Physical and Biogeochemical Processes Associated with Upwelling in the Indian Ocean Puthenveettil Narayan
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Analysis of the Afar-Somali Conflict in Ethiopia and Djibouti
Regional Dynamics of Inter-ethnic Conflicts in the Horn of Africa: An Analysis of the Afar-Somali Conflict in Ethiopia and Djibouti DISSERTATION ZUR ERLANGUNG DER GRADES DES DOKTORS DER PHILOSOPHIE DER UNIVERSTÄT HAMBURG VORGELEGT VON YASIN MOHAMMED YASIN from Assab, Ethiopia HAMBURG 2010 ii Regional Dynamics of Inter-ethnic Conflicts in the Horn of Africa: An Analysis of the Afar-Somali Conflict in Ethiopia and Djibouti by Yasin Mohammed Yasin Submitted in partial fulfilment of the requirements for the degree PHILOSOPHIAE DOCTOR (POLITICAL SCIENCE) in the FACULITY OF BUSINESS, ECONOMICS AND SOCIAL SCIENCES at the UNIVERSITY OF HAMBURG Supervisors Prof. Dr. Cord Jakobeit Prof. Dr. Rainer Tetzlaff HAMBURG 15 December 2010 iii Acknowledgments First and foremost, I would like to thank my doctoral fathers Prof. Dr. Cord Jakobeit and Prof. Dr. Rainer Tetzlaff for their critical comments and kindly encouragement that made it possible for me to complete this PhD project. Particularly, Prof. Jakobeit’s invaluable assistance whenever I needed and his academic follow-up enabled me to carry out the work successfully. I therefore ask Prof. Dr. Cord Jakobeit to accept my sincere thanks. I am also grateful to Prof. Dr. Klaus Mummenhoff and the association, Verein zur Förderung äthiopischer Schüler und Studenten e. V., Osnabruck , for the enthusiastic morale and financial support offered to me in my stay in Hamburg as well as during routine travels between Addis and Hamburg. I also owe much to Dr. Wolbert Smidt for his friendly and academic guidance throughout the research and writing of this dissertation. Special thanks are reserved to the Department of Social Sciences at the University of Hamburg and the German Institute for Global and Area Studies (GIGA) that provided me comfortable environment during my research work in Hamburg. -
Fronts in the World Ocean's Large Marine Ecosystems. ICES CM 2007
- 1 - This paper can be freely cited without prior reference to the authors International Council ICES CM 2007/D:21 for the Exploration Theme Session D: Comparative Marine Ecosystem of the Sea (ICES) Structure and Function: Descriptors and Characteristics Fronts in the World Ocean’s Large Marine Ecosystems Igor M. Belkin and Peter C. Cornillon Abstract. Oceanic fronts shape marine ecosystems; therefore front mapping and characterization is one of the most important aspects of physical oceanography. Here we report on the first effort to map and describe all major fronts in the World Ocean’s Large Marine Ecosystems (LMEs). Apart from a geographical review, these fronts are classified according to their origin and physical mechanisms that maintain them. This first-ever zero-order pattern of the LME fronts is based on a unique global frontal data base assembled at the University of Rhode Island. Thermal fronts were automatically derived from 12 years (1985-1996) of twice-daily satellite 9-km resolution global AVHRR SST fields with the Cayula-Cornillon front detection algorithm. These frontal maps serve as guidance in using hydrographic data to explore subsurface thermohaline fronts, whose surface thermal signatures have been mapped from space. Our most recent study of chlorophyll fronts in the Northwest Atlantic from high-resolution 1-km data (Belkin and O’Reilly, 2007) revealed a close spatial association between chlorophyll fronts and SST fronts, suggesting causative links between these two types of fronts. Keywords: Fronts; Large Marine Ecosystems; World Ocean; sea surface temperature. Igor M. Belkin: Graduate School of Oceanography, University of Rhode Island, 215 South Ferry Road, Narragansett, Rhode Island 02882, USA [tel.: +1 401 874 6533, fax: +1 874 6728, email: [email protected]]. -
Smart Border Management: Indian Coastal and Maritime Security
