A Comparative Study of the Alimentary Canal in Butterflies, with Special Reference to Their Systematic Relationships Title (With 60 Text-Figures)

Total Page:16

File Type:pdf, Size:1020Kb

A Comparative Study of the Alimentary Canal in Butterflies, with Special Reference to Their Systematic Relationships Title (With 60 Text-Figures) A Comparative Study of the Alimentary Canal in Butterflies, with Special Reference to Their Systematic Relationships Title (With 60 Text-figures) Author(s) HOMMA, Toshihiro Citation 北海道大學理學部紀要, 12(1-2), 40-60 Issue Date 1954-12 Doc URL http://hdl.handle.net/2115/27138 Type bulletin (article) File Information 12(1_2)_P40-60.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP A Comparative Study ot the Alimentary Canal in Butterflies, with Special Reference to Their Systematic Relationshipsll By Toshihiro Homma (Zoological Institute, Faculty of Science, Hokkaido University) (With 60 Text-figures) I. Introduction So far as the writer is aware, the morphological works on the alimentary canal in butterflies have been published rather scantily, compared with those in other groups of insects. In butterflies, Bordas (1920), Dauberschmidt (1933), Dobkiewicz (1933) and others studied on the comparative morphology of the organ, and above all the work by Dauberschmidt has been valuable to his followers. The comparative morphology of the internal structures of butterflies may possibly give some suggestions on the taxonomy of this group, based mainly on the external characters; wing veins, colour patterns, palpi, antennae, legs and genitalia. From this viewpoint the present writer undertook the comparative study of the alimentary canal of butterflies, taking their taxonomic relationships into his consideration. In the present study the writer took up the following characters; mesenteron, anterior intestine, rectum and Malpighian tubules, and among them a special attention has been paid to the characters of the mesenteron, which were observed by him to be valuable among different groups. Before going further, the writer must express his cordial thanks to Professor Tohru Uchida for his kind guidance a.nd encouragement. The writer is also indebted to Messrs. ShOichi F. Sakagami, ShOzQ Ehara and other gentlemen for their continued interest and many useful suggestions upon the study. I I. Material and method The specimens used were collected by the writer throughout Hokkaido, except those of Erynnis montanus, Choaspes benjaminii, Papilio protenor nymphis, 1) Contribution No. 322 from the Zoological Institute, Faculty of Science, Hokkaido University. Sapporo, Japan. Jour. Fac. Sci., Hokkaido Univ., Ser. VI, Zool., 12, 1954. 40 A limentary Canals of Butterflies 41 P. memnon thunbergii, P. helenus niconiccolens, Eurema hecabe mariesi, E. laeta bethesba, Curetis acuta paracuta, Arhopala japonica and Niphanda fusca shijima which were collected in Honshu by his friends. The species examined include the following fifty-seven species belonging to six familiesll : Fam. Hesperidae Motschul~ky Subfam. Pyrginae Trib. Pierini 1. Erynnis montanus (Bremer) 21. Pieris rapae crucivora Subfam. Rhopalocamptinae Boisduval 2. Choaspes benjaminii (Guerin) 22. P. me!ete aglaope Motschulsky 3. Bibasis aquilina (Speyer) 23. A poria crataegi adherhal Subfam. Hesperiinae Fruhstorfer 4. Ochlodes venata (Bremer et . Fam. Lycaenidae Grey,... Subfam. Curetillae 5. O. ochracea rikuchina (Bremer) 24. Curetis acutol paraClda de 6. Ha!pe varia obscura Nakahara Niceville 7. Parnara guttata (Bremer et Subfam. Amblypodinae Grey) 25. Arhopara japonica (Murray) Fam. Papilionidae Subfam. Lycaeninae Subfam. Zerynthiinae Trib. ThecEni 8. Luhdorfia puziloi yessoensis 26. rtopoetes pryeri yezoensis Rothschild Nakahara Subfam. Parnassinae Trib. Strymonini 9. Parna.,sius stubbendorfii hoenei 27. Strymon w-album jenton£ Schweitzer (Butler) 10. P. glacialis glacialis Butler