1-6 Unconventional Oil Paper 2
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Oil Shale and Tar Sands
Fundamentals of Materials for Energy and Environmental Sustainability Editors David S. Ginley and David Cahen Oil shale and tar sands James W. Bunger 11 JWBA, Inc., Energy Technology and Engineering, Salt Lake City, UT, USA 11.1 Focus 11.2 Synopsis Tar sands and oil shale are “uncon- Oil shale and tar sands occur in dozens of countries around the world. With in-place ventional” oil resources. Unconven- resources totaling at least 4 trillion barrels (bbl), they exceed the world's remaining tional oil resources are characterized petroleum reserves, which are probably less than 2 trillion bbl. As petroleum becomes by their solid, or near-solid, state harder to produce, oil shale and tar sands are finding economic and thermodynamic under reservoir conditions, which parity with petroleum. Thermodynamic parity, e.g., similarity in the energy cost requires new, and sometimes of producing energy, is a key indicator of economic competitiveness. unproven, technology for their Oil is being produced on a large commercial scale by Canada from tar sands, recovery. For tar sands the hydrocar- and to a lesser extent by Venezuela. The USA now imports well over 2 million barrels bon is a highly viscous bitumen; for of oil per day from Canada, the majority of which is produced from tar sands. oil shale, it is a solid hydrocarbon Production of oil from oil shale is occurring in Estonia, China, and Brazil albeit on called “kerogen.” Unconventional smaller scales. Importantly, the USA is the largest holder of oil-shale resources. oil resources are found in greater For that reason alone, and because of the growing need for imports in the USA, quantities than conventional petrol- oil shale will receive greater development attention as petroleum supplies dwindle. -
Unconventional Gas and Oil in North America Page 1 of 24
Unconventional gas and oil in North America This publication aims to provide insight into the impacts of the North American 'shale revolution' on US energy markets and global energy flows. The main economic, environmental and climate impacts are highlighted. Although the North American experience can serve as a model for shale gas and tight oil development elsewhere, the document does not explicitly address the potential of other regions. Manuscript completed in June 2014. Disclaimer and copyright This publication does not necessarily represent the views of the author or the European Parliament. Reproduction and translation of this document for non-commercial purposes are authorised, provided the source is acknowledged and the publisher is given prior notice and sent a copy. © European Union, 2014. Photo credits: © Trueffelpix / Fotolia (cover page), © bilderzwerg / Fotolia (figure 2) [email protected] http://www.eprs.ep.parl.union.eu (intranet) http://www.europarl.europa.eu/thinktank (internet) http://epthinktank.eu (blog) Unconventional gas and oil in North America Page 1 of 24 EXECUTIVE SUMMARY The 'shale revolution' Over the past decade, the United States and Canada have experienced spectacular growth in the production of unconventional fossil fuels, notably shale gas and tight oil, thanks to technological innovations such as horizontal drilling and hydraulic fracturing (fracking). Economic impacts This new supply of energy has led to falling gas prices and a reduction of energy imports. Low gas prices have benefitted households and industry, especially steel production, fertilisers, plastics and basic petrochemicals. The production of tight oil is costly, so that a high oil price is required to make it economically viable. -
Husky Energy and BP Announce Integrated Oil Sands Joint Development
