200% to reported data, dropping from 590% in the 1950s to 40% in the 2000s. -
Basin-Wide Seasonal Evolution of the Indian Ocean's Phytoplankton Blooms
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112, C12014, doi:10.1029/2007JC004090, 2007 Click Here for Full Article Basin-wide seasonal evolution of the Indian Ocean’s phytoplankton blooms M. Le´vy,1,2 D. Shankar,2 J.-M. Andre´,1,2 S. S. C. Shenoi,2 F. Durand,2,3 and C. de Boyer Monte´gut4 Received 5 January 2007; revised 2 August 2007; accepted 5 September 2007; published 21 December 2007. [1] A climatology of Sea-viewing Wide Field-of-View Sensor (SeaWiFS) chlorophyll data over the Indian Ocean is used to examine the bloom variability patterns, identifying spatio-temporal contrasts in bloom appearance and intensity and relating them to the variability of the physical environment. The near-surface ocean dynamics is assessed using an ocean general circulation model (OGCM). It is found that over a large part of the basin, the seasonal cycle of phytoplankton is characterized by two consecutive blooms, one during the summer monsoon, and the other during the winter monsoon. Each bloom is described by means of two parameters, the timing of the bloom onset and the cumulated increase in chlorophyll during the bloom. This yields a regional image of the influence of the two monsoons on phytoplankton, with distinct regions emerging in summer and in winter. By comparing the bloom patterns with dynamical features derived from the OGCM (horizontal and vertical velocities and mixed-layer depth), it is shown that the regional structure of the blooms is intimately linked with the horizontal and vertical circulations forced by the monsoons. Moreover, this comparison permits the assessment of some of the physical mechanisms that drive the bloom patterns, and points out the regions where these mechanisms need to be further investigated. -
Mozambique Channel Eddies As Transport Mechanisms: the Case of Red Sea Water
Mozambique Channel eddies as transport mechanisms: The case of Red Sea Water T. Morris1, J-F Ternon2 and M.J. Roberts3 1 Bayworld Centre for Research and Education, Cape Town, South Africa 2 Institut de Recherche pour le Développement, La Réunion 3 Oceans and Coast, Department of Environmental Affairs, Cape Town, South Africa [email protected] “20 Years of Progress in Radar Altimetry” Symposium including the 4th Argo Science Workshop Venice, Italy 24-29 September 2012 Outline • The Indian Ocean and Mozambique Channel circulation • Red Sea Water – how is it thought to be transported through the Mozambique Channel and why is it so important? • Argo and SLA Altimetry historical data analysis – what does our data show? • Future Argo Projects Photo credit: www.webbresearch.com 4th Argo Science Workshop: Venice, Italy 24-29 September 2012 The Southern and Indian Oceans The large-scale perspective • Southern Ocean Antarctic Circumpolar Current Flow around the globe completely unhindered Fronts and areas of convergence Source of Antarctic Intermediate Water (AAIW) • Indian Ocean Seasonal monsoonal circulation No temperate and polar region to the north South Equatorial Current (SEC) flows east to west, strengthening en route Fed by throughflow of Pacific water through the Indonesian Sea SEC bifurcates around Madagascar: NEMC – Northeast Madagascar Current (S)EMC – (South)East Madagascar Current Black – mean current flows without seasonal trends Gray – Monsoonal reversing circulation Talley et al (2011) 4th Argo Science Workshop: Venice, -
Physical and Biogeochemical Processes Associated with Upwelling in the Indian Ocean Puthenveettil Narayan
https://doi.org/10.5194/bg-2020-486 Preprint. Discussion started: 9 February 2021 c Author(s) 2021. CC BY 4.0 License. 