Trib. Lycaenini 11. P. eversmanni daisetsuzana 28. Lycaena phlaeas daimio (Seitz) Matsumura 5n fam. Plebejinae Subfam. Papilioninae Trib. Castaliini ,,> l~. Papilio machaon hippocratides 29. Tamka hamada hamada (Druce) Verity Trib. Lampidini 13. P. protenor nymphi$ 30. Niphanda Jusca shijima Fruh~torfer Fruhstorfer 14. P. memnon thunbergii von Trib. Glaucopsycbini Siebold 31. Glaucopsyche lycormas lywrmas 15. P. helen us niconiccolens Butler (Butler) 16. P. bianor .1·aponicus Butler Fam. Nymphalidae 17. P. maackii jezoensis Matsumura Subfam. Argynninae Fam. Picridae 32. Boloria thore jezoensis Subfam. Pierinae Matsumura Trib. Coliadini 33. B. Jreija asahidakeana 18. Eurema hecabe mariesi (Butler' (Matsnmura) 19 E. laeta bethesba (Janson) 34. Brenthis ino mashuensis (Kono) 20. Colias hyale poliographns 35. Argynni; paphia geisha 1) The classification applieo in this paper is based on the system of Esaki and Shirozu (1951). 42 T. Homma Hemming 48. Vanfssa indica (Herbst) 36. A. ch'lYlolta basalis Matsumura Subfam. Apaturillae 37. A. laodice japonica Menetries 49. Apatu.ra ilia substituta Butler 38. A. yuslana Motschulsky 50. Sasakia charonda charonda Subfam, Limenitinae (Hewitson) 39. Limenitis camilla japonica Fam. Satyridae Menetri~s 51. Ypthima argus argus Butler 40. Neptis coenobita ainu ShirClzu 52. Erebia niphonica doii Nakahara Subfam. Nymphalinae 53. E. ligea rishirizana Matsumura 41. A raschnia levana lev(lna (Linne) fi4. Oeneis daiselsu;mna Matsumura 42. A. burejana strigosa Butler 5;';. I.elhe callipteris diluta Esaki et 43. Polygonia c-aureum c-aureum Nakahara Linne 56. Aranda schrenckii me-nalcas 44. P. c-album hamigera (Butler) Fruhstofer 45. P I-album samurai Fruhstorfer 57. NeolJe gosthkevitschii 46. Nymphalis io geisha (Stichell goschkevitschii (MellCtrii's) 47. Aglais urticae connexa (Butler) The entire body, without dissected, was fixed and preserved in about 75% alcohol. In the present study, males were employed in all cases, with a few exceptions in which females were used. III. Observations The alimentar~r canal of butterflies is of a tubular form, being straight in some species or looped in others. The canal is distinctly divided into a stomodaeum, a mesenteron and a proctodaeum. The wall of the mesenteron is relatively tl).ick and the walls of the other two sections are thin and generally transparent. Two circular valve-like folds separate the three sections, one between the stomodaeum and mesenteron is stomodaeal valve, the other between the mesenteron and procto­ daeum is proctodaeal valve. In some species, the anterior part of the mesenteron surrounding the stomodaeal valve is distinguished as the cardia (Figs. 1, 10, 11, etc.). The stomodaeum is divided into the three regions; the pharynx, the oesophagus and the crop. The proventriculus is reduced to a slightly dilated tube. The crop is a large food reservior, which is connected with the stomodaeum by a short narrow duct. The mesenteron, which is called sometimes stomach, is of a somewhat flat tube or elongate sac of relatively small capacity and nearly uniform diameter, and in some species differenciated into two regions. The mesenteron is generally provided with many circular folds on its surface, and in some species, furnished with numerous processes on the surface of the anterior part, though variable in shape among species. The mesenteron seems to be of a remarkable specific characters, though sometimes slightly variable partially among individuals in its externals. The procotodaeum is divided into an anterior intestine, which is looped upon itself in most cases, and a rectum. The two regions are separeted externally by a constriction. The rectum is dilated anteriorly into a rectal sac, A limentary Canals of Butterflies 43 and narrows posteriorly to form a rectal proper which is represented by a straight tube and reaches directly the anus. Generally the anterior