December 5, 2007 For immediate release Husky Energy and BP Announce Integrated Oil Sands Joint Development CALGARY, Alberta – Husky Energy Inc is pleased to announce that an agreement has been reached with BP to create an integrated, North American oil sands business consisting of pre-eminent upstream and downstream assets. The development will be comprised of two joint 50/50 partnerships, a Canadian oil sands partnership to be operated by Husky and a U.S. refining LLC to be operated by BP. Husky and BP will each contribute assets of equal value to the business. Husky will contribute its Sunrise asset located in the Athabasca oil sands in northeast Alberta, Canada and BP will contribute its Toledo refinery located in Ohio, USA. The transaction, which is subject to the execution of final definitive agreements and regulatory approval, is expected to close in the first quarter of 2008 and with effective date January 1, 2008. "This transaction completes Husky’s Sunrise Oil Sands total integration with respect to upstream and downstream solutions," said Mr. John C.S. Lau, President & Chief Executive Officer of Husky Energy Inc. “Husky is extremely pleased to be partnering with BP, a world class global E & P and Refining company. The joint venture will provide better monitoring of project execution, costs and completion timing for this mega project development.” “Toledo and Sunrise are excellent assets. BP’s move into oil sands with Husky is an opportunity to build a strategic, material position and the huge potential of Sunrise is the ideal entry point for BP into Canadian oil sands.” said Tony Hayward, BP’s group chief executive. -
Suncor Q3 2020 Investor Relations Supplemental Information Package
SUNCOR ENERGY Investor Information SUPPLEMENTAL Published October 28, 2020 SUNCOR ENERGY Table of Contents 1. Energy Sources 2. Processing, Infrastructure & Logistics 3. Consumer Channels 4. Sustainability 5. Technology Development 6. Integrated Model Calculation 7. Glossary SUNCOR ENERGY 2 SUNCOR ENERGY EnergyAppendix Sources 3 202003- 038 Oil Sands Energy Sources *All values net to Suncor In Situ Mining Firebag Base Plant 215,000 bpd capacity 350,000 bpd capacity Suncor WI 100% Suncor WI 100% 2,603 mmbbls 2P reserves1 1,350 mmbbls 2P reserves1 Note: Millennium and North Steepank Mines do not supply full 350,000 bpd of capacity as significant in-situ volumes are sent through Base Plant MacKay River Syncrude 38,000 bpd capacity Syncrude operated Suncor WI 100% 205,600 bpd net coking capacity 501 mmbbls 2P reserves1 Suncor WI 58.74% 1,217 mmbbls 2P reserves1 Future opportunities Fort Hills ES-SAGD Firebag Expansion Suncor operated Lewis (SU WI 100%) 105,000 bpd net capacity Meadow Creek (SU WI 75%) Suncor WI 54.11% 1,365 mmbbls 2P reserves1 First oil achieved in January 2018 SUNCOR ENERGY 1 See Slide Notes and Advisories. 4 1 Regional synergy opportunities for existing assets Crude logistics Upgrader feedstock optionality from multiple oil sands assets Crude feedstock optionality for Edmonton refinery Supply chain Sparing, warehousing & supply chain management Consolidation of regional contracts (lodging, busing, flights, etc.) Operational optimizations Unplanned outage impact mitigations In Situ Turnaround planning optimization Process -
Characteristics of Oil Sands Products
CHARACTERISTICS OF OIL SANDS PRODUCTS Heather D. Dettman Center for Spills in the Environment Oil Sands Products Training Portland, Maine December 4 & 5, 2012 2 Simplified —Oil Sands to Motor“ Value Chain Tailings Pipeline Transport Desalter Extraction Mining Pipeline Terminal Distillation W ater/Solids Primary Upgrading Removal Coking or Residue Performed at Upgraders DiluentAddition Hydrocracking Performed at Refineries In Situ Production Secondary Upgrading May be needed in future Catalytic Processing (Hydrogen) Refining Catalytic Processing (Hydrogen) Gasoline Diesel 3 Pipeline Definitions Transm ission Tailings Pipeline Transport Desalter Extraction Mining Pipeline Terminal Distillation Feeder W ater/Solids Primary Upgrading Removal Coking or Residue Performed at Upgraders DiluentAddition Hydrocracking Gathering Performed at Refineries In Situ Production Secondary Upgrading May be needed in future Catalytic Processing (Hydrogen) http://www.cepa.com /about-pipelines/types-of-pipelines Refining Catalytic Processing (Hydrogen) Gasoline Diesel 4 0hat Is Bitumen? ° Bitumen is the —extra heavy“ crude oil that remains after the biodegradation of oil in Northern Alberta ° Initial boiling point is 204°C/399.2°F ° Approximately 50wt% of the oil boils at temperatures below 524°C/975.2°F ° Biodegradation has resulted in organic acids being left behind in the oil ° Total acid number (TAN) is 3mg KOH/g which corresponds to an organic acid content of 3wt% in the oil ° Organic acid species in bitumen are relatively large molecules with 70wt% boiling -
