Long-Lasting Effects of a Pegylated Mutant Cocaine Esterase (Coce) on the Reinforcing and Discriminative Stimulus Effects of Cocaine in Rats

Total Page:16

File Type:pdf, Size:1020Kb

Long-Lasting Effects of a Pegylated Mutant Cocaine Esterase (Coce) on the Reinforcing and Discriminative Stimulus Effects of Cocaine in Rats Neuropsychopharmacology (2012) 37, 1092–1103 & 2012 American College of Neuropsychopharmacology. All rights reserved 0893-133X/12 www.neuropsychopharmacology.org Long-Lasting Effects of a PEGylated Mutant Cocaine Esterase (CocE) on the Reinforcing and Discriminative Stimulus Effects of Cocaine in Rats Gregory T Collins*,1,2, Diwahar Narasimhan1, Alyssa R Cunningham1, Matthew E Zaks1, Joseph Nichols1, Mei-Chuan Ko1, Roger K Sunahara1 and James H Woods1 1 Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA Recent mutagenesis studies have identified a mutant G4C/S10C/T172R/G173Q cocaine esterase (CCRQ CocE) with an in vitro duration of action of 440 days. Although the in vivo duration of CCRQ CocE’s action was o24 h, modification of this enzyme with polyethylene glycol (PEG) polymers resulted in a CocE (PEG-CCRQ CocE) capable of preventing cocaine-induced lethality for up to 72 h. The current studies were aimed at providing a detailed characterization of the effectiveness, selectivity, and duration of PEG-CCRQ CocE’s actions in cocaine self-administration and discrimination assays in rats. Pretreatment with PEG-CCRQ CocE produced dose-dependent rightward shifts in the dose–response curves for cocaine self-administration and discrimination, with the highest dose of PEG-CCRQ CocE capable of producing an initial shift of cocaine’s reinforcing and interoceptive effects of 430-fold to the right, with significant inhibition of these effects observed for up to 72 h. Although PEG-CCRQ CocE also produced slight reductions in the rates of methylphenidate- and food- reinforced responding, these effects were short-lived, lasting o24 h. Finally, when taken together with the finding that PEG-CCRQ CocE failed to alter the cocaine-like interoceptive effects of either methylphenidate or d-amphetamine, these results suggest that PEG-CCRQ CocE possesses a high degree of pharmacologic specificity for cocaine and a prolonged in vivo duration of action. In conclusion, these studies provide strong evidence to support the further development of long-lasting, highly efficient CocEs, such as PEG-CCRQ CocE, as a potential therapeutic option for the treatment of cocaine abuse in humans. Neuropsychopharmacology (2012) 37, 1092–1103; doi:10.1038/npp.2011.226; published online 12 October 2011 Keywords: cocaine esterase; PEG-CCRQ CocE; cocaine; methlyphenidate; self-administration; drug discrimination INTRODUCTION is able to reach its central sites of action by altering the pharmacodynamic and/or pharmacokinetic properties of Cocaine abuse remains a significant worldwide public cocaine. Cocaine-specific antibodies achieve this by seques- health problem, with an estimated 20 million individuals tering cocaine in the periphery (eg, Fox et al, 1996; Martell using cocaine during the 2009 calendar year (UNODC, et al, 2005), whereas cocaine-specific enzymes and catalytic 2010). Despite longstanding efforts to identify small antibodies reduce the central effects of cocaine by enhan- molecules capable of selectively inhibiting the reinforcing cing the metabolism and clearance of cocaine, thus reducing effects of cocaine (eg, Dackis and O’Brien, 2003; Grabowski the circulating concentrations of cocaine within both the et al, 2004; Mello, 1990; Platt et al, 2002; Roberts and central and peripheral nervous systems (eg, Landry and Brebner, 2000; Tanda et al, 2009; Vocci et al, 2005), there Yang, 1997; Turner et al, 2002). are currently no approved pharmacotherapies for the Although cocaine-specific antibodies have been shown to treatment of cocaine abuse. Recently, significant efforts reduce the reinforcing and/or subjective effects of cocaine have been made toward developing protein-based pharma- in both preclinical (Carrera et