intestine opens into the rectum on the side of rectal sac, the anterior region of which forms a diverticulum, a rectal caecum, sometimes tinted yellow for its contents. The epithelium of rectal sac, and in a few cases, also that of the rectal caecum, forms numerous conspicuous structures known as Phy·········· ....SIGI the rectal papillae. The chief outgrowth of the alimentary canal forms a pair of Mal­ pighian tubules. On either side, the tubule Storn is generally divided into three branches at a common point, or, in other species, succesively at two points of a distance, as shown in Fig. 8. A type of the alimentary canal of bu~­ terflies is shown in Fig. 1. In this study, the mesenteron att­ Ment racted the writer's attention, as already mentioned. The following characters were observed in the alimentary canal of males, but, so far as the writer observed, in most species, the sexual difference in the externals of the canal is not ascertained. The technical terms used in this paper are mainly based on Aint ..... 0 •••• those of Snodgrass (1935). Fam. HESPERIIDAE Proe 1) Erynnis montanus (Bremer) (Fig. 2) Specimens examined: 5 males. The mesenteron is somewhat flat and straight tube, on the surface of which many circular folds appear, and the folds are bor­ dered with narrow grooves. The anterior part of the mesenteron is slightly wider than the 1 posterior part of that. The ant€rior intestine is approximately 2-3 times- as long as the Fig. 1. Parnassius stubbendorfii mesenteron. The rectal caecum is moderately hoenei Schweitzer. Stom, stomo­ developed, without papillae. The Malpighian daeum ; Ment, mesenteron; Proc, proctodaeum; Phy, pharynx; Oe, tubule is divided into three branches succes­ oesophagus; Cr, crop; Car, cardia; sively at two close points. SIGl, salivary gland; Mal, Mal­ 2) Choaspes benjaminii (Guerin) (Fig. 3) pighian tubules; Alllt, anterior Specimens examined: 5 males. intestine; An, anus; Rect, rectum The mesenteron bearing many circular (rect, rectum proper; rsc, rectal sac; rca; rectal caecum). folds all over
Recommended publications
  • Egg-Mimics of Streptanthus (Cruciferae) Deter Oviposition by Pieris Sisymbrii (Lepidoptera: Pieridae)
    Oecologia (Berl) (1981) 48:142-143 Oecologia Springer-Verlag 198l Short Communication Egg-Mimics of Streptanthus (Cruciferae) Deter Oviposition by Pieris sisymbrii (Lepidoptera: Pieridae) Arthur M. Shapiro Department of Zoology, University of California, Davis, CA 95616, USA Summary. Streptanthus breweri, a serpentine-soil annual mus- appear to decrease the attractiveness of mature S. glandulosus tard, produces pigmented callosities on its upper leaves which to ovipositing females (Shapiro, in press). are thought to mimic the eggs of the Pierid butterfly Pieris The efficacy of the suspected egg-mimics of S. breweri was sisymbrii. P. sisymbrii is one of several inflorescence - infructes- tested afield at Turtle Rock, Napa County, California (North cence-feeding Pierids which assess egg load visually on individual Coast Ranges). The site is an almost unvegetated, steep serpen- host plants prior to ovipositing. Removal of the "egg-mimics" tine talus slope with a S to SW exposure. S. breweri is the domi- from S. breweri plants in situ significantly increases the probabili- nant Crucifer (S. glandulosus also occurs) and P. sisymbrii the ty of an oviposition relative to similar, intact plants. dominant Pierid (Anthocharis sara Lucas and Euchloe hyantis Edw., both Euchloines, are present). On 10 April 1980 I prepared two lists of 50 numbers from a random numbers table. On 11 April, 100 plants of S. breweri "Egg-load assessment" occurs when a female insect's choice in the appropriate phenophase (elongating/budding, bearing egg- to oviposit or not on a given substrate is influenced by whether mimics) were numbered and tagged. Each was measured, its or not eggs (con or heterospecific) are present.