Contents Foreword p2/ Preface p3/ Overview p4/ Current initiatives p12/ Challenges and way forward p25/ International examples p28/Sources p32/ Glossary p36/ FICCI Security Department p38 Smart border management: Indian coastal and maritime security September 2017 www.pwc.in Dr Sanjaya Baru Secretary General Foreword 1 FICCI India’s long coastline presents a variety of security challenges including illegal landing of arms and explosives at isolated spots on the coast, infiltration/ex-filtration of anti-national elements, use of the sea and off shore islands for criminal activities, and smuggling of consumer and intermediate goods through sea routes. Absence of physical barriers on the coast and presence of vital industrial and defence installations near the coast also enhance the vulnerability of the coasts to illegal cross-border activities. In addition, the Indian Ocean Region is of strategic importance to India’s security. A substantial part of India’s external trade and energy supplies pass through this region. The security of India’s island territories, in particular, the Andaman and Nicobar Islands, remains an important priority. Drug trafficking, sea-piracy and other clandestine activities such as gun running are emerging as new challenges to security management in the Indian Ocean region. FICCI believes that industry has the technological capability to implement border management solutions. The government could consider exploring integrated solutions provided by industry for strengthening coastal security of the country. The FICCI-PwC report on ‘Smart border management: Indian coastal and maritime security’ highlights the initiatives being taken by the Central and state governments to strengthen coastal security measures in the country. -
CHAP 9 Sri Lanka
79o 00' 79o 30' 80o 00' 80o 30' 81o 00' 81o 30' 82o 00' Kankesanturai Point Pedro A I Karaitivu I. Jana D Peninsula N Kayts Jana SRI LANKA I Palk Strait National capital Ja na Elephant Pass Punkudutivu I. Lag Provincial capital oon Devipattinam Delft I. Town, village Palk Bay Kilinochchi Provincial boundary - Puthukkudiyiruppu Nanthi Kadal Main road Rameswaram Iranaitivu Is. Mullaittivu Secondary road Pamban I. Ferry Vellankulam Dhanushkodi Talaimannar Manjulam Nayaru Lagoon Railroad A da m' Airport s Bridge NORTHERN Nedunkeni 9o 00' Kokkilai Lagoon Mannar I. Mannar Puliyankulam Pulmoddai Madhu Road Bay of Bengal Gulf of Mannar Silavatturai Vavuniya Nilaveli Pankulam Kebitigollewa Trincomalee Horuwupotana r Bay Medawachchiya diya A d o o o 8 30' ru 8 30' v K i A Karaitivu I. ru Hamillewa n a Mutur Y Pomparippu Anuradhapura Kantalai n o NORTH CENTRAL Kalpitiya o g Maragahewa a Kathiraveli L Kal m a Oy a a l a t t Puttalam Kekirawa Habarane u 8o 00' P Galgamuwa 8o 00' NORTH Polonnaruwa Dambula Valachchenai Anamaduwa a y O Mundal Maho a Chenkaladi Lake r u WESTERN d Batticaloa Naula a M uru ed D Ganewatta a EASTERN g n Madura Oya a G Reservoir Chilaw i l Maha Oya o Kurunegala e o 7 30' w 7 30' Matale a Paddiruppu h Kuliyapitiya a CENTRAL M Kehelula Kalmunai Pannala Kandy Mahiyangana Uhana Randenigale ya Amparai a O a Mah Reservoir y Negombo Kegalla O Gal Tirrukkovil Negombo Victoria Falls Reservoir Bibile Senanayake Lagoon Gampaha Samudra Ja-Ela o a Nuwara Badulla o 7 00' ng 7 00' Kelan a Avissawella Eliya Colombo i G Sri Jayewardenepura -
Basin-Wide Seasonal Evolution of the Indian Ocean's Phytoplankton Blooms
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112, C12014, doi:10.1029/2007JC004090, 2007 Click Here for Full Article Basin-wide seasonal evolution of the Indian Ocean’s phytoplankton blooms M. Le´vy,1,2 D. Shankar,2 J.-M. Andre´,1,2 S. S. C. Shenoi,2 F. Durand,2,3 and C. de Boyer Monte´gut4 Received 5 January 2007; revised 2 August 2007; accepted 5 September 2007; published 21 December 2007. [1] A climatology of Sea-viewing Wide Field-of-View Sensor (SeaWiFS) chlorophyll data over the Indian Ocean is used to examine the bloom variability patterns, identifying spatio-temporal contrasts in bloom appearance and intensity and relating them to the variability of the physical environment. The near-surface ocean dynamics is assessed using an ocean general circulation model (OGCM). It is found that over a large part of the basin, the seasonal cycle of phytoplankton is characterized by two consecutive blooms, one during the summer monsoon, and the other during the winter monsoon. Each bloom is described by means of two parameters, the timing of the bloom onset and the cumulated increase in chlorophyll during the bloom. This yields a regional image of the influence of the two monsoons on phytoplankton, with distinct regions emerging in summer and in winter. By comparing the bloom patterns with dynamical features derived from the OGCM (horizontal and vertical velocities and mixed-layer depth), it is shown that the regional structure of the blooms is intimately linked with the horizontal and vertical circulations forced by the monsoons. Moreover, this comparison permits the assessment of some of the physical mechanisms that drive the bloom patterns, and points out the regions where these mechanisms need to be further investigated. -