al, 2000; Fox et al, 1996; cotherapies as an alternative approach to treating cocaine Kantak et al, 2000), and clinical studies (Haney et al, 2010; abuse with the goal of reducing the amount of cocaine that Martell et al, 2005), many of these studies also suggest that the protective effects of cocaine-specific antibodies are *Correspondence: Dr GT Collins, Alcohol and Drug Abuse Research easily surmounted by increasing the rate and/or amount of Center, McLean Hospital, Harvard Medical School, 115 Mill Street, cocaine intake. One approach to circumvent these stoichio- Belmont, MA 02478, USA, Tel: + 1 617 855 2611, Fax: 734 764 7118, E-mail: [email protected] metric limitations has been to develop catalytic antibodies, 2Current address: Alcohol and Drug Abuse Research Center, McLean such as mAb 15A10, which not only sequester cocaine in the Hospital, Harvard Medical School, Belmont, MA, USA periphery, but also catalyze its breakdown (Landry et al, Received 26 July 2011; revised 18 August 2011; accepted 18 August 1993). Although this approach has been shown to selectively 2011 decrease cocaine self-administration in rats (Baird et al, Prolonged inhibition of cocaine’s effects by PEG-CCRQ CocE GT Collins et al 1093 2000; Mets et al, 1998), its utility has been limited by the (PEG) moieties has been shown to lengthen in vivo relatively poor efficiency with which mAb 15A10 metabo- residence times by imparting stealth properties (Caliceti lizes cocaine (Kcat/Km B26-fold lower than butyrylcholi- and Veronese, 2003). The addition of two 40 kDa branched nesterase (BChE)). Nevertheless, together with the PEG moieties (one per monomer) to CCRQ CocE (PEG- demonstration that exogenous BChE is capable of reducing CCRQ CocE) dramatically increased its in vivo duration of the toxic effects of cocaine (Lynch et al, 1997), these action in rodents, with a 32.0-mg/kg dose of PEG-CCRQ experiments provided the theoretical basis for the develop- CocE capable of reducing the reinforcing effects of 0.1 mg/ ment of highly efficient cocaine-specific enzymes as kg/inj cocaine for up to 96 h, and the lethal effects of pharmacotherapies for cocaine toxicity and abuse (eg, Zhan 180.0 mg/kg cocaine for up to 72 h (Narasimhan et al, 2011). et al, 2003). Briefly, the current studies were aimed at extending these Cocaine is naturally metabolized by BChE to the inactive findings by providing a detailed characterization of the metabolites ecgonine methyl ester and benzoic acid, with effectiveness, selectivity, and duration of PEG-CCRQ CocE’s elimination half-lives for cocaine of B26 min in rats and actions in cocaine self-administration and discrimination B45 min in non-human and human primates (Carmona assays in rats. Accordingly, the effects of three doses of et al, 2005; Mello et al, 2002; Mendelson et al, 1999). In an PEG-CCRQ CocE were evaluated against at least a 100-fold attempt to improve upon BChE’s catalytic efficiency, Zhan range of cocaine doses in self-administration and drug and colleagues have used site-directed mutagenesis to create discrimination procedures, with the daily assessment of mutant BChEs capable of hydrolyzing cocaine B450–2000 cocaine dose–response curves used to determine the in vivo times more efficiently than native BChE (Pan et al, 2005; duration of PEG-CCRQ CocE’s actions. In addition, Zheng et al, 2008). These mutant BChEs have shown methylphenidate (self-administration and drug discrimina- promising results when evaluated in rodents, effectively tion) and d-amphetamine (drug discrimination only) were reducing the cardiovascular, lethal, and response-reinstat- also used to evaluate PEG-CCRQ CocE’s pharmacologic ing effects of cocaine (Brimijoin et al, 2008; Xue et al, 2010; selectivity, whereas rates of food-reinforced responding Zheng et al, 2008). In addition, an albumin-fused mutant were used to evaluate the behavioral selectivity of PEG- BChE (Albu-CocH) has been shown to decrease progressive CCRQ CocE’s effects. ratio responding for cocaine (Carroll et al, 2011), suggesting that it is also capable of reducing