    [Show full text]
  • Interspecific Variation in Competitor Avoidance and Foraging Success in Sap-Attracted Insects
    Eur. J. Entomol. 106: 529–533, 2009 http://www.eje.cz/scripts/viewabstract.php?abstract=1484 ISSN 1210-5759 (print), 1802-8829 (online) Interspecific variation in competitor avoidance and foraging success in sap-attracted insects JIICHIRO YOSHIMOTO* Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan Key words. Aggressive interactions, community, foraging strategy, interference competition, resources, tree sap Abstract. Many insect species attracted to fermenting sap often fight for access to this resource, which results in the establishment of interspecific dominance hierarchies. In one such system, the hornet Vespa mandarinia (Hymenoptera: Vespidae) behaviourally dominates during the daytime and several subordinate species avoid aggressive interactions in various ways. In order to elucidate the interspecific variation in competitor-avoidance behaviour and its subsequent effect on foraging success, the behaviour of species of hornets, beetles and butterflies at patches (exudation spots) in Japan was recorded. The percentage of individuals that succeeded in visiting a patch following departure from one, or an attempted visit, or after waiting near a patch for t 10 s, did not differ greatly among species, despite the distinctive differences in dominance between V. mandarinia and the other species. These results suggest that subordinate species may be equally effective at foraging for sap as the dominant species. The competitor-avoidance behaviour differed among the species. Vespa crabro and satyrine butterflies mainly avoided competition by actively moving away from com- petitors. The beetle Rhomborrhina japonica (Coleoptera: Scarabaeidae) often remained close to an occupied patch and waited for the occupant to leave, whereas V.
    [Show full text]
  • The Complete Mitochondrial Genome of the Fall Webworm, Hyphantria
    Int. J. Biol. Sci. 2010, 6 172 International Journal of Biological Sciences 2010; 6(2):172-186 © Ivyspring International Publisher. All rights reserved Research Paper The complete mitochondrial genome of the fall webworm, Hyphantria cunea (Lepidoptera: Arctiidae) Fang Liao1,2, Lin Wang3, Song Wu4, Yu-Ping Li4, Lei Zhao1, Guo-Ming Huang2, Chun-Jing Niu2, Yan-Qun Liu4, , Ming-Gang Li1, 1. College of Life Sciences, Nankai University, Tianjin 300071, China 2. Tianjin Entry-Exit Inspection and Quarantine Bureau, Tianjin 300457, China 3. Beijing Entry-Exit Inspection and Quarantine Bureau, Beijing 101113, China 4. College of Bioscience and Biotechnology, Shenyang Agricultural University, Liaoning, Shenyang 110866, China Corresponding author: Y. Q. Liu, College of Bioscience and Biotechnology, Shenyang Agricultural University, Liaoning, Shenyang 110866, China; Tel: 86-24-88487163; E-mail: [email protected]. Or to: M. G. Li, College of Life Sciences, Nankai University, Tianjin 300071, China; Tel: 86-22-23508237; E-mail: [email protected]. Received: 2010.02.03; Accepted: 2010.03.26; Published: 2010.03.29 Abstract The complete mitochondrial genome (mitogenome) of the fall webworm, Hyphantria cunea (Lepidoptera: Arctiidae) was determined. The genome is a circular molecule 15 481 bp long. It presents a typical gene organization and order for completely sequenced lepidopteran mitogenomes, but differs from the insect ancestral type for the placement of tRNAMet. The nucleotide composition of the genome is also highly A + T biased, accounting for 80.38%, with a slightly positive AT skewness (0.010), indicating the occurrence of more As than Ts, as found in the Noctuoidea species. All protein-coding genes (PCGs) are initiated by ATN codons, except for COI, which is tentatively designated by the CGA codon as observed in other le- pidopterans.
