Xiii DISCONTINUED SURFACE-WATER DISCHARGE
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
NON-TIDAL BENTHIC MONITORING DATABASE: Version 3.5
NON-TIDAL BENTHIC MONITORING DATABASE: Version 3.5 DATABASE DESIGN DOCUMENTATION AND DATA DICTIONARY 1 June 2013 Prepared for: United States Environmental Protection Agency Chesapeake Bay Program 410 Severn Avenue Annapolis, Maryland 21403 Prepared By: Interstate Commission on the Potomac River Basin 51 Monroe Street, PE-08 Rockville, Maryland 20850 Prepared for United States Environmental Protection Agency Chesapeake Bay Program 410 Severn Avenue Annapolis, MD 21403 By Jacqueline Johnson Interstate Commission on the Potomac River Basin To receive additional copies of the report please call or write: The Interstate Commission on the Potomac River Basin 51 Monroe Street, PE-08 Rockville, Maryland 20850 301-984-1908 Funds to support the document The Non-Tidal Benthic Monitoring Database: Version 3.0; Database Design Documentation And Data Dictionary was supported by the US Environmental Protection Agency Grant CB- CBxxxxxxxxxx-x Disclaimer The opinion expressed are those of the authors and should not be construed as representing the U.S. Government, the US Environmental Protection Agency, the several states or the signatories or Commissioners to the Interstate Commission on the Potomac River Basin: Maryland, Pennsylvania, Virginia, West Virginia or the District of Columbia. ii The Non-Tidal Benthic Monitoring Database: Version 3.5 TABLE OF CONTENTS BACKGROUND ................................................................................................................................................. 3 INTRODUCTION .............................................................................................................................................. -
Pearly Mussels in NY State Susquehanna Watershed Paul H
Pearly mussels in NY State Susquehanna Watershed Paul H. Lord, Willard N. Harman & Timothy N. Pokorny Introduction Preliminary Results Discussion Pearly mussels (unionids) New unionid SGCN identified • Mobile substrates appear exacerbated endangered native mollusks in Susquehanna River Watershed by surge stormwater inputs • Life cycle complex • Eastern Pearlshell (Margaritifera margaritifera) - made worse by impervious surfaces - includes fish parasitism -- in Otselic River headwaters • Unionids impacted - involves watershed quality parameters Historical SGCN found in many locations by ↓O2, siltation, endocrine disrupting chemicals • 4 Species of Greatest Conservation Need • Regularly downstream of extended riffle - from human watershed use (SGCN) historically found • Require minimally mobile substrates • River location consistency with old maps in NY State Susquehanna Watershed • No observed wastewater treatment plant impact associated with ↑ unionids - Brook Floater (Alasmidonta varicosa) -adult unionids more easily observed - Green Floater (Lasmigona subviridis) Table 1. NYSDEC freshwater pearly mussel “species of greatest conservation need” (SGCN) observed in the Upper Susquehanna from kayaks - Yellow Lamp Mussel (Lampsilis cariosa) Watershed while mapping and searching rivers in the summers of 2008 Elktoe -Elktoe (Alasmidonta marginata) and 2009. Brook Floater = Alasmidonta varicosa; elktoe = Alasmidonta • Prior sampling done where convenient marginata; green floater = Lasmigona subviridis; yellow lamp mussel = - normally at intersection -
Chesapeake Bay Nontidal Network: 2005-2014
Chesapeake Bay Nontidal Network: 2005-2014 NY 6 NTN Stations 9 7 10 8 Susquehanna 11 82 Eastern Shore 83 Western Shore 12 15 14 Potomac 16 13 17 Rappahannock York 19 21 20 23 James 18 22 24 25 26 27 41 43 84 37 86 5 55 29 85 40 42 45 30 28 36 39 44 53 31 38 46 MD 32 54 33 WV 52 56 87 34 4 3 50 2 58 57 35 51 1 59 DC 47 60 62 DE 49 61 63 71 VA 67 70 48 74 68 72 75 65 64 69 76 66 73 77 81 78 79 80 Prepared on 10/20/15 Chesapeake Bay Nontidal Network: All Stations NTN Stations 91 NY 6 NTN New Stations 9 10 8 7 Susquehanna 11 82 Eastern Shore 83 12 Western Shore 92 15 16 Potomac 14 PA 13 Rappahannock 17 93 19 95 96 York 94 23 20 97 James 18 98 100 21 27 22 26 101 107 24 25 102 108 84 86 42 43 45 55 99 85 30 103 28 5 37 109 57 31 39 40 111 29 90 36 53 38 41 105 32 44 54 104 MD 106 WV 110 52 112 56 33 87 3 50 46 115 89 34 DC 4 51 2 59 58 114 47 60 35 1 DE 49 61 62 63 88 71 74 48 67 68 70 72 117 75 VA 64 69 116 76 65 66 73 77 81 78 79 80 Prepared on 10/20/15 Table 1. -