the reinforcing effective- ness of cocaine. METHODS In addition to mutant BChEs, a highly efficient (Kcat/Km Subjects B800-fold greater than BChE; Larsen et al, 2002; Turner et al, 2002), bacterial cocaine esterase (CocE) has been Male Sprague-Dawley rats (325–350 g) were obtained from isolated from a strain of Rhodococcus growing in the soil Harlan (Indianapolis, IN) and maintained in a temperature around coca plants (Bresler et al, 2000) and extensively and humidity controlled environment, on a 12-h dark/light evaluated as a possible treatment for cocaine toxicity and cycle with lights on at 0700 h. All rats were singly housed abuse. Although the wild-type (wt) form of CocE is capable with free access to tap water and B20 g of food per day. All of dose dependently protecting mice and rats against the experimental procedures were approved by the University cardiovascular, convulsant, and lethal effects of cocaine, it is of Michigan Committee on the Use and Care of Animals, rapidly inactivated at body temperature resulting in an and performed in accordance with the Guide for the Care in vivo half-life of B15 min (Cooper et al, 2006; Jutkiewicz and Use of Laboratory Animals as adopted and promul- et al, 2009; Ko et al, 2007, 2009; Wood et al, 2010). Site- gated by the National Institutes of Health. directed mutagenesis studies aimed at improving the thermostability of CocE have identified an equally efficient Surgery mutant CocE (T172R/G173Q CocE, RQ CocE, DM CocE) with an in vivo half-life of B4.5 h in mice (Gao et al, 2009; Rats were prepared with chronic indwelling catheters in the Narasimhan et al, 2010), and a high degree of pharmaco- left femoral vein under ketamine:xylazine (90 : 10 mg/kg; logic specificity (Brim et al, 2011). In addition to dose intraperitoneal (IP)) anesthesia. Catheters were passed dependently inhibiting the cardiovascular, convulsant, under the skin and attached to stainless steel tubing that lethal, and reinforcing effects of cocaine in rats (Collins exited through a metal tether button that was sutured to the et al, 2009, 2011b), DM CocE has also been shown to muscle between the scapulae. A 5–7-day recovery period effectively reverse the cardiovascular effects associated with was provided before experimentation.
Recommended publications
  • Computational Modeling of Solvent Effects on Protein-Ligand
    Commun. Comput. Phys. Vol. 13, No. 1, pp. 31-60 doi: 10.4208/cicp.130911.121011s January 2013 Computational Modeling of Solvent Effects on Protein-Ligand Interactions Using Fully Polarizable Continuum Model and Rational Drug Design Fang Zheng and Chang-Guo Zhan∗ Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, USA. Received 13 September 2011; Accepted (in revised version) 12 October 2011 Available online 12 June 2012 Abstract. This is a brief review of the computational modeling of protein-ligand in- teractions using a recently developed fully polarizable continuum model (FPCM) and rational drug design. Computational modeling has become a powerful tool in under- standing detailed protein-ligand interactions at molecular level and in rational drug design. To study the binding of a protein with multiple molecular species of a ligand, one must accurately determine both the relative free energies of all of the molecular species in solution and the corresponding microscopic binding free energies for all of the molecular species binding with the protein. In this paper, we aim to provide a brief overview of the recent development in computational modeling of the solvent ef- fects on the detailed protein-ligand interactions involving multiple molecular species of a ligand related to rational drug design. In particular, we first briefly discuss the main challenges in computational modeling of the detailed protein-ligand interactions involving the multiple molecular species and then focus on the FPCM model and its applications. The FPCM method allows accurate determination of the solvent effects in the first-principles quantum mechanism (QM) calculations on molecules in solu- tion.