Secure Fuels from Domestic Resources ______Profiles of Companies Engaged in Domestic Oil Shale and Tar Sands Resource and Technology Development
5th Edition Secure Fuels from Domestic Resources ______________________________________________________________________________ Profiles of Companies Engaged in Domestic Oil Shale and Tar Sands Resource and Technology Development Prepared by INTEK, Inc. For the U.S. Department of Energy • Office of Petroleum Reserves Naval Petroleum and Oil Shale Reserves Fifth Edition: September 2011 Note to Readers Regarding the Revised Edition (September 2011) This report was originally prepared for the U.S. Department of Energy in June 2007. The report and its contents have since been revised and updated to reflect changes and progress that have occurred in the domestic oil shale and tar sands industries since the first release and to include profiles of additional companies engaged in oil shale and tar sands resource and technology development. Each of the companies profiled in the original report has been extended the opportunity to update its profile to reflect progress, current activities and future plans. Acknowledgements This report was prepared by INTEK, Inc. for the U.S. Department of Energy, Office of Petroleum Reserves, Naval Petroleum and Oil Shale Reserves (DOE/NPOSR) as a part of the AOC Petroleum Support Services, LLC (AOC- PSS) Contract Number DE-FE0000175 (Task 30). Mr. Khosrow Biglarbigi of INTEK, Inc. served as the Project Manager. AOC-PSS and INTEK, Inc. wish to acknowledge the efforts of representatives of the companies that provided information, drafted revised or reviewed company profiles, or addressed technical issues associated with their companies, technologies, and project efforts. Special recognition is also due to those who directly performed the work on this report. Mr. Peter M. Crawford, Director at INTEK, Inc., served as the principal author of the report. -
Statoil-2015-Statutory-Report.Pdf
2015 Statutory report in accordance with Norwegian authority requirements © Statoil 2016 STATOIL ASA BOX 8500 NO-4035 STAVANGER NORWAY TELEPHONE: +47 51 99 00 00 www.statoil.com Cover photo: Øyvind Hagen Statutory report 2015 Board of directors report ................................................................................................................................................................................................................................................................ 3 The Statoil share ............................................................................................................................................................................................................................................................................ 4 Our business ..................................................................................................................................................................................................................................................................................... 4 Group profit and loss analysis .................................................................................................................................................................................................................................................... 6 Cash flows ........................................................................................................................................................................................................................................................................................ -
U.S.-Canada Cross- Border Petroleum Trade