Flood Event of 4/5/1941 - 4/7/1941
Flood Event of 4/5/1941 - 4/7/1941 Chemung Site Flood Stage Date Crest Flow Category Basin Stream County of Gage County of Forecast Point Chemung 16.00 4/6/1941 16.92 55,300 Minor Chemung Chemung River Chemung Chemung Corning 29.00 4/6/1941 30.09 -9,999 Moderate Chemung Chemung River Steuben Steuben Main Stem Susquehanna Site Flood Stage Date Crest Flow Category Basin Stream County of Gage County of Forecast Point Monroeton 14.00 4/5/1941 14.20 8,640 Minor Upper Main Stem Towanda Creek Bradford Bradford Susquehanna Towanda 16.00 4/6/1941 18.47 122,000 Moderate Upper Main Stem Susquehanna River Bradford Bradford Susquehanna Wilkes-Barre 22.00 4/7/1941 23.50 138,000 Minor Upper Main Stem Susquehanna River Luzerne Luzerne Susquehanna North Branch Susquehanna Site Flood Stage Date Crest Flow Category Basin Stream County of Gage County of Forecast Point Chenango Forks 10.00 4/7/1941 11.86 29,000 Minor North Branch Chenango River Broome Broome Susquehanna Cincinnatus 9.00 4/6/1941 9.44 4,980 Minor North Branch Otselic River Cortland Cortland Susquehanna Conklin 11.00 4/6/1941 13.40 24,900 Minor North Branch North Branch Broome Broome Susquehanna Susquehanna River Cortland 8.00 4/6/1941 12.49 7,880 Moderate North Branch Tioughnioga River Cortland Cortland Susquehanna Sherburne 8.00 4/6/1941 9.25 4,960 Moderate North Branch Chenango River Chenango Chenango Susquehanna Vestal 18.00 4/7/1941 20.29 53,400 Minor North Branch North Branch Broome Broome Susquehanna Susquehanna River Created On: 8/16/2016 Page 1 of 2 Waverly 11.00 4/6/1941 14.75 68,500 Minor North Branch North Branch Bradford Tioga Susquehanna Susquehanna River Weather Summary The weather summary is unavailable at this time. -
Susquehanna Riyer Drainage Basin
'M, General Hydrographic Water-Supply and Irrigation Paper No. 109 Series -j Investigations, 13 .N, Water Power, 9 DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY CHARLES D. WALCOTT, DIRECTOR HYDROGRAPHY OF THE SUSQUEHANNA RIYER DRAINAGE BASIN BY JOHN C. HOYT AND ROBERT H. ANDERSON WASHINGTON GOVERNMENT PRINTING OFFICE 1 9 0 5 CONTENTS. Page. Letter of transmittaL_.__.______.____.__..__.___._______.._.__..__..__... 7 Introduction......---..-.-..-.--.-.-----............_-........--._.----.- 9 Acknowledgments -..___.______.._.___.________________.____.___--_----.. 9 Description of drainage area......--..--..--.....-_....-....-....-....--.- 10 General features- -----_.____._.__..__._.___._..__-____.__-__---------- 10 Susquehanna River below West Branch ___...______-_--__.------_.--. 19 Susquehanna River above West Branch .............................. 21 West Branch ....................................................... 23 Navigation .--..........._-..........-....................-...---..-....- 24 Measurements of flow..................-.....-..-.---......-.-..---...... 25 Susquehanna River at Binghamton, N. Y_-..---...-.-...----.....-..- 25 Ghenango River at Binghamton, N. Y................................ 34 Susquehanna River at Wilkesbarre, Pa......_............-...----_--. 43 Susquehanna River at Danville, Pa..........._..................._... 56 West Branch at Williamsport, Pa .._.................--...--....- _ - - 67 West Branch at Allenwood, Pa.....-........-...-.._.---.---.-..-.-.. 84 Juniata River at Newport, Pa...-----......--....-...-....--..-..---.- -
Upper Susquehanna Subbasin Survey: a Water Quality and Biological Assessment, June – September 2007