    [Show full text]
  • September, 2008
    NIDA - Director's Report - September, 2008 NIDA Home > Publications > Director's Reports Director's Report to the National Advisory Council on Drug Abuse - September, 2008 Index Research Findings Cross-Divisional Research Basic Neurosciences Research Basic Behavioral Research Behavioral and Brain Development Research Clinical Neuroscience Research Epidemiology and Etiology Research Prevention Research Research on Behavioral and Combined Treatments for Drug Abuse Research on Pharmacotherapies for Drug Abuse Research on Medical Consequences of Drug Abuse and Co-Occurring Infections (HIV/AIDS, HCV) Services Research Clinical Trials Network Research International Research Intramural Research Program Activities Extramural Policy and Review Activities Congressional Affairs International Activities Meetings and Conferences Media and Education Activities Planned Meetings Publications Staff Highlights Grantee Honors https://archives.drugabuse.gov/DirReports/DirRep908/Default.html[11/17/16, 11:11:47 PM] NIDA - Director's Report - September, 2008 Archive Home | Accessibility | Privacy | FOIA (NIH) | Current NIDA Home Page The National Institute on Drug Abuse (NIDA) is part of the National Institutes of Health (NIH) , a component of the U.S. Department of Health and Human Services. Questions? _ See our Contact Information. https://archives.drugabuse.gov/DirReports/DirRep908/Default.html[11/17/16, 11:11:47 PM] NIDA - Director's Report - September, 2008 NIDA Home > Publications > Director's Reports > September, 2008 Index Director's Report to the National
    [Show full text]
  • Biochemical Characterization and Structural Analysis of a Highly Proficient Cocaine Esterase†,‡ James M
    Biochemistry 2002, 41, 12297-12307 12297 Biochemical Characterization and Structural Analysis of a Highly Proficient Cocaine Esterase†,‡ James M. Turner,§,| Nicholas A. Larsen,§,| Amrik Basran,⊥ Carlos F. Barbas, III,§,| Neil C. Bruce,⊥ Ian A. Wilson,*,§,| and Richard A. Lerner*,§,| Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, and Institute of Biotechnology, Cambridge UniVersity, Tennis Court Road, Cambridge CB2 1QT, U.K. ReceiVed May 15, 2002; ReVised Manuscript ReceiVed August 1, 2002 ABSTRACT: The bacterial cocaine esterase, cocE, hydrolyzes cocaine faster than any other reported cocaine -1 esterase. Hydrolysis of the cocaine benzoyl ester follows Michaelis-Menten kinetics with kcat ) 7.8 s and KM ) 640 nM. A similar rate is observed for hydrolysis of cocaethylene, a more potent cocaine metabolite that has been observed in patients who concurrently abuse cocaine and alcohol. The high catalytic proficiency, lack of observable product inhibition, and ability to hydrolyze both cocaine and cocaethylene make cocE an attractive candidate for rapid cocaine detoxification in an emergency setting. Recently, we determined the crystal structure of this enzyme, and showed that it is a serine carboxylesterase, with a catalytic triad formed by S117, H287, and D259 within a hydrophobic active site, and an oxyanion hole formed by the backbone amide of Y118 and the Y44 hydroxyl. The only enzyme previously known to use a Tyr side chain to form the oxyanion hole is prolyl oligopeptidase, but the Y44F mutation of cocE has a more deleterious effect on the specificity rate constant (kcat/KM) than the analogous Y473F mutation of prolyl oligopeptidase.
