Photosynthesis in Lichen: Light Reactions and Protective Mechanisms

Total Page:16

File Type:pdf, Size:1020Kb

Photosynthesis in Lichen: Light Reactions and Protective Mechanisms 8 Photosynthesis in Lichen: Light Reactions and Protective Mechanisms Francisco Gasulla2, Joaquín Herrero1, Alberto Esteban-Carrasco1, Alfonso Ros-Barceló3, Eva Barreno2, José Miguel Zapata1 and Alfredo Guéra1 1University of Alcalá 2University of Valencia 3University of Murcia Spain 1. Introduction Lichens are symbiotic associations (holobionts) established between fungi (mycobionts) and certain groups of cyanobacteria or unicellular green algae (photobionts). This symbiotic association has been essential in establishing the colonization of terrestrial and consequently dry habitats. About 44 genera of algae and cyanobacteria have been reported as lichen photobionts. Due to the uncertain taxonomy of many of these photobionts, these numbers were considered as approximations only. Ahmadjian (1993) estimates that only 25 genera were typical lichen photobionts. The most common cyanobionts are Nostoc, Scytonema, Stigonema, Gloeocapsa, and Calothrix, in order of frequency (Büdel, 1992). Green algal photobionts include Asterochloris, Trebouxia, Trentepohlia, Coccomyxa, and Dictyochloropsis (Gärtner, 1992). These authors assessed that more than 50% of all lichen species are associated with Trebouxia and Asterochloris species. However, this is just estimation since in only 2% of the described lichen species the photobiont genus is reported (Tschermak-Woess, 1989), mostly by the difficulties to isolate and then characterize the algae from the lichen thalli. Lichens are well known for their slow growth and longevity. Their radial growth is measured in millimetres per year (Hale, 1973), while individual lichens live for hundreds or even thousands of years. It is assumed that in lichens the photobiont population is under mycobiont control. Lichenologists have proposed some control mechanisms such as, cell division inhibitors (Honegger, 1987), phytohormones (Backor & Hudak, 1999) or nutrients competition (Crittenden et al., 1994; Schofield et al., 2003). Similar to plants, all lichens photosynthesise. They need light to provide energy to make their own matter. More specifically, the algae in the lichen produce carbohydrates and the fungi take those carbohydrates to grow and reproduce. The amount of light intensity needed for optimal lichen growth varies widely among species. The optimum light intensity range of most algal photobionts in axenic cultures is very low, between 16-27 μmol m-2 s-1. If the response of cultured photobionts to light is similar to that of the natural forms (lichen), then there must be additional mechanisms protecting the algae in the lichen that are not developed under culture conditions. Pigments and crystal of secondary metabolites in the www.intechopen.com 150 Advances in Photosynthesis – Fundamental Aspects upper cortex are supposed to decrease the intensity of light reaching the photobionts especially under desiccated conditions by absorbing certain wavelengths and by reflecting light (Heber et al,. 2007; Scott, 1969; Veerman et al., 2007). Apparently, the balance between energy conservation and energy dissipation is tilted towards dissipation in many poikilohydric autotrophs, whereas, in higher plants, energy conservation assumes dominance over energy dissipation. It thus appears that sensitivity to excess light is higher in the mosses and the lichens than in higher plants (Heber, 2008). Lichens are found among poikilohydric organisms, those that cannot actively regulate their water content, but are capable of surviving long periods in a desiccated state (Kappen & Valladares, 2007). In the dry state many lichens exhibit an enhanced resistence to other stress. For instance, heat resistance up to 70-75 ºC in species from sheltered microhabitats and up to 90-100 ºC in species from exposed microhabitats (Lange, 1953). Desiccation tolerance was described in nematodes and in rotifers observed by van Leeuwenhoek in 1702, and has since been discovered in four other phyla of animals, algae, fungi, bacteria, in ca. 350 species of flowering plants and ferns and in most bryophytes and seeds of flowering plants (Alpert, 2006; Proctor & Tuba, 2002). Among them, algae, lichen and bryophytes can be considered fully desiccation-tolerant plants because can survive very rapid drying events (less than 1 h) and recover respiration and photosynthesis within a few minutes (Oliver & Wood, 1997; Proctor & Smirnoff, 2000). Most lichen-forming fungi and their photobionts are fully adapted to daily wetting and drying cycles, but die off under continuously moist conditions (Dietz & Hartung, 1999; Farrar, 1976a, 1976b). It is well known that photosynthesis in homoiohydric plants is very sensitive to water stress conditions (Heber et al., 2001), especially under high irradiance. Under these conditions, reactive oxygen species (ROS) generation associated to photosynthetic electron transport is enhanced. The question arises of how lichen algae can maintain the function of their photosynthetic machinery under continuous desiccation-rehydration processes. We will review in this chapter the possible mechanisms which should allow maintaining of photosynthesis performance under the life style of poikilohydric organisms. 2. Methods for isolating lichen photobionts One of the main problems to study the mechanisms of photosynthesis in lichens under well- controlled conditions is to develop an appropriate method for isolating the lichen photobionts. Many chlorolichens contains more than one photobiont. For instance, Ramalina farinacea includes two different Trebouxia photobionts (TR1 and TR9) and isolation of these algae allowed to characterise physiological differences between both of them (Casano et al., 2010; del Hoyo et al., 2011). There are different methods in function of the objective of investigation. We can distinguish between those which allow and not allow obtaining axenic cultures. Axenic cultures are useful to study the taxonomy, biochemical, molecular or physiological behaviour of microscopic algae outside the symbiosis. There are lots of methods, but the most popular isolation method was developed by Ahmadjian (1967a, 1967b) and consists of cutting the lichen photobiont layer into thin slices, then grinding it between two glass slides and finally spreading the homogenate on a solid agar medium. There are several variations to this method, but the main common problem to all of them is the long time required after isolation to obtain clones. www.intechopen.com Photosynthesis in Lichen: Light Reactions and Protective Mechanisms 151 On the other hand, non-axenic cultures can be used for studying algal metabolites or enzymatic activities of the lichenized photobionts. These methods consist in homogenization of the lichen thalli, followed by separation of the photobiont from the mycobiont and fragments of thalli using differential centrifugation (Richardson, 1971), gradient centrifugation on CsCl2/KI (Ascaso, 1980) or on Percoll® gradients (Calatayud et al., 2001), and/or filtering (Weissman et al., 2005). Here we resume the fast and simple methods developed in our laboratories (Gasulla et al., 2010): a low-scale isolation method (micromethod) and a large scale one (macromethod). The micromethod for isolation of lichen photobions starts from 15–25 mg dry weight (DW) of lichen material that is washed first in tap water, and then slowly stirred in sterile distilled water in a bucket for 5 min. The fragments of thalli are homogenised in an sterile eppendorf tube with a pellet pestle and resuspended in sterile 1 ml of isotonic buffer (0.3 M sorbitol in 50 mM HEPES pH 7.5). After filtration through sterile muslin, the filtrate is centrifuged at 490×g in a bench-top microcentrifuge (Micro 20, Hettich, Germany) for 5 min. The