Upper Susquehanna Subbasin Survey: A Water Quality and Biological Assessment, June – September 2007 The Susquehanna River Basin Commission (SRBC) conducted a water quality and biological survey of the Upper Susquehanna Subbasin from June to September 2007. This survey is part of SRBC’s Subbasin Survey Program, which is funded in part by the United States Environmental Protection Agency (USEPA). The Subbasin Survey Program consists of two- year assessments in each of the six major subbasins (Figure 1) on a rotating schedule. This report details the Year-1 survey, which consists of point-in-time water chemistry, macroinvertebrate, and habitat data collection and assessments of the major tributaries and areas of interest throughout the Upper Susquehanna Subbasin. The Year-2 survey will be conducted in the Tioughnioga River over a one-year time period beginning in summer 2008. The Year-2 survey is part of a larger monitoring effort associated with an environmental restoration effort at Whitney Point Lake. Previous SRBC surveys of the Upper Susquehanna Subbasin were conducted in 1998 (Stoe, 1999) and 1984 (McMorran, 1985). Subbasin survey information is used by SRBC staff and others to: • evaluate the chemical, biological, and habitat conditions of streams in the basin; • identify major sources of pollution and lengths of streams impacted; • identify high quality sections of streams that need to be protected; • maintain a database that can be used to document changes in stream quality over time; • review projects affecting water quality in the basin; and • identify areas for more intensive study. Description of the Upper Susquehanna Subbasin The Upper Susquehanna Subbasin is an interstate subbasin that drains approximately 4,950 square miles of southcentral New York and a small portion of northeastern Pennsylvania. -
Section 4: County Profile
SECTION 4: COUNTY PROFILE SECTION 4: COUNTY PROFILE Broome County profile information is presented in the plan and analyzed to develop an understanding of a study area, including the economic, structural, and population assets at risk and the particular concerns that may be present related to hazards analyzed later in this plan (e.g., low lying areas prone to flooding or a high percentage of vulnerable persons in an area). This profile provides general information for Broome County (physical setting, population and demographics, general building stock, and land use and population trends) and critical facilities located within the County. GENERAL INFORMATION Broome County is a rural community located within the south-central part or “Southern Tier” of New York State. The Southern Tier is a geographical term that refers to the counties of New York State that lie west of the Catskill Mountains, along the northern border of Pennsylvania. Broome County lies directly west of Delaware County, 137 miles southwest of Albany and approximately 177 miles northwest of New York City. Broome County occupies approximately 715 square miles and has a population of approximately 199,031 (U.S. Census, 2011). Broome County is one of the 62 counties in New York State and is comprised of one city, sixteen towns, seven villages and many hamlets. The City of Binghamton is the County seat and is located at the confluence of the Susquehanna and Chenango Rivers. The City of Binghamton is part of the “Triple Cities,” which also includes the Villages of Endicott and Johnson City. With two Interstates and a major state route intersecting in the City of Binghamton, the area is the crossroads of the Southern Tier. -
Brook Trout Outcome Management Strategy
Brook Trout Outcome Management Strategy Introduction Brook Trout symbolize healthy waters because they rely on clean, cold stream habitat and are sensitive to rising stream temperatures, thereby serving as an aquatic version of a “canary in a coal mine”. Brook Trout are also highly prized by recreational anglers and have been designated as the state fish in many eastern states. They are an essential part of the headwater stream ecosystem, an important part of the upper watershed’s natural heritage and a valuable recreational resource. Land trusts in West Virginia, New York and Virginia have found that the possibility of restoring Brook Trout to local streams can act as a motivator