U.S.-Canada Cross- Border Petroleum Trade: An Assessment of Energy Security and Economic Benefits March 2021 Submitted to: American Petroleum Institute 200 Massachusetts Ave NW Suite 1100, Washington, DC 20001 Submitted by: Kevin DeCorla-Souza ICF Resources L.L.C. 9300 Lee Hwy Fairfax, VA 22031 U.S.-Canada Cross-Border Petroleum Trade: An Assessment of Energy Security and Economic Benefits This report was commissioned by the American Petroleum Institute (API) 2 U.S.-Canada Cross-Border Petroleum Trade: An Assessment of Energy Security and Economic Benefits Table of Contents I. Executive Summary ...................................................................................................... 4 II. Introduction ................................................................................................................... 6 III. Overview of U.S.-Canada Petroleum Trade ................................................................. 7 U.S.-Canada Petroleum Trade Volumes Have Surged ........................................................... 7 Petroleum Is a Major Component of Total U.S.-Canada Bilateral Trade ................................. 8 IV. North American Oil Production and Refining Markets Integration ...........................10 U.S.-Canada Oil Trade Reduces North American Dependence on Overseas Crude Oil Imports ..................................................................................................................................10 Cross-Border Pipelines Facilitate U.S.-Canada Oil Market Integration...................................14 -
Facts About Alberta's Oil Sands and Its Industry
Facts about Alberta’s oil sands and its industry CONTENTS Oil Sands Discovery Centre Facts 1 Oil Sands Overview 3 Alberta’s Vast Resource The biggest known oil reserve in the world! 5 Geology Why does Alberta have oil sands? 7 Oil Sands 8 The Basics of Bitumen 10 Oil Sands Pioneers 12 Mighty Mining Machines 15 Cyrus the Bucketwheel Excavator 1303 20 Surface Mining Extraction 22 Upgrading 25 Pipelines 29 Environmental Protection 32 In situ Technology 36 Glossary 40 Oil Sands Projects in the Athabasca Oil Sands 44 Oil Sands Resources 48 OIL SANDS DISCOVERY CENTRE www.oilsandsdiscovery.com OIL SANDS DISCOVERY CENTRE FACTS Official Name Oil Sands Discovery Centre Vision Sharing the Oil Sands Experience Architects Wayne H. Wright Architects Ltd. Owner Government of Alberta Minister The Honourable Lindsay Blackett Minister of Culture and Community Spirit Location 7 hectares, at the corner of MacKenzie Boulevard and Highway 63 in Fort McMurray, Alberta Building Size Approximately 27,000 square feet, or 2,300 square metres Estimated Cost 9 million dollars Construction December 1983 – December 1984 Opening Date September 6, 1985 Updated Exhibit Gallery opened in September 2002 Facilities Dr. Karl A. Clark Exhibit Hall, administrative area, children’s activity/education centre, Robert Fitzsimmons Theatre, mini theatre, gift shop, meeting rooms, reference room, public washrooms, outdoor J. Howard Pew Industrial Equipment Garden, and Cyrus Bucketwheel Exhibit. Staffing Supervisor, Head of Marketing and Programs, Senior Interpreter, two full-time Interpreters, administrative support, receptionists/ cashiers, seasonal interpreters, and volunteers. Associated Projects Bitumount Historic Site Programs Oil Extraction demonstrations, Quest for Energy movie, Paydirt film, Historic Abasand Walking Tour (summer), special events, self-guided tours of the Exhibit Hall. -
Suncor Energy – Annual Report 2005
Suncor05ARcvr 3/8/06 1:33 PM Page 1 SUNCOR ENERGY INC. 2005 ANNUAL REPORT > growing strategically Suncor’s large resource base, growing production capacity and access to the North American energy market are the foundation of an integrated strategy aimed at driving profitable growth, a solid return on capital investment and strong returns for our shareholders. A staged approach to increasing our crude oil production capacity allows Suncor to better manage capital costs and incorporate new ideas and new technologies into our facilities. production 50,000 bpd 110,000 bpd (capacity) resources Third party bitumen 225,000 bpd Mining 260,000 bpd 350,000 bpd 500,000 bpd In-situ 500,000 – 550,000 bpd OUR PLANS TO GROW TO HALF A MILLION BARRELS PER DAY IN 2010 TO 2012* x Tower Natural gas Vacuum 1967 – Upgrader 1 1998 – Expand Upgrader 1, Vacuum Tower Future downstream integrat 2001 – Upgrader 2 Other customers 2005 – Expand Upgrader 2, 2008 – Further Expansion of Upgrader 2 2010-2012 – Upgrader 3 Denver refinery ion Sarnia refinery markets To provide greater North American markets reliability and flexibility to our feedstock supplies, we produce bitumen through our own mining and in-situ recovery technologies, and supplement that supply through innovative third-party agreements. Suncor takes an active role in connecting supply to consumer demand with a diverse portfolio of products, downstream assets and markets. Box 38, 112 – 4th Avenue S.W., Calgary, Alberta, Canada T2P 2V5 We produce conventional natural Our investments in renewable wind tel: (403) 269-8100 fax: (403) 269-6217 [email protected] www.suncor.com gas as a price hedge against the energy are a key part of Suncor’s cost of energy consumption. -