    [Show full text]
  • Biolphilately Vol-64 No-3
    BIOPHILATELY OFFICIAL JOURNAL OF THE BIOLOGY UNIT OF ATA MARCH 2020 VOLUME 69, NUMBER 1 Great fleas have little fleas upon their backs to bite 'em, And little fleas have lesser fleas, and so ad infinitum. —Augustus De Morgan Dr. Indraneil Das Pangolins on Stamps More Inside >> IN THIS ISSUE NEW ISSUES: ARTICLES & ILLUSTRATIONS: From the Editor’s Desk ......................... 1 Botany – Christopher E. Dahle ............ 17 Pangolins on Stamps of the President’s Message .............................. 2 Fungi – Paul A. Mistretta .................... 28 World – Dr. Indraneil Das ..................7 Secretary -Treasurer’s Corner ................ 3 Mammalia – Michael Prince ................ 31 Squeaky Curtain – Frank Jacobs .......... 15 New Members ....................................... 3 Ornithology – Glenn G. Mertz ............. 35 New Plants in the Philatelic News of Note ......................................... 3 Ichthyology – J. Dale Shively .............. 57 Herbarium – Christopher Dahle ....... 23 Women’s Suffrage – Dawn Hamman .... 4 Entomology – Donald Wright, Jr. ........ 59 Rats! ..................................................... 34 Event Calendar ...................................... 6 Paleontology – Michael Kogan ........... 65 New Birds in the Philatelic Wedding Set ........................................ 16 Aviary – Charles E. Braun ............... 51 Glossary ............................................... 72 Biology Reference Websites ................ 69 ii Biophilately March 2020 Vol. 69 (1) BIOPHILATELY BIOLOGY UNIT
    [Show full text]
  • A Compilation and Analysis of Food Plants Utilization of Sri Lankan Butterfly Larvae (Papilionoidea)
    MAJOR ARTICLE TAPROBANICA, ISSN 1800–427X. August, 2014. Vol. 06, No. 02: pp. 110–131, pls. 12, 13. © Research Center for Climate Change, University of Indonesia, Depok, Indonesia & Taprobanica Private Limited, Homagama, Sri Lanka http://www.sljol.info/index.php/tapro A COMPILATION AND ANALYSIS OF FOOD PLANTS UTILIZATION OF SRI LANKAN BUTTERFLY LARVAE (PAPILIONOIDEA) Section Editors: Jeffrey Miller & James L. Reveal Submitted: 08 Dec. 2013, Accepted: 15 Mar. 2014 H. D. Jayasinghe1,2, S. S. Rajapaksha1, C. de Alwis1 1Butterfly Conservation Society of Sri Lanka, 762/A, Yatihena, Malwana, Sri Lanka 2 E-mail: [email protected] Abstract Larval food plants (LFPs) of Sri Lankan butterflies are poorly documented in the historical literature and there is a great need to identify LFPs in conservation perspectives. Therefore, the current study was designed and carried out during the past decade. A list of LFPs for 207 butterfly species (Super family Papilionoidea) of Sri Lanka is presented based on local studies and includes 785 plant-butterfly combinations and 480 plant species. Many of these combinations are reported for the first time in Sri Lanka. The impact of introducing new plants on the dynamics of abundance and distribution of butterflies, the possibility of butterflies being pests on crops, and observations of LFPs of rare butterfly species, are discussed. This information is crucial for the conservation management of the butterfly fauna in Sri Lanka. Key words: conservation, crops, larval food plants (LFPs), pests, plant-butterfly combination. Introduction Butterflies go through complete metamorphosis 1949). As all herbivorous insects show some and have two stages of food consumtion.
    [Show full text]
  • Exploitation of Lycaenid-Ant Mutualisms by Braconid Parasitoids
    31(3-4):153-168,Journal of Research 1992 on the Lepidoptera 31(3-4):153-168, 1992 153 Exploitation of lycaenid-ant mutualisms by braconid parasitoids Konrad Fiedler1, Peter Seufert1, Naomi E. Pierce2, John G. Pearson3 and Hans-Thomas Baumgarten1 1 Theodor-Boveri-Zentrum für Biowissenschaften, Lehrstuhl Zoologie II, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany 2 Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138-2902, USA 3 Division of Natural Sciences and Mathematics, Western State College, Gunnison, CO 81230, USA Abstract. Larvae of 17 Lycaenidae butterfly species from Europe, North America, South East Asia and Australia were observed to retain at least some of their adaptations related to myrmecophily even after parasitic braconid larvae have emerged from them. The myrme- cophilous glandular organs and vibratory muscles of such larval carcasses remain functional for up to 8 days. The cuticle of lycaenid larvae contains extractable “adoption substances” which elicit anten- nal drumming in their tending ants. These adoption substances, as well, appear to persist in a functional state beyond parasitoid emer- gence, and the larval carcasses are hence tended much like healthy caterpillars. In all examples, the braconids may receive selective advantages through myrmecophily of their host larvae, instead of being suppressed by the ant guard. Interactions where parasitoids exploit the ant-mutualism of their lycaenid hosts have as yet been recorded only from the Apanteles group in the Braconidae- Microgasterinae. KEY WORDS: Lycaenidae, Formicidae, myrmecophily, adoption sub- stances, parasitoids, Braconidae, Apanteles, defensive mechanisms INTRODUCTION Parasitoid wasps or flies are major enemies of the early stages of most Lepidoptera (Shaw 1990, Weseloh 1993).