    [Show full text]
  • Enzyme Therapy: Current Challenges and Future Perspectives
    International Journal of Molecular Sciences Review Enzyme Therapy: Current Challenges and Future Perspectives Miguel de la Fuente 1,2 , Laura Lombardero 1, Alfonso Gómez-González 3, Cristina Solari 4, Iñigo Angulo-Barturen 5, Arantxa Acera 2, Elena Vecino 2 , Egoitz Astigarraga 1 and Gabriel Barreda-Gómez 1,* 1 Department of Research and Development, IMG Pharma Biotech S.L., 48160 Derio, Spain; [email protected] (M.d.l.F.); [email protected] (L.L.); [email protected] (E.A.) 2 Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; [email protected] (A.A.); [email protected] (E.V.) 3 Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; [email protected] 4 Department of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; [email protected] 5 The Art of Discovery, 48160 Derio, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-944-316-577 Abstract: In recent years, enzymes have risen as promising therapeutic tools for different pathologies, from metabolic deficiencies, such as fibrosis conditions, ocular pathologies or joint problems, to cancer or cardiovascular diseases. Treatments based on the catalytic activity of enzymes are able to convert a wide range of target molecules to restore the correct physiological metabolism. These treatments present several advantages compared to established therapeutic approaches thanks to their affinity and specificity properties. However, enzymes present some challenges, such as short in vivo half-life, lack of targeted action and, in particular, patient immune system reaction against Citation: de la Fuente, M.; the enzyme.
    [Show full text]
  • Characterization and Engineering of a Two-Enzyme System for Plastics Depolymerization
    Characterization and engineering of a two-enzyme system for plastics depolymerization Brandon C. Knotta,1, Erika Ericksona,1, Mark D. Allenb,1, Japheth E. Gadoa,c,1, Rosie Grahamb, Fiona L. Kearnsd, Isabel Pardoa, Ece Topuzlua,e, Jared J. Andersona, Harry P. Austinb, Graham Dominicka, Christopher W. Johnsona, Nicholas A. Rorrera, Caralyn J. Szostkiewicza, Valérie Copiée, Christina M. Paynec, H. Lee Woodcockd, Bryon S. Donohoef, Gregg T. Beckhama,2, and John E. McGeehanb,2 aRenewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401; bCentre for Enzyme Innovation, School of Biological Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, United Kingdom; cDepartment of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506; dDepartment of Chemistry, University of South Florida, Tampa, FL 33620; eDepartment of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717; and fBiosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 Edited by Alexis T. Bell, University of California, Berkeley, CA, and approved August 26, 2020 (received for review April 11, 2020) Plastics pollution represents a global environmental crisis. In re- glycol (EG). Given the prevalence of esterase enzymes in nature, sponse, microbes are evolving the capacity to utilize synthetic PET biodegradation has been studied for nearly two decades, with polymers as carbon and energy sources. Recently, Ideonella sakaien- multiple cutinase enzymes reported to perform depolymerization sis wasreportedtosecreteatwo-enzyme system to deconstruct (17–26). In 2016, Yoshida et al. (10) reported the discovery and polyethylene terephthalate (PET) to its constituent monomers. Spe- characterization of the soil bacterium, Ideonella sakaiensis 201-F6, cifically, the I.
    [Show full text]
  • Carboxylic Ester Hydrolases in Bacteria: Active Site, Structure, Function and Application
    crystals Review Carboxylic Ester Hydrolases in Bacteria: Active Site, Structure, Function and Application Changsuk Oh 1 , T. Doohun Kim 2,* and Kyeong Kyu Kim 1,* 1 Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; [email protected] 2 Department of Chemistry, College of Natural Science, Sookmyung Women’s University, Seoul 04310, Korea * Correspondence: [email protected] (T.D.K.); [email protected] (K.K.K.) Received: 4 October 2019; Accepted: 7 November 2019; Published: 14 November 2019 Abstract: Carboxylic ester hydrolases (CEHs), which catalyze the hydrolysis of carboxylic esters to produce alcohol and acid, are identified in three domains of life. In the Protein Data Bank (PDB), 136 crystal structures of bacterial CEHs (424 PDB codes) from 52 genera and metagenome have been reported. In this review, we categorize these structures based on catalytic machinery, structure and substrate specificity to provide a comprehensive understanding of the bacterial CEHs. CEHs use Ser, Asp or water as a nucleophile to drive diverse catalytic machinery. The α/β/α sandwich architecture is most frequently found in CEHs, but 3-solenoid, β-barrel, up-down bundle, α/β/β/α 4-layer sandwich, 6 or 7 propeller and α/β barrel architectures are also found in these CEHs. Most are substrate-specific to various esters with types of head group and lengths of the acyl chain, but some CEHs exhibit peptidase or lactamase activities. CEHs are widely used in industrial applications, and are the objects of research in structure- or mutation-based protein engineering. Structural studies of CEHs are still necessary for understanding their biological roles, identifying their structure-based functions and structure-based engineering and their potential industrial applications.