Cetacean Rapid Assessment: an Approach to Fill Knowledge Gaps and Target Conservation Across Large Data Deficient Areas
Received: 9 January 2017 Revised: 19 June 2017 Accepted: 17 July 2017 DOI: 10.1002/aqc.2833 RESEARCH ARTICLE Cetacean rapid assessment: An approach to fill knowledge gaps and target conservation across large data deficient areas Gill T. Braulik1,2 | Magreth Kasuga1 | Anja Wittich3 | Jeremy J. Kiszka4 | Jamie MacCaulay2 | Doug Gillespie2 | Jonathan Gordon2 | Said Shaib Said5 | Philip S. Hammond2 1 Wildlife Conservation Society Tanzania Program, Tanzania Abstract 2 Sea Mammal Research Unit, Scottish Oceans 1. Many species and populations of marine megafauna are undergoing substantial declines, while Institute, University of St Andrews, St many are also very poorly understood. Even basic information on species presence is unknown Andrews, Fife, UK for tens of thousands of kilometres of coastline, particularly in the developing world, which is a 3 23 Adamson Terrace, Leven, Fife, UK major hurdle to their conservation. 4 Department of Biological Sciences, Florida 2. Rapid ecological assessment is a valuable tool used to identify and prioritize areas for International University, North Miami, FL, USA conservation; however, this approach has never been clearly applied to marine cetaceans. Here 5 Institute of Marine Science, University of Dar es Salaam, Tanzania a rapid assessment protocol is outlined that will generate broad‐scale, quantitative, baseline Correspondence data on cetacean communities and potential threats, that can be conducted rapidly and cost‐ Gill T. Braulik, Wildlife Conservation Society effectively across whole countries, or regions. Tanzania Program, Zanzibar, Tanzania. Email: [email protected] 3. The rapid assessment was conducted in Tanzania, East Africa, and integrated collection of data on cetaceans from visual, acoustic, and interview surveys with existing information from multiple Funding information sources, to provide low resolution data on cetacean community relative abundance, diversity, and Pew Marine Fellows, Grant/Award Number: threats. -
Investment Opportunities in Africa
A PUBLICATION BY THE AFRICAN AMBASSADORS GROUP IN CAIRO INVESTMENT OPPORTUNITIES IN AFRICA In collaboration with the African Export-Import Bank (Afreximbank) A PUBLICATION BY THE AFRICAN AMBASSADORS GROUP IN CAIRO INVESTMENT OPPORTUNITIES IN AFRICA © Copyright African Ambassadors Group in Cairo, 2018. All rights reserved. African Ambassadors Group in Cairo Email: [email protected] This publication was produced by the African Ambassadors Group in Cairo in collaboration with the African Export-Import Bank (Afreximbank) TABLE OF CONTENTS FOREWORD 8 VOTE OF THANKS 10 INTRODUCTION 12 THE PEOPLE’S DEMOCRATIC REPUBLIC OF ALGERIA 14 THE REPUBLIC OF ANGOLA 18 BURKINA FASO 22 THE REPUBLIC OF BURUNDI 28 THE REPUBLIC OF CAMEROON 32 THE REPUBLIC OF CHAD 36 THE UNION OF COMOROS 40 THE DEMOCRATIC REPUBLIC OF THE CONGO 44 THE REPUBLIC OF CONGO 50 THE REPUBLIC OF CÔTE D’IVOIRE 56 THE REPUBLIC OF DJIBOUTI 60 THE ARAB REPUBLIC OF EGYPT 66 THE STATE OF ERITREA 70 THE FEDERAL DEMOCRATIC REPUBLIC OF ETHIOPIA 74 THE REPUBLIC OF EQUATORIAL GUINEA 78 THE GABONESE REPUBLIC 82 THE REPUBLIC OF GHANA 86 THE REPUBLIC OF GUINEA 90 THE REPUBLIC OF KENYA 94 THE REPUBLIC OF LIBERIA 98 THE REPUBLIC OF MALAWI 102 THE REPUBLIC OF MALI 108 THE REPUBLIC OF MAURITIUS 112 THE KINGDOM OF MOROCCO 116 THE REPUBLIC OF MOZAMBIQUE 120 THE REPUBLIC OF NAMIBIA 126 THE REPUBLIC OF NIGER 130 THE FEDERAL REPUBLIC OF NIGERIA 134 THE REPUBLIC OF RWANDA 138 THE REPUBLIC OF SIERRA LEONE 144 THE FEDERAL REPUBLIC OF SOMALIA 148 THE REPUBLIC OF SOUTH AFRICA 152 THE REPUBLIC OF SOUTH SUDAN 158 THE REPUBLIC OF THE SUDAN 162 THE UNITED REPUBLIC OF TANZANIA 166 THE REPUBLIC OF TUNISIA 170 THE REPUBLIC OF UGANDA 174 THE REPUBLIC OF ZAMBIA 178 THE REPUBLIC OF ZIMBABWE 184 ABOUT AFREXIMBANK 188 FOREWORD Global perception on Africa has positively evolved. -
Impacts of Climate Change on the Occurrence of Harmful Algal Blooms