    [Show full text]
  • African Butterfly News Can Be Downloaded Here
    LATE SUMMER EDITION: JANUARY / AFRICAN FEBRUARY 2018 - 1 BUTTERFLY THE LEPIDOPTERISTS’ SOCIETY OF AFRICA NEWS LATEST NEWS Welcome to the first newsletter of 2018! I trust you all have returned safely from your December break (assuming you had one!) and are getting into the swing of 2018? With few exceptions, 2017 was a very poor year butterfly-wise, at least in South Africa. The drought continues to have a very negative impact on our hobby, but here’s hoping that 2018 will be better! Braving the Great Karoo and Noorsveld (Mark Williams) In the first week of November 2017 Jeremy Dobson and I headed off south from Egoli, at the crack of dawn, for the ‘Harde Karoo’. (Is there a ‘Soft Karoo’?) We had a very flexible plan for the six-day trip, not even having booked any overnight accommodation. We figured that finding a place to commune with Uncle Morpheus every night would not be a problem because all the kids were at school. As it turned out we did not have to spend a night trying to kip in the Pajero – my snoring would have driven Jeremy nuts ... Friday 3 November The main purpose of the trip was to survey two quadrants for the Karoo BioGaps Project. One of these was on the farm Lushof, 10 km west of Loxton, and the other was Taaiboschkloof, about 50 km south-east of Loxton. The 1 000 km drive, via Kimberley, to Loxton was accompanied by hot and windy weather. The temperature hit 38 degrees and was 33 when the sun hit the horizon at 6 pm.
    [Show full text]
  • Lepidoptera: Lycaenidae: Lipteninae) Uses a Color-Generating Mechanism Widely Applied by Butterflies
    Journal of Insect Science, (2018) 18(3): 6; 1–8 doi: 10.1093/jisesa/iey046 Research The Only Blue Mimeresia (Lepidoptera: Lycaenidae: Lipteninae) Uses a Color-Generating Mechanism Widely Applied by Butterflies Zsolt Bálint,1,5 Szabolcs Sáfián,2 Adrian Hoskins,3 Krisztián Kertész,4 Antal Adolf Koós,4 Zsolt Endre Horváth,4 Gábor Piszter,4 and László Péter Biró4 1Hungarian Natural History Museum, Budapest, Hungary, 2Faculty of Forestry, University of West Hungary, Sopron, Hungary, 3Royal Entomological Society, London, United Kingdom, 4Institute of Technical Physics and Materials Science, Centre for Energy Research, Budapest, Hungary, and 5Corresponding author, e-mail: [email protected] Subject Editor: Konrad Fiedler Received 21 February 2018; Editorial decision 25 April 2018 Abstract The butterflyMimeresia neavei (Joicey & Talbot, 1921) is the only species in the exclusively African subtribal clade Mimacraeina (Lipteninae: Lycaenidae: Lepidoptera) having sexual dimorphism expressed by structurally blue- colored male and pigmentary colored orange–red female phenotypes. We investigated the optical mechanism generating the male blue color by various microscopic and experimental methods. It was found that the blue color is produced by the lower lamina of the scale acting as a thin film. This kind of color production is not rare in day-flying Lepidoptera, or in other insect orders. The biological role of the blue color of M. neavei is not yet well understood, as all the other species in the clade lack structural coloration, and have less pronounced sexual dimorphism, and are involved in mimicry-rings. Key words: Africa, Lycaenidae, mimicry, thin film, wing scale The late John Nevill Eliot in his fundamental work on Lycaenidae blue dorsal wing surface, whilst the female with its bright orange classification subdivided the family into sections, tribes, and sub- appearance is a typical mimeresine.