for private landowners to take conservation actions, whether it is installing a fence that will exclude livestock from a waterway or putting their land under a conservation easement. The decline of Brook Trout serves as a warning about the health of local waterways and the lands draining to them. More than a century of declining Brook Trout populations has led to lost economic revenue and recreational fishing opportunities in the Bay’s headwaters. Chesapeake Bay Management Strategy: Brook Trout March 16, 2015 - DRAFT I. Goal, Outcome and Baseline This management strategy identifies approaches for achieving the following goal and outcome: Vital Habitats Goal: Restore, enhance and protect a network of land and water habitats to support fish and wildlife, and to afford other public benefits, including water quality, recreational uses and scenic value across the watershed. Brook Trout Outcome: Restore and sustain naturally reproducing Brook Trout populations in Chesapeake Bay headwater streams, with an eight percent increase in occupied habitat by 2025. -
The Impact of Rochester Storm Sewers on the Water Quality of the Lower Genesee River: a Modeling Approach Using PCSWMM
The College at Brockport: State University of New York Digital Commons @Brockport Environmental Science and Biology Theses Environmental Science and Biology Spring 2014 The mpI act of Rochester Storm Sewers on the Water Quality of the Lower Genesee River: A Modeling Approach Using PCSWMM Lindsay Dressel The College at Brockport, [email protected] Follow this and additional works at: http://digitalcommons.brockport.edu/env_theses Part of the Water Resource Management Commons Recommended Citation Dressel, Lindsay, "The mpI act of Rochester Storm Sewers on the Water Quality of the Lower Genesee River: A Modeling Approach Using PCSWMM" (2014). Environmental Science and Biology Theses. Paper 89. This Thesis is brought to you for free and open access by the Environmental Science and Biology at Digital Commons @Brockport. It has been accepted for inclusion in Environmental Science and Biology Theses by an authorized administrator of Digital Commons @Brockport. For more information, please contact [email protected]. The impact of Rochester storm sewers on the water quality of the lower Genesee River: a modeling approach using PCSWMM by Lindsay Dressel A Thesis Submitted to the Faculty of the Department on Environmental Science and Biology of the College at Brockport, State University of New York in partial fulfillment for the degree of Master of Science May 2014 Acknowledgements I would first and foremost like to thank the United States Department of Agriculture for funding this project, and my advisor Dr. Makarewicz for allowing me to be a part of this work and for his continued guidance, suggestions, and time dedicated to reading and editing my thesis. -
Summary of Nitrogen, Phosphorus, and Suspended-Sediment Loads and Trends Measured at the Chesapeake Bay Nontidal Network Stations for Water Years 2009–2018
Summary of Nitrogen, Phosphorus, and Suspended-Sediment Loads and Trends Measured at the Chesapeake Bay Nontidal Network Stations for Water Years 2009–2018 Prepared by Douglas L. Moyer and Joel D. Blomquist, U.S. Geological Survey, March 2, 2020 The Chesapeake Bay nontidal network (NTN) currently consists of 123 stations throughout the Chesapeake Bay watershed. Stations are located near U.S. Geological Survey (USGS) stream-flow gages to permit estimates of nutrient and sediment loadings and trends in the amount of loadings delivered downstream. Routine samples are collected monthly, and 8 additional storm-event samples are also collected to obtain a total of 20 samples per year, representing a range of discharge and loading conditions (Chesapeake Bay Program, 2020). The Chesapeake Bay partnership uses results from this monitoring network to focus restoration strategies and track progress in restoring the Chesapeake Bay. Methods Changes in nitrogen, phosphorus, and suspended-sediment loads in rivers across the Chesapeake Bay watershed have been calculated