Office of Water EPA 820-S-13-001 MC 4304T May 2013 Impacts of Climate Change on the Occurrence of Harmful Algal Blooms Summary Background Climate change is predicted to change many Algae occur naturally in marine and fresh waters. environmental conditions that could affect the Under favorable conditions that include adequate natural properties of fresh and marine waters both in light availability, warm waters, and high nutrient the US and worldwide. Changes in these factors levels, algae can rapidly grow and multiply causing could favor the growth of harmful algal blooms and “blooms.” Blooms of algae can cause damage to habitat changes such that marine HABs can invade aquatic environments by blocking sunlight and and occur in freshwater. An increase in the depleting oxygen required by other aquatic occurrence and intensity of harmful algal blooms organisms, restricting their growth and survival. may negatively impact the environment, human Some species of algae, including golden and red health, and the economy for communities across the algae and certain types of cyanobacteria, can produce US and around the world. The purpose of this fact potent toxins that can cause adverse health effects to sheet is to provide climate change researchers and wildlife and humans, such as damage to the liver and decision–makers a summary of the potential impacts nervous system. When algal blooms impair aquatic of climate change on harmful algal blooms in ecosystems or have the potential to affect human freshwater and marine ecosystems. Although much health, they are known as harmful algal blooms of the evidence presented in this fact sheet suggests (HABs). -
Ocean Circulation and Climate: an Overview
ocean-climate.org Bertrand Delorme Ocean Circulation and Yassir Eddebbar and Climate: an Overview Ocean circulation plays a central role in regulating climate and supporting marine life by transporting heat, carbon, oxygen, and nutrients throughout the world’s ocean. As human-emitted greenhouse gases continue to accumulate in the atmosphere, the Meridional Overturning Circulation (MOC) plays an increasingly important role in sequestering anthropogenic heat and carbon into the deep ocean, thus modulating the course of climate change. Anthropogenic warming, in turn, can influence global ocean circulation through enhancing ocean stratification by warming and freshening the high latitude upper oceans, rendering it an integral part in understanding and predicting climate over the 21st century. The interactions between the MOC and climate are poorly understood and underscore the need for enhanced observations, improved process understanding, and proper model representation of ocean circulation on several spatial and temporal scales. The ocean is in perpetual motion. Through its DRIVING MECHANISMS transport of heat, carbon, plankton, nutrients, and oxygen around the world, ocean circulation regulates Global ocean circulation can be divided into global climate and maintains primary productivity and two major components: i) the fast, wind-driven, marine ecosystems, with widespread implications upper ocean circulation, and ii) the slow, deep for global fisheries, tourism, and the shipping ocean circulation. These two components act industry. Surface and subsurface currents, upwelling, simultaneously to drive the MOC, the movement of downwelling, surface and internal waves, mixing, seawater across basins and depths. eddies, convection, and several other forms of motion act jointly to shape the observed circulation As the name suggests, the wind-driven circulation is of the world’s ocean. -
Cross-Shelf Transport of Pink Shrimp Larvae: Interactions of Tidal Currents, Larval Vertical Migrations and Internal Tides
Vol. 345: 167–184, 2007 MARINE ECOLOGY PROGRESS SERIES Published September 13 doi: 10.3354/meps06916 Mar Ecol Prog Ser Cross-shelf transport of pink shrimp larvae: interactions of tidal currents, larval vertical migrations and internal tides Maria M. Criales1,*, Joan A. Browder2, Christopher N. K. Mooers1, Michael B. Robblee3, Hernando Cardenas1, Thomas L. Jackson2 1Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, Florida 33149, USA 2NOAA Fisheries, Southeast Fisheries Science Center, 75 Virginia Beach Drive, Miami, Florida 33149, USA 3US Geological Survey, Center for Water and Restoration Studies, 3110 SW 9th Avenue, Ft Lauderdale, Florida 33315, USA ABSTRACT: Transport and behavior of pink shrimp Farfantepenaeus duorarum larvae were