1 Reviews and syntheses: Physical and biogeochemical processes associated with upwelling in the 2 Indian Ocean 1* 2 3 4 3 Puthenveettil Narayana Menon Vinayachandran , Yukio Masumoto , Mike Roberts , Jenny Hugget , 5 6 7 8 9 4 Issufo Halo , Abhisek Chatterjee , Prakash Amol , Garuda V. M. Gupta , Arvind Singh , Arnab 10 6 11 12 13 5 Mukherjee , Satya Prakash , Lynnath E. Beckley , Eric Jorden Raes , Raleigh Hood 6 7 1Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bengaluru, 560012, India 8 9 2 Graduate School of Science, University of Tokyo, Tokyo, Japan 10 11 3 Nelson Mandela University, Port Elizabeth, South Africa 12 13 4Oceans and Coasts Research, Department of Environment, Forestry and Fisheries, Private Bag X4390, Cape Town 8000, 14 South Africa 15 16 5Department of Conservation and Marine Sciences, Cape Peninsula University of Technology, PO Box 652, Cape Town 17 8000, South Africa 18 6Indian National Centre for Indian Ocean Services, Ministry of Earth Sciences, Hyderabad, India 19 20 7CSIR-National Institute of Oceanography, Regional Centre, Visakhapatnam, 530017, India 21 22 8Centre for Marine Living Resources and Ecology, Ministry of Earth Sciences, Kochi, India 23 24 9Physical Research Laboratory, Ahmedabad, 380009, India 25 26 10 National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Goa, India 27 28 11 Environmental and Conservation Sciences, Murdoch University, Perth, Western Australia 6150, Australia 29 30 12 CSIRO Oceans and Atmosphere, GPO Box 1538, Hobart, TAS, 7001 Australia 31 32 13 University of Maryland Center for Environmental Science, Cambridge, MD, USA 33 34 *Correspondence to: P. -
Tracking of Mesoscale Eddies Across the Southern Mozambique Channel Using Argo Float Technology
Tracking of mesoscale eddies across the southern Mozambique Channel using Argo float technology MORRIS, T.1*, ROBERTS, M.J.2, ANSORGE, I.3, OWENS, B.4 AND ROBBINS, P.E.4 1BAYWORLD CENTRE FOR RESEARCH AND EDUCATION, CAPE TOWN, SOUTH AFRICA 2OCEANS AND COAST, DEPARTMENT OF ENVIRONMENTAL AFFAIRS, CAPE TOWN, SOUTH AFRICA 3DEPARTMENT OF OCEANOGRAPHY, UNIVERSITY OF CAPE TOWN, SOUTH AFRICA 4WOODS HOLE OCEANOGRAPHIC INSTITUTE, WOODS HOLE, MASSACHUSETTS, UNITED STATES OF AMERICA *AUTHOR FOR CORRESPONDENCE: [email protected] The Mozambique Channel Series of eddies propagate down the Mozambique Channel, formed in narrows by bifurcating SEC and associated instabilities SE of Madagascar, eddies shed from the EMC. Work done by Quartly et al (2006) and Ridderinkhof et al (2013) include: 1.Whether a retroflection of EMC causes ring shedding or not 2.Dipole eddies being shed and interacting with already formed eddies in the Channel 3.Whether eddies (a-c and c) are symmetrical and equal in terms of their relative vorticity SEC – South Equatorial Current EMC – East Madagascar Current AC – Agulhas Current MCE – Mozambique Channel Eddies SEME – South East Madagascar Eddies Tew-Kai and Marsac, 2009 The proposed experiment The proposed experiment First experiment – April 2013 Five SOLO II floats, donated from WHOI with iridium communications Daily profiles, 300 m park depth and 1000 m profiling. Ballasted with an extra battery for additional data collection Tracked the cyclonic eddy from SE Madagascar from the beginning of March 2013 (CCAR imagery). Deployment of floats took place on the 12th of April 2013. AVISO NRT SSHA First experiment – April 2013 XBT casts done prior to and after the float deployments: 15 nm apart CTD and XBT (for inter- comparison) casts done on station prior to deploying each float: 10 nm apart No working S-ADCP. -
Chapter 11 the Indian Ocean We Now Turn to the Indian Ocean, Which Is
Chapter 11 The Indian Ocean We now turn to the Indian Ocean, which is in several respects very different from the Pacific Ocean. The most striking difference is the seasonal reversal of the monsoon winds and its effects on the ocean currents in the northern hemisphere. The abs ence of a temperate and polar region north of the equator is another peculiarity with far-reaching consequences for the circulation and hydrology. None of the leading oceanographic research nations shares its coastlines with the Indian Ocean. Few research vessels entered it, fewer still spent much time in it. The Indian Ocean is the only ocean where due to lack of data the truly magnificent textbook of Sverdrup et al. (1942) missed a major water mass - the Australasian Mediterranean Water - completely. The situation did not change until only thirty years ago, when over 40 research vessels from 25 nations participated in the International Indian Ocean Expedition (IIOE) during 1962 - 1965. Its data were compiled and interpreted in an atlas (Wyrtki, 1971, reprinted 1988) which remains the major reference for Indian Ocean research. Nevertheless, important ideas did not exist or were not clearly expressed when the atlas was prepared, and the hydrography of the Indian Ocean still requires much study before a clear picture will emerge. Long-term current meter moorings were not deployed until two decades ago, notably during the INDEX campaign of 1976 - 1979; until then, the study of Indian Ocean dynamics was restricted to the analysis of ship drift data and did not reach below the surface layer. Bottom topography The Indian Ocean is the smallest of all oceans (including the Southern Ocean). -