pellet is resuspended in 200 μl of sterile isotonic buffer and then loaded on 1.5 ml, of sterile 80 % Percoll ® in isotonic buffer. After centrifugation at 10000×g for 10 min a clear green layer must be present near the top of the eppendorf tube and some grey particles and pellet at the bottom of the tube (Fig. 1). The green layer is recovered (ca. 400 μl), avoiding to take any drop of the upper interphase. Then, the green layer is diluted 2-fold with sterile distilled water and centrifuged at 1000×g for 10 min. The supernatant is discarded; the pellet is resuspended in 2 ml of sterile distilled water and a drop of Tween 20 is added. The resulting suspension is sonicated at 40 KHz (Elma Transsonic Digital 470 T, 140% ultrasound power) for 1 min and again centrifuged at 490×g for 5 min. This treatment is repeated five times. The final pellet containing the isolated algal cells is resuspended in 1 ml of sterile distilled water. This micromethod can be scaled up to a macromethod, which allows preparation of large amounts of photobiont cells. Fig. 1. Separation of Ramalina farinacea fractions after centrifugation of the extract of thalli at 10,000×g for 10 min on 40 ml (macromethod), or 1.5 ml (micromethod) of 80 % Percoll ® in isotonic buffer. A–D, each optical micrograph refers to the corresponding Percoll layer; A and C phase contrast microscopy. Scale = 15 μm. * Not real size. Photograph from Gasulla et al., (2010). www.intechopen.com 152 Advances in Photosynthesis – Fundamental Aspects In the macromethod, one to two g DW of lichen thallus are homogenised with a mortar and pestle in 20 ml of sterile isotonic buffer. The steps following are similar to the micromethod, but the volume for resuspension of the first pellet is 1 ml. The second centrifugation step is carried out on 40 ml of sterile 80% Percoll in isotonic buffer
Recommended publications
  • The Lichens' Microbiota, Still a Mystery?
    fmicb-12-623839 March 24, 2021 Time: 15:25 # 1 REVIEW published: 30 March 2021 doi: 10.3389/fmicb.2021.623839 The Lichens’ Microbiota, Still a Mystery? Maria Grimm1*, Martin Grube2, Ulf Schiefelbein3, Daniela Zühlke1, Jörg Bernhardt1 and Katharina Riedel1 1 Institute of Microbiology, University Greifswald, Greifswald, Germany, 2 Institute of Plant Sciences, Karl-Franzens-University Graz, Graz, Austria, 3 Botanical Garden, University of Rostock, Rostock, Germany Lichens represent self-supporting symbioses, which occur in a wide range of terrestrial habitats and which contribute significantly to mineral cycling and energy flow at a global scale. Lichens usually grow much slower than higher plants. Nevertheless, lichens can contribute substantially to biomass production. This review focuses on the lichen symbiosis in general and especially on the model species Lobaria pulmonaria L. Hoffm., which is a large foliose lichen that occurs worldwide on tree trunks in undisturbed forests with long ecological continuity. In comparison to many other lichens, L. pulmonaria is less tolerant to desiccation and highly sensitive to air pollution. The name- giving mycobiont (belonging to the Ascomycota), provides a protective layer covering a layer of the green-algal photobiont (Dictyochloropsis reticulata) and interspersed cyanobacterial cell clusters (Nostoc spec.). Recently performed metaproteome analyses Edited by: confirm the partition of functions in lichen partnerships. The ample functional diversity Nathalie Connil, Université de Rouen, France of the mycobiont contrasts the predominant function of the photobiont in production Reviewed by: (and secretion) of energy-rich carbohydrates, and the cyanobiont’s contribution by Dirk Benndorf, nitrogen fixation. In addition, high throughput and state-of-the-art metagenomics and Otto von Guericke University community fingerprinting, metatranscriptomics, and MS-based metaproteomics identify Magdeburg, Germany Guilherme Lanzi Sassaki, the bacterial community present on L.