investi- gated on the southwestern Florida (SWF) shelf of the Gulf of Mexico between the Dry Tortugas spawning grounds and Florida Bay nursery grounds. Stratified plankton samples and hydrographic data were collected at 2 h intervals at 3 stations located on a cross-shelf transect. At the Marquesas station, midway between Dry Tortugas and Florida Bay, internal tides were recognized by anom- alously cool water, a shallow thermocline with strong density gradients, strong current shear, and a high concentration of pink shrimp larvae at the shallow thermocline. Low Richardson numbers occurred at the pycnocline depth, indicating vertical shear instability and possible turbulent transport from the lower to the upper layer where myses and postlarvae were concentrated. Analysis of verti- cally stratified plankton suggested that larvae perform vertical migrations and the specific behavior changes ontogenetically; protozoeae were found deeper than myses, and myses deeper than postlar- vae. -
National Institute of Oceanography Goa-India
NATIONAL INSTITUTE OF OCEANOGRAPHY GOA-INDIA 1978 ANNUAL REPORT 14 1978 NATIONAL INSTITUTE OF OCEANOGRAPHY ( Council of Scientific &. Industrial Research ) DONA PAULA - 403 004 GOA, INDIA CONTENTS Page No 1. General Introduction 1 2. Research Activities 2.0 Oceanographic Cruises of R.V. Gaveshani 2 2..1 Physical Oceanography 8 2.2 Chemical Oceanography 15 2.3 Geological Oceanography 22 2.4 Biological Oceanography 26 2.5 Ocean Engineering 36 2.6 Oceanographic Instrumentation 38 2.7 Planning, Publications, Information and Data 41 2.8 Interdisciplinary Task Forces 45 2.9 Sponsored Projects 50 2.10 International Projects 56 3. Technical Services 57 4. Administrative Set-up 4.1 Cruise Planning and Programme Priorities Committee for R.V. Gaveshani 60 4.2 Executive Committee 62 4.3 Scientific Advisory Committee 62 4.4 Budget 64 4.5 Scientific and Technical Staff 64 5. Awards, honours and membership of various committees 73 6. Deputations 76 7. Meetings, exhibitions, seminars, symposia, talks and special lectures 77 8. Colloquia 80 9. Radio talks 82 10. Distinguished visitors 10.1 Visit of the Prime Minister of India 10.2 Visit of the Minister of Shipping and Transport 83 10.3 Visit of other VIP's and Scientists 11. Publications 11.1 Publications of the Institute 87 11.2 Papers published 87 11..3 Popular articles and books published 93 11.4 Reports published 94 1 General Introduction In 1978, emphasis on the utilization of technology available at the Institute by the user community was continued. The Institute's research and development programmes included 23 projects, of which 6 were star- ted during this year. -
Crab Predators Are More Important at Higher Latitudes
Marine Biology (2019) 166:142 https://doi.org/10.1007/s00227-019-3587-0 ORIGINAL PAPER Variation in consumer pressure along 2500 km in a major upwelling system: crab predators are more important at higher latitudes Catalina A. Musrri1 · Alistair G. B. Poore2 · Iván A. Hinojosa3,4 · Erasmo C. Macaya4,5,6 · Aldo S. Pacheco7 · Alejandro Pérez‑Matus8 · Oscar Pino‑Olivares1 · Nicolás Riquelme‑Pérez1 · Wolfgang B. Stotz1 · Nelson Valdivia6,9 · Vieia Villalobos1,10 · Martin Thiel1,4,11 Received: 21 January 2019 / Accepted: 10 September 2019 © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Consumer pressure in benthic communities is predicted to be higher at low than at high latitudes, but support for this pat- tern has been ambiguous, especially for herbivory. To understand large-scale variation in biotic interactions, we quantify consumption (predation and herbivory) along 2500 km of the Chilean coast (19°S–42°S). We deployed tethering assays at ten sites with three diferent baits: the crab Petrolisthes laevigatus as living prey for predators, dried squid as dead prey for predators/scavengers, and the kelp Lessonia spp. for herbivores. Underwater videos were used to characterize the consumer community and identify those species consuming baits. The species composition of consumers, frequency of occurrence, and maximum abundance (MaxN) of crustaceans and the blenniid fsh Scartichthys spp. varied across sites. Consumption of P. laevigatus and kelp did not vary with latitude, while squid baits were consumed more quickly at mid and high latitudes. This is likely explained by the increased occurrence of predatory crabs, which was positively correlated with consumption of squidpops after 2 h.