In Situ Measured Current Structures of the Eddy Field in the Mozambique Channel
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/259138771 In situ measured current structures of the eddy field in the Mozambique Channel Article in Deep Sea Research Part II Topical Studies in Oceanography · January 2013 DOI: 10.1016/j.dsr2.2013.10.013 CITATIONS READS 19 53 5 authors, including: Jean-François Ternon Michael Roberts Institute of Research for Development Nelson Mandela Metropolitan University 31 PUBLICATIONS 557 CITATIONS 74 PUBLICATIONS 1,312 CITATIONS SEE PROFILE SEE PROFILE L. Hancke B. C. Backeberg 4 PUBLICATIONS 99 CITATIONS Council for Scientific and Industrial Research… 25 PUBLICATIONS 203 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Ocean data assimilation in support of marine research and operational oceanography in South Africa View project Western Indian Ocean Upwelling Research Initiative (WIOURI), part of the Second International Indian Ocean Expedition (IIO2) View project All content following this page was uploaded by Michael Roberts on 20 May 2015. The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately. Deep-Sea Research II 100 (2014) 10–26 Contents lists available at ScienceDirect Deep-Sea Research II journal homepage: www.elsevier.com/locate/dsr2 In situ measured current structures of the eddy field -
Inertially Induced Connections Between Subgyres in the South Indian Ocean
FEBRUARY 2009 N O T E S A N D C O R R E S P O N D E N C E 465 Inertially Induced Connections between Subgyres in the South Indian Ocean V. PALASTANGA,H.A.DIJKSTRA, AND W. P. M. DE RUIJTER Institute for Marine and Atmospheric Research, Utrecht, Utrecht, Netherlands (Manuscript received 3 July 2007, in final form 18 August 2008) ABSTRACT A barotropic shallow-water model and continuation techniques are used to investigate steady solutions in an idealized South Indian Ocean basin containing Madagascar. The aim is to study the role of inertia in a possible connection between two subgyres in the South Indian Ocean. By increasing inertial effects in the model, two different circulation regimes are found. In the weakly nonlinear regime, the subtropical gyre presents a recirculation cell in the southwestern basin, with two boundary currents flowing westward from the southern and northern tips of Madagascar toward Africa. In the highly nonlinear regime, the inertial recirculation of the subtropical gyre is found to the east of Madagascar, while the East Madagascar Current overshoots the island’s southern boundary and connects through a southwestward jet with the current off South Africa. 1. Introduction (2003) calculated 20 Sv southward. The recirculation, the EMC, and the flow from the Mozambique Channel form The presence of Madagascar in the South Indian the sources of the AC. A recent analysis of climatological Ocean presents unique characteristics to the subtropical data revealed a surface anticyclonic recirculation to the gyre circulation. This large-scale island blocks the wind- east of Madagascar that is composed of an eastward cur- driven circulation between 128 and 258S. -
Seasonal Phasing of Agulhas Current Transport Tied to a Baroclinic
Journal of Geophysical Research: Oceans RESEARCH ARTICLE Seasonal Phasing of Agulhas Current Transport Tied 10.1029/2018JC014319 to a Baroclinic Adjustment of Near-Field Winds Key Points: • A baroclinic adjustment to Indian Katherine Hutchinson1,2 , Lisa M. Beal3 , Pierrick Penven4 , Isabelle Ansorge1, and Ocean winds can explain the 1,2 Agulhas Current seasonal phasing, Juliet Hermes and a barotropic adjustment cannot 1 2 • Seasonal phasing is found to be Department of Oceanography, University of Cape Town, Cape Town, South Africa, South African Environmental 3 highly sensitive to reduced gravity Observations Network, SAEON Egagasini Node, Cape Town, South Africa, Rosenstiel School of Marine and Atmospheric values, which modify adjustment Science, University of Miami, Miami, FL, USA, 4Laboratoire d’Oceanographie Physique et Spatiale, University of Brest, times to wind forcing CNRS, IRD, Ifremer, IUEM, Brest, France • Near-field winds have a dominant influence on the seasonal cycle of the Agulhas Current as remote signals die out while crossing the basin Abstract The Agulhas Current plays a significant role in both local and global ocean circulation and climate regulation, yet the mechanisms that determine the seasonal cycle of the current remain unclear, with discrepancies between ocean models and observations. Observations from moorings across the Correspondence to: K. Hutchinson, current and a 22-year proxy of Agulhas Current volume transport reveal that the current is over 25% [email protected] stronger in austral summer than in winter. We hypothesize that winds over the Southern Indian Ocean play a critical role in determining this seasonal phasing through barotropic and first baroclinic mode adjustments Citation: and communication to the western boundary via Rossby waves. -
Madagascar: Transitions in Health Care Margaret Altepeter Regis University
Regis University ePublications at Regis University All Regis University Theses Spring 2012 Madagascar: Transitions in health care Margaret Altepeter Regis University Follow this and additional works at: https://epublications.regis.edu/theses Part of the Arts and Humanities Commons Recommended Citation Altepeter, Margaret, "Madagascar: Transitions in health care" (2012). All Regis University Theses. 554. https://epublications.regis.edu/theses/554 This Thesis - Open Access is brought to you for free and open access by ePublications at Regis University. It has been accepted for inclusion in All Regis University Theses by an authorized administrator of ePublications at Regis University. For more information, please contact [email protected]. Regis University Regis College Honors Theses Disclaimer Use of the materials available in the Regis University Thesis Collection (“Collection”) is limited and restricted to those users who agree to comply with the following terms of use. Regis University reserves the right to deny access to the Collection to any person who violates these terms of use or who seeks to or does alter, avoid or supersede the functional conditions, restrictions and limitations of the Collection. The site may be used only for lawful purposes. The user is solely responsible for knowing and adhering to any and all applicable laws, rules, and regulations relating or pertaining to use of the Collection. All content in this Collection is owned by and subject to the exclusive control of Regis University and the authors of the materials. It is available only for research purposes and may not be used in violation of copyright laws or for unlawful purposes. -
II-4 Agulhas Current: LME #30
II-4 Agulhas Current: LME #30 S. Heileman, J. R. E. Lutjeharms and L. E. P. Scott The Agulhas Current LME is located in the southwestern Indian Ocean, encompassing the continental shelves and coastal waters of mainland states Mozambique and eastern South Africa, as well as the archipelagos of the Comoros, the Seychelles, Mauritius and La Reunion (France). At the centre of the LME is Madagascar, the world’s fourth largest island, with an extensive coastline of more than 5000km (McKenna and Allen 2005). The dominant large-scale oceanographic feature of the LME is the Agulhas Current, a swift, warm western boundary current that forms part of the anticyclonic gyre of the South Indian Ocean (Lutjeharms 2006a). This LME is influenced by mixed climate conditions, with the upper layers being composed of both tropical and sub-tropical surface waters (Beckley 1998). Large parts of the system are characterised by high levels of mesoscale variability, particularly in the Mozambique Channel and south of Madagascar. About 1.5% and 0.3% of the world’s coral reefs and sea mounts, respectively, occur in this LME, which covers an area of about 2.6 million km², 0.64% of which is protected (Sea Around Us 2007). The coastal zones of both mainland and island states are characterised by a high faunal and floral diversity. At least 12 of the 38 marine and coastal habitats recognised as distinct by UNEP are found in every country of the LME, with Mozambique having 87% of habitat types (Kamukala and Payet 2001). Most of the Western Indian Ocean Islands exhibit a high level of endemism, with Madagascar classified as the country having the most endemic species in Africa, and the 6th most endemic species for a country, worldwide (UNEP 1999).