    [Show full text]
  • Phylogenetic Placement of Botryococcus Braunii (Trebouxiophyceae) and Botryococcus Sudeticus Isolate Utex 2629 (Chlorophyceae)1
    J. Phycol. 40, 412–423 (2004) r 2004 Phycological Society of America DOI: 10.1046/j.1529-8817.2004.03173.x PHYLOGENETIC PLACEMENT OF BOTRYOCOCCUS BRAUNII (TREBOUXIOPHYCEAE) AND BOTRYOCOCCUS SUDETICUS ISOLATE UTEX 2629 (CHLOROPHYCEAE)1 Hoda H. Senousy, Gordon W. Beakes, and Ethan Hack2 School of Biology, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, UK The phylogenetic placement of four isolates of a potential source of renewable energy in the form of Botryococcus braunii Ku¨tzing and of Botryococcus hydrocarbon fuels (Metzger et al. 1991, Metzger and sudeticus Lemmermann isolate UTEX 2629 was Largeau 1999, Banerjee et al. 2002). The best known investigated using sequences of the nuclear small species is Botryococcus braunii Ku¨tzing. This organism subunit (18S) rRNA gene. The B. braunii isolates has a worldwide distribution in fresh and brackish represent the A (two isolates), B, and L chemical water and is occasionally found in salt water. Although races. One isolate of B. braunii (CCAP 807/1; A race) it grows relatively slowly, it sometimes forms massive has a group I intron at Escherichia coli position 1046 blooms (Metzger et al. 1991, Tyson 1995). Botryococcus and isolate UTEX 2629 has group I introns at E. coli braunii strains differ in the hydrocarbons that they positions 516 and 1512. The rRNA sequences were accumulate, and they have been classified into three aligned with 53 previously reported rRNA se- chemical races, called A, B, and L. Strains in the A race quences from members of the Chlorophyta, includ- accumulate alkadienes; strains in the B race accumulate ing one reported for B.
    [Show full text]
  • Photosynthetic Performance in Antarctic Lichens with Different Growth Forms Reflect the Diversity of Lichenized Algal Adaptation to Microhabitats
    vol. 36, no. 2, pp. 175–188, 2015 doi: 10.1515/popore−2015−0012 Photosynthetic performance in Antarctic lichens with different growth forms reflect the diversity of lichenized algal adaptation to microhabitats Shunan CAO 1, Jie ZHANG 2, Hongyuan ZHENG 1,3, Chuanpeng LIU 4,* and Qiming ZHOU 4,5* 1 Key Laboratory for Polar Science SOA, Polar Research Institute of China, No.451 JinQiao Road, Pudong District, Shanghai 200136, China 2 Chinese National Antarctic & Arctic Data Centre, Polar Research Institute of China, No.451 JinQiao Road, Pudong District, Shanghai 200136, China 3 College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China 4 School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang Street, Harbin 150080, China <[email protected]> 5 Institute of Microbiology, Chinese Academy of Sciences, No.1–3, Beichen West Road, Beijing 100101, China <[email protected]> *corresponding authors Abstract: Lichens, as typical obligate associations between lichenized fungi and their photosynthetic partners, are dominant in Antarctica. Three Antarctic lichens, Ochrolechia frigida, Umbilicaria antarctica, and Usnea aurantiaco−atra with different growth forms, were sampled nearby the Great Wall Station, King George Island. Molecular data revealed that the photosynthetic algae in these three lichens were Trebouxia jamesii. The net photo− synthesis (Pn) of three individuals from these species, together with environmental factors such as light and temperature, were recorded by CO2 gas exchange measurements using a CI−340 portable photosynthetic system in situ. Differences between T(leaf) (the tempera− ture of the thalli) and T(air) (the air temperature) for these lichens were not consistent, which reflected that environment and the growth form of thalli could affect T(leaf) signifi− cantly.