    [Show full text]
  • The Endangered Butterfly Charonias Theano (Boisduval)(Lepidoptera
    Neotropical Entomology ISSN: 1519-566X journal homepage: www.scielo.br/ne ECOLOGY, BEHAVIOR AND BIONOMICS The Endangered Butterfly Charonias theano (Boisduval) (Lepidoptera: Pieridae): Current Status, Threats and its Rediscovery in the State of São Paulo, Southeastern Brazil AVL Freitas1, LA Kaminski1, CA Iserhard1, EP Barbosa1, OJ Marini Filho2 1 Depto de Biologia Animal & Museu de Zoologia, Instituto de Biologia, Univ Estadual de Campinas, Campinas, SP, Brasil 2Centro de Pesquisa e Conservação do Cerrado e Caatinga – CECAT, Instituto Chico Mendes de Conservação da Biodiversidade, Brasília, DF, Brasil Keywords Abstract Aporiina, Atlantic Forest, endangered species, Pierini, Serra do Japi The pierid Charonias theano Correspondence (Boisduval), an endangered butterfly André V L Freitas, Depto de Biologia Animal & species, has been rarely observed in nature, and has not been recorded Museu de Zoologia, Instituto de Biologia, Univ in the state of CSão. theano Paulo in the last 50 years despite numerous efforts Estadual de Campinas, CP6109, 13083-970, Campinas, SP, Brasil; [email protected] to locate extant colonies. Based on museum specimens and personal information, was known from 26 sites in southeastern Edited by Kleber Del Claro – UFU and southern Brazil. Recently, an apparently viable population was recorded in a new locality, at Serra do Japi, Jundiaí, São Paulo, with Received 26 May 2011 and accepted 03 severalsince this individuals site represents observed one of during the few two large weeks forested in April, protected 2011. areas The August 2011 existence of this population at Serra do Japi is an important finding, São Paulo, but within its entire historical distribution. where the species could potentially persist not only in the state of Introduction In the last Brazilian red list of endangered fauna (Machado intensively sampled from 1987 to 1991, resulting in a list et al of 652 species (Brown 1992).
    [Show full text]
  • Out of the Orient: Post-Tethyan Transoceanic and Trans-Arabian Routes
    Systematic Entomology Page 2 of 55 1 1 Out of the Orient: Post-Tethyan transoceanic and trans-Arabian routes 2 fostered the spread of Baorini skippers in the Afrotropics 3 4 Running title: Historical biogeography of Baorini skippers 5 6 Authors: Emmanuel F.A. Toussaint1,2*, Roger Vila3, Masaya Yago4, Hideyuki Chiba5, Andrew 7 D. Warren2, Kwaku Aduse-Poku6,7, Caroline Storer2, Kelly M. Dexter2, Kiyoshi Maruyama8, 8 David J. Lohman6,9,10, Akito Y. Kawahara2 9 10 Affiliations: 11 1 Natural History Museum of Geneva, CP 6434, CH 1211 Geneva 6, Switzerland 12 2 Florida Museum of Natural History, University of Florida, Gainesville, Florida, 32611, U.S.A. 13 3 Institut de Biologia Evolutiva (CSIC-UPF), Passeig Marítim de la Barceloneta, 37, 08003 14 Barcelona, Spain 15 4 The University Museum, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan 16 5 B. P. Bishop Museum, 1525 Bernice Street, Honolulu, Hawaii, 96817-0916 U.S.A. 17 6 Biology Department, City College of New York, City University of New York, 160 Convent 18 Avenue, NY 10031, U.S.A. 19 7 Biology Department, University of Richmond, Richmond, Virginia, 23173, USA 20 8 9-7-106 Minami-Ôsawa 5 chome, Hachiôji-shi, Tokyo 192-0364, Japan 21 9 Ph.D. Program in Biology, Graduate Center, City University of New York, 365 Fifth Ave., New 22 York, NY 10016, U.S.A. 23 10 Entomology Section, National Museum of the Philippines, Manila 1000, Philippines 24 25 *To whom correspondence should be addressed: E-mail: [email protected] Page 3 of 55 Systematic Entomology 2 26 27 ABSTRACT 28 The origin of taxa presenting a disjunct distribution between Africa and Asia has puzzled 29 biogeographers for centuries.