using monitoring data from 123 NTN stations (Moyer and Langland, 2020). Constituent loads are calculated with at least 5 years of monitoring data, and trends are reported after at least 10 years of data collection. Additional information for each monitoring station is available through the USGS website “Water-Quality Loads and Trends at Nontidal Monitoring Stations in the Chesapeake Bay Watershed” (https://cbrim.er.usgs.gov/). This website provides State, Federal, and local partners as well as the general public ready access to a wide range of data for nutrient and sediment conditions across the Chesapeake Bay watershed. In this summary, results are reported for the 10-year period from 2009 through 2018. -
Index of Surface-Water Records
~EOLOGICAL SURVEY CIRCULAR 138 July 1951 INDEX OF SURFACE-WATER RECORDS PART I.-NORTH ATLANTIC SLOPE BASINS TO SEPTEMBER 30, 1950 Prepared by Boston District UNITED STATES DEPARTMENT OF THE INTERIOR Oscar L. Chapman, Secretary GEOLOGICAL SURVEY W. E. Wrather, Director Washington, 'J. C. Free on application to the Geological Survey, Washington 26, D. C. INDEX OF SURFACE-WATER RECORDS PART 1.-NORTH ATLANTIC SLOPE BASINS TO SEPTEMBER 30, 1950 EXPLANATION The index lists the stream-flow and reservoir stations in the North Atlantic Slope Basins for which records have been or are to be published for periods prior to Sept. 30, 1950. The stations are listed in downstream order. Tributary streams are indicated by indention. Station names are given in their most recently published forms. Parentheses around part of a station name indicate that the inclosed word or words were used in an earlier published name of the station or in a name under which records were published by some agency other than the Geological Survey. The drainage areas, in square miles, are the latest figures pu~lished or otherwise available at this time. Drainage areas that were obviously inconsistent with other drainage areas on the same stream have been omitted. Under "period of record" breaks of less than a 12-month period are not shown. A dash not followed immediately by a closing date shows that the station was in operation on September 30, 1950. The years given are calendar years. Periods·of records published by agencies other than the Geological Survey are listed in parentheses only when they contain more detailed information or are for periods not reported in publications of the Geological Survey. -
Appendix – Priority Brook Trout Subwatersheds Within the Chesapeake Bay Watershed
Appendix – Priority Brook Trout Subwatersheds within the Chesapeake Bay Watershed Appendix Table I. Subwatersheds within the Chesapeake Bay watershed that have a priority score ≥ 0.79. HUC 12 Priority HUC 12 Code HUC 12 Name Score Classification 020501060202 Millstone Creek-Schrader Creek 0.86 Intact 020501061302 Upper Bowman Creek 0.87 Intact 020501070401 Little Nescopeck Creek-Nescopeck Creek 0.83 Intact 020501070501 Headwaters Huntington Creek 0.97 Intact 020501070502 Kitchen Creek 0.92 Intact 020501070701 East Branch Fishing Creek 0.86 Intact 020501070702 West Branch Fishing Creek 0.98 Intact 020502010504 Cold Stream 0.89 Intact 020502010505 Sixmile Run 0.94 Reduced 020502010602 Gifford Run-Mosquito Creek 0.88 Reduced 020502010702 Trout Run 0.88 Intact 020502010704 Deer Creek 0.87 Reduced 020502010710 Sterling Run 0.91 Reduced 020502010711 Birch Island Run 1.24 Intact 020502010712 Lower Three Runs-West Branch Susquehanna River 0.99 Intact 020502020102 Sinnemahoning Portage Creek-Driftwood Branch Sinnemahoning Creek 1.03 Intact 020502020203 North Creek 1.06 Reduced 020502020204 West Creek 1.19 Intact 020502020205 Hunts Run 0.99 Intact 020502020206 Sterling Run 1.15 Reduced 020502020301 Upper Bennett Branch Sinnemahoning Creek 1.07 Intact 020502020302 Kersey Run 0.84 Intact 020502020303 Laurel Run 0.93 Reduced 020502020306 Spring Run 1.13 Intact 020502020310 Hicks Run 0.94 Reduced 020502020311 Mix Run 1.19 Intact 020502020312 Lower Bennett Branch Sinnemahoning Creek 1.13 Intact 020502020403 Upper First Fork Sinnemahoning Creek 0.96