    [Show full text]
  • An Engineered Cocaine Hydrolase Blunts and Reverses Cardiovascular Responses to Cocaine in Rats
    0022-3565/04/3103-1046–1052$20.00 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS Vol. 310, No. 3 Copyright © 2004 by The American Society for Pharmacology and Experimental Therapeutics 68122/1161154 JPET 310:1046–1052, 2004 Printed in U.S.A. An Engineered Cocaine Hydrolase Blunts and Reverses Cardiovascular Responses to Cocaine in Rats Yang Gao and Stephen Brimijoin Department of Molecular Pharmacology, Mayo Clinic, Rochester, Minnesota Received March 9, 2004; accepted April 16, 2004 ABSTRACT There is increasing evidence that human plasma butyrylcho- baseline within 60 s. These transient pressor responses were Downloaded from linesterase can lower the toxicity of cocaine overdose. Re- prolonged up to 5 min when vagal reflexes were blocked with cently, with structure-based protein engineering, we converted atropine (1 mg/kg). Under such conditions, pretreatment with this enzyme into a more efficient cocaine hydrolase (CocE). CocE (3 mg/kg i.v.) reduced cocaine’s pressor effect, whereas When tested in rats, CocE shortened cocaine’s plasma half-life delayed treatment with CocE rapidly restored normal mean and decreased drug accumulation in heart and brain. Here, we blood pressure. CocE had no hemodynamic effects in control have investigated the potential of CocE to antagonize cardio- animals not treated with cocaine. The finding that CocE can vascular responses to cocaine. Anesthetized rats were instru- oppose pre-established physiologic actions of cocaine sug- jpet.aspetjournals.org mented for continuous recording of blood pressure from the gests that similar or improved hydrolases might help rescue femoral artery. Cocaine (7 mg/kg i.v.) caused blood pressure to patients from the life-threatening toxicity of drug overdose.
    [Show full text]
  • Review Human Carboxylesterase Isozymes: Catalytic Properties and Rational Drug Design
    Drug Metab. Pharmacokinet. 21 (3): 173–185 (2006). Review Human Carboxylesterase Isozymes: Catalytic Properties and Rational Drug Design Teruko IMAI Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan Full text of this paper is available at http://www.jstage.jst.go.jp/browse/dmpk Summary: Human carboxylesterase 1 (hCE-1, CES1A1, HU1) and carboxylesterase 2 (hCE-2, hiCE, HU3)areaserineesteraseinvolvedinbothdrugmetabolismandactivation.AlthoughbothhCE-1and hCE-2 are present in several organs, the hydrolase activity of liver and small intestine is predominantly attributed to hCE-1 and hCE-2, respectively. The substrate speciˆcity of hCE-1 and hCE-2 is signiˆcant- ly diŠerent. hCE-1 mainly hydrolyzes a substrate with a small alcohol group and large acyl group, but its wide active pocket sometimes allows it to act on structurally distinct compounds of either large or small alcohol moiety. In contrast, hCE-2 recognizes a substrate with a large alcohol group and small acyl group, and its substrate speciˆcity may be restricted by a capability of acyl-hCE-2 conjugate formation due to the presence of conformational interference in the active pocket. Furthermore, hCE-1 shows high transesteriˆcation activity, especially with hydrophobic alcohol, but negligible for hCE-2. Transesteriˆ- cation may be a reason for the substrate speciˆcity of hCE-1 that hardly hydrolyzes a substrate with hydrophobic alcohol group, because transesteriˆcation can progress at the same time when a compound is hydrolyzed by hCE-1. From the standpoint of drug absorption, the intestinal hydrolysis by CES during drug absorption is evaluated in rat intestine and Caco2-cell line. The rat in situ single-pass perfusion shows markedly exten- sive hydrolysis in the intestinal mucosa.