    [Show full text]
  • Report on the Butterflies Collected from Chongqing, Shaanxi and Gansu
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Atalanta Jahr/Year: 2016 Band/Volume: 47 Autor(en)/Author(s): Huang Si-Yao Artikel/Article: Report on the butterflies collected from Chongqing, Shaanxi and Gansu, China in 2015 (Lepidoptera: Papilionoidea, Hesperoidea) 241-248 Atalanta 47 (1/2): 241-248, Marktleuthen (Juli 2016), ISSN 0171-0079 Report on the butterflies collected from Chongqing, Shaanxi and Gansu, China in 2015 (Lepidoptera: Papilionoidea, Hesperoidea) by SI-YAO HUANG received 30.III.2016 Abstract: A list of the butterflies collected by the author and his colleague in the Chinese Provinces of Chongqing, S. Shaanxi and S. Gansu in the summer of 2015 is presented. In the summer of 2015, the author accomplished a survey on butterflies at the following localities (fig. A): Chongqing Province: Simianshan, 4th-9thJuly. Shaanxi Province: Liping Natural Reserve, Nanzheng County: 12th-14th July; Danangou, Fengxian County: 31st July; Dongshan, Taibai County: 1st August; Miaowangshan, Fengxian County: 2nd August; Xiaonangou, Fengxian County: 3rd-5th August; Zhufeng, Fengxian County: 5th August. Gansu Province: Xiongmaogou, Xiahe County: 16th-18th July; Laolonggou, Diebu County: 20th July; Meilugou, Die- bu County: 21st July; Tiechiliang, Diebu County: 22nd July; Lazikou, Diebu County: 23rd July; Tiangangou, Zhouqu County: 25th-26th July; Pianpiangou, Zhouqu County: 28th-29th July. A checklist of butterflies collected from Chongqing, Shaanxi and Gansu in 2015 Hesperiidae Coeliadinae 1. Hasora tarminatus (HÜBNER, 1818): 1 † 7-VII, Simianshan, leg. & coll. GUO-XI XUE. Pyrginae 2. Gerosis phisara (MOORE, 1884): 1 †, 6-VII, Simianshan. 3. Celaenorrhinus maculosus (C. & R.
    [Show full text]
  • Global Journal of Science Frontier Research: C Biological Science Botany & Zology
    Online ISSN : 2249-4626 Print ISSN : 0975-5896 DOI : 10.17406/GJSFR DiversityofButterflies RevisitingMelaninMetabolism InfluenceofHigh-FrequencyCurrents GeneticStructureofSitophilusZeamais VOLUME20ISSUE4VERSION1.0 Global Journal of Science Frontier Research: C Biological Science Botany & Zology Global Journal of Science Frontier Research: C Biological Science Botany & Zology Volume 20 Issue 4 (Ver. 1.0) Open Association of Research Society Global Journals Inc. © Global Journal of Science (A Delaware USA Incorporation with “Good Standing”; Reg. Number: 0423089) Frontier Research. 2020 . Sponsors:Open Association of Research Society Open Scientific Standards All rights reserved. This is a special issue published in version 1.0 Publisher’s Headquarters office of “Global Journal of Science Frontier Research.” By Global Journals Inc. Global Journals ® Headquarters All articles are open access articles distributed 945th Concord Streets, under “Global Journal of Science Frontier Research” Framingham Massachusetts Pin: 01701, Reading License, which permits restricted use. United States of America Entire contents are copyright by of “Global USA Toll Free: +001-888-839-7392 Journal of Science Frontier Research” unless USA Toll Free Fax: +001-888-839-7392 otherwise noted on specific articles. No part of this publication may be reproduced Offset Typesetting or transmitted in any form or by any means, electronic or mechanical, including G lobal Journals Incorporated photocopy, recording, or any information storage and retrieval system, without written 2nd, Lansdowne, Lansdowne Rd., Croydon-Surrey, permission. Pin: CR9 2ER, United Kingdom The opinions and statements made in this book are those of the authors concerned. Packaging & Continental Dispatching Ultraculture has not verified and neither confirms nor denies any of the foregoing and no warranty or fitness is implied.
    [Show full text]