Unconventional Oil Resources Exploitation: a Review
Acta Montanistica Slovaca Volume 21 (2016), number 3, 247-257 Unconventional oil resources exploitation: A review Šárka Vilamová 1, Marian Piecha 2 and Zden ěk Pavelek 3 Unconventional crude oil sources are geographically extensive and include the tar sands of the Province of Alberta in Canada, the heavy oil belt of the Orinoco region of Venezuela and the oil shales of the United States, Brazil, India and Malagasy. High production costs and low oil prices have hitherto inhibited the inclusion of unconventional oil resources in the world oil resource figures. In the last decade, developing production technologies, coupled with the higher market value of oil, convert large quantities of unconventional oil into an effective resource. From the aspect of quantity and technological and economic recoverability are actually the most important tar sands. Tar sands can be recovered via surface mining or in-situ collection techniques. This is an up-stream part of exploitation process. Again, this is more expensive than lifting conventional petroleum, but for example, Canada's Athabasca (Alberta) Tar Sands is one example of unconventional reserve that can be economically recoverable with the largest surface mining machinery on the waste landscape with important local but also global environmental impacts. The similar technology of up-stream process concerns oil shales. The downstream part process of solid unconventional oil is an energetically difficult process of separation and refining with important increasing of additive carbon production and increasing of final product costs. In the region of Central Europe is estimated the mean volume of 168 million barrels of technically recoverable oil and natural gas liquids situated in Ordovician and Silurian age shales in the Polish- Ukrainian Foredeep basin of Poland. -
The Impact of the Decline in Oil Prices on the Economics, Politics and Oil Industry of Venezuela
THE IMPACT OF THE DECLINE IN OIL PRICES ON THE ECONOMICS, POLITICS AND OIL INDUSTRY OF VENEZUELA By Francisco Monaldi SEPTEMBER 2015 B | CHAPTER NAME ABOUT THE CENTER ON GLOBAL ENERGY POLICY The Center on Global Energy Policy provides independent, balanced, data-driven analysis to help policymakers navigate the complex world of energy. We approach energy as an economic, security, and environmental concern. And we draw on the resources of a world-class institution, faculty with real-world experience, and a location in the world’s finance and media capital. Visit us atenergypolicy. columbia.edu facebook.com/ColumbiaUEnergy twitter.com/ColumbiaUEnergy ABOUT THE SCHOOL OF INTERNATIONAL AND PUBLIC AFFAIRS SIPA’s mission is to empower people to serve the global public interest. Our goal is to foster economic growth, sustainable development, social progress, and democratic governance by educating public policy professionals, producing policy-related research, and conveying the results to the world. Based in New York City, with a student body that is 50 percent international and educational partners in cities around the world, SIPA is the most global of public policy schools. For more information, please visit www.sipa.columbia.edu THE IMPACT OF THE DECLINE IN OIL PRICES ON THE ECONOMICS, POLITICS AND OIL INDUSTRY OF VENEZUELA By Francisco Monaldi* SEPTEMBER 2015 *Francisco Monaldi is Baker Institute Fellow in Latin American Energy Policy and Adjunct Professor of Energy Economics at Rice University, Belfer Center Associate in Geopolitics of Energy at the Harvard Kennedy School, Professor at the Instituto de Estudios Superiores de Administracion (IESA) in Caracas, Venezuela, and Founding Director of IESA’s Center on Energy and the Environment.