    [Show full text]
  • Front Matter
    JOURNAL OF BACTERIOLOGY VOLUME 174 * DECEMBER 1992 * NUMBER 24 Graham C. Walker, Editor in Chief (1996) Dale Kaiser, Minireview Editor (1994) Massachusetts Institute of Technology, Stanford University School of Cambridge, Mass. Susan Gottesman, Editor (1994) Medicine, Stanford, Calif. National Cancer Institute, Editor (1997) Bethesda, Md. A. L. Sonenshein, Editor (1995) Terrance J. Beveridge, Boston, Mass. University of Guelph, Guelph, Canada E. Peter Greenberg, Editor (1996) Tufts University, University ofIowa, Iowa Kenneth N. Timmis, Editor (1997) James G. Ferry, Editor (1996) City, Iowa Virginia Polytechnic Institute and GBF, Braunschweig, Gennany State University, Blacksburg, Va. Carol A. Gross, Editor (1995) Robert A. Weisberg, Editor (1995) University of Wisconsin, National Institute of Child Dan Fraenkel, Editor (1996) Madison, Wis. Health and Human Harvard Medical School, Boston, Mass. Development, Bethesda, Md. EDITORIAL BOARD Sankar Adhya (1993) Susan H. Fisher (1994) Thomas Lessie (1992) H. Steven Seifert (1994) Stuart J. Austin (1993) Patricia L. Foster (1993) Roger C. Levesque (1994) Peter Setlow (1993) Barbara Bachmann (1993) Michael G. Fried (1994) Mary E. Lidstrom (1993) Hideo Shinagawa (1994) Margaret H. Bayer (1992) David I. Friedman (1992) E. C. C. Lin (1994) Howard A. Shuman (1994) Douglas E. Berg (1994) Barbel Friedrich (1993) Lasse Lindahl (1993) Gerald Smith (1994) Robert W. Bernlohr (1994) Clement Furlong (1993) John W. Little (1992) Issar Smith (1993) Volkmar Braun (1992) Robert Gennis (1994) Jack London (1993) G. Dennis Sprott (1992) Richard Calendar (1994) Costa P. Georgopoulos (1993) Sharon Long (1992) Catherine Squires (1993) George M. Carman (1994) Jane Gibson (1994) Paul S. Lovett (1993) Gary Stacey (1994) Sherwood Casjens (1994) Larry Gold (1994) Paul W.
    [Show full text]
  • Benzoic Acid Is Formed Predominantly from the Benzoyl Ester Hydrolysis in the Presence of Cocaine Hydrolase
    LETTER LETTER REPLY TO CURRY AND COOMBS: Benzoic acid is formed predominantly from the benzoyl ester hydrolysis in the presence of cocaine hydrolase Fang Zhenga,b,1 and Chang-Guo Zhana,b,1 As is well known, and also pointed out correctly by the detected highest NC concentration generated by Curry and Coombs (1), cocaine has three metabolic intravenous injection of 5 mg/kg cocaine was 4.9 ng/mL, pathways associated with butyrylcholinesterase (BChE), less than 1% of the highest cocaine concentration carboxylesterase, and microsomal cytochrome P450 of ∼1,700 ng/kg. Hence, the NC concentrations were 3A4, which convert cocaine to ecgonine methyl ester negligible compared with the corresponding co- (EME) + benzoic acid (BA), benzoylecgonine (BE) + caine and BE concentrations under the experimental methanol, and norcocaine (NC), respectively. However, conditions used in our study in rats (2). Therefore, both in contrast to what Curry and Coombs describe, BA BA and EME are formed predominantly and equally cannot be formed from EME. Instead, further hydrolysis from the hydrolysis of the cocaine benzoyl ester group of EME can only produce ecgonine and methanol. (cocaine → EME + BA). It is reasonable to detect either Therefore, further metabolism of EME does not contrib- EME or BA for analyzing the effects of CocH3-Fc(M3) ute to BA formation at all. The questions raised by Curry on cocaine metabolism via the benzoyl ester hydroly- and Coombs (1) are based on a misunderstanding of the sis, though it would not hurt to detect all of the me- metabolic pathway via EME. tabolites individually, as we have done more recently.
    [Show full text]
  • Table Continues on Reverse Perilipin-1 (PLIN1) O60240 Ras Association Domain-Containing Protein 2 (RASSF2) P50749
    5'-AMP-activated protein kinase subunit beta-1 (PRKAB1) Q9Y478 Erythropoietin (EPO) P01588 Adhesion G-protein coupled receptor G1 (ADGRG1) Q9Y653 Fatty acid-binding protein 9 (FABP9) Q0Z7S8 Aldehyde dehydrogenase, dimeric NADP-preferring (ALDH3A1) P30838 Forkhead box protein O1 (FOXO1) Q12778 Anterior gradient protein 2 homolog (AGR2) O95994 Fructose-2,6-bisphosphatase TIGAR (TIGAR) Q9NQ88 Apoptosis-inducing factor 1, mitochondrial (AIFM1) O95831 Hematopoietic prostaglandin D synthase (HPGDS) O60760 B-cell scaffold protein with ankyrin repeats (BANK1) Q8NDB2 Inactive tyrosine-protein kinase 7 (PTK7) Q13308 BH3-interacting domain death agonist (BID) P55957 Integrin beta-1-binding protein 1 (ITGB1BP1) O14713 BMP and activin membrane-bound inhibitor homolog (BAMBI) Q13145 Interferon-inducible double-stranded RNA-dependent protein kinase O75569 activator A (PRKRA) Calcitonin (CALCA) P01258 Kidney Injury Molecule (KIM1) Q96D42 Calreticulin (CALR) P27797 Killer cell immunoglobulin-like receptor 3DL1 (KIR3DL1) P43629 Carbonic anhydrase 12 (CA12) O43570 Leukotriene A-4 hydrolase (LTA4H) P09960 Carbonic anhydrase 14 (CA14) Q9ULX7 Linker for activation of T-cells family member 2 (LAT2) Q9GZY6 Casein kinase I isoform delta (CSNK1D) P48730 Lutropin subunit beta (LHB) P01229 Claspin (CLSPN) Q9HAW4 Macrophage erythroblast attacher (MAEA) Q7L5Y9 CMP-N-acetylneuraminate-beta-galactosamide-alpha-2,3- Q11201 Macrophage-capping protein (CAPG) P40121 sialyltransferase 1 (ST3GAL1) Cocaine esterase (CES2) O00748 Melanoma-associated antigen D1 (MAGED1) Q9Y5V3
    [Show full text]
  • (Ade1) with Hysteresis Behavior and Quorum-Quenching Activity
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.16.421545; this version posted December 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Molecular and functional basis of a novel Amazonian Dark Earth Esterase 1 (Ade1) with hysteresis behavior and quorum-quenching activity Tania Churasacari Vinces1, Anacleto Silva de Souza1, Cecília F. Carvalho1, Raphael D. Teixeira2, Beatriz Aparecida Passos Bismara4, ElisaBete J. Vicente1, José O. Pereira3, RoBson Francisco de Souza1, Mauricio Yonamine4, Sandro RoBerto Marana2, Chuck Shaker Farah2 and Cristiane R. Guzzo1*. 1Department of MicroBiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil. 2Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil. 3 Biotechnology Group, Federal University of Amazonas, Amazonas, Brazil 4 Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil. Corresponding author E-mail: [email protected] and [email protected] Running title: Esterase with hysteretic behavior and quorum-quenching activity To whom correspondence should be addressed: Prof. Cristiane Guzzo Carvalho, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374, Cidade Universitária, 05508-900, São Paulo-SP, Brazil, Telephone: +55 11 3091-7298; e-mail: [email protected] Keywords: metagenomic, X-ray crystallography, molecular dynamics simulations, bioinformatic, and enzymatic kinetics. bioRxiv preprint doi: https://doi.org/10.1101/2020.12.16.421545; this version posted December 16, 2020.
    [Show full text]