    [Show full text]
  • The Green Puzzle Stichococcus (Trebouxiophyceae, Chlorophyta): New Generic and Species Concept Among This Widely Distributed Genus
    Phytotaxa 441 (2): 113–142 ISSN 1179-3155 (print edition) https://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2020 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.441.2.2 The green puzzle Stichococcus (Trebouxiophyceae, Chlorophyta): New generic and species concept among this widely distributed genus THOMAS PRÖSCHOLD1,3* & TATYANA DARIENKO2,4 1 University of Innsbruck, Research Department for Limnology, A-5310 Mondsee, Austria 2 University of Göttingen, Albrecht-von-Haller-Institute of Plant Sciences, Experimental Phycology and Sammlung für Algenkulturen, D-37073 Göttingen, Germany 3 [email protected]; http://orcid.org/0000-0002-7858-0434 4 [email protected]; http://orcid.org/0000-0002-1957-0076 *Correspondence author Abstract Phylogenetic analyses have revealed that the traditional order Prasiolales, which contains filamentous and pseudoparenchy- matous genera Prasiola and Rosenvingiella with complex life cycle, also contains taxa of more simple morphology such as coccoids like Pseudochlorella and Edaphochlorella or rod-like organisms like Stichococcus and Pseudostichococcus (called Prasiola clade of the Trebouxiophyceae). Recent studies have shown a high biodiversity among these organisms and questioned the traditional generic and species concept. We studied 34 strains assigned as Stichococcus, Pseudostichococcus, Diplosphaera and Desmocococcus. Phylogenetic analyses using a multigene approach revealed that these strains belong to eight independent lineages within the Prasiola clade of the Trebouxiophyceae. For testing if these lineages represent genera, we studied the secondary structures of SSU and ITS rDNA sequences to find genetic synapomorphies. The secondary struc- ture of the V9 region of SSU is diagnostic to support the proposal for separation of eight genera.
    [Show full text]
  • Chloroplast Phylogenomic Analysis of Chlorophyte Green Algae Identifies a Novel Lineage Sister to the Sphaeropleales (Chlorophyceae) Claude Lemieux*, Antony T
    Lemieux et al. BMC Evolutionary Biology (2015) 15:264 DOI 10.1186/s12862-015-0544-5 RESEARCHARTICLE Open Access Chloroplast phylogenomic analysis of chlorophyte green algae identifies a novel lineage sister to the Sphaeropleales (Chlorophyceae) Claude Lemieux*, Antony T. Vincent, Aurélie Labarre, Christian Otis and Monique Turmel Abstract Background: The class Chlorophyceae (Chlorophyta) includes morphologically and ecologically diverse green algae. Most of the documented species belong to the clade formed by the Chlamydomonadales (also called Volvocales) and Sphaeropleales. Although studies based on the nuclear 18S rRNA gene or a few combined genes have shed light on the diversity and phylogenetic structure of the Chlamydomonadales, the positions of many of the monophyletic groups identified remain uncertain. Here, we used a chloroplast phylogenomic approach to delineate the relationships among these lineages. Results: To generate the analyzed amino acid and nucleotide data sets, we sequenced the chloroplast DNAs (cpDNAs) of 24 chlorophycean taxa; these included representatives from 16 of the 21 primary clades previously recognized in the Chlamydomonadales, two taxa from a coccoid lineage (Jenufa) that was suspected to be sister to the Golenkiniaceae, and two sphaeroplealeans. Using Bayesian and/or maximum likelihood inference methods, we analyzed an amino acid data set that was assembled from 69 cpDNA-encoded proteins of 73 core chlorophyte (including 33 chlorophyceans), as well as two nucleotide data sets that were generated from the 69 genes coding for these proteins and 29 RNA-coding genes. The protein and gene phylogenies were congruent and robustly resolved the branching order of most of the investigated lineages. Within the Chlamydomonadales, 22 taxa formed an assemblage of five major clades/lineages.
    [Show full text]
  • Uptake and Fixation of CO2 in Lichen Photobionts
    I Symbiosis, 18 (1995) 95-109 95 Balaban, Philadelphia/Rehovot Uptake and Fixation of CO2 in Lichen Photobionts KRISTIN P ALMQVIST Department of Plant Physiology, University of Umea, 901 87 Urned, Sweden, Tel. +46-90-166844, Fax. +46-90-166676, E-mail: Kris tin .Palmqvist@plan tphys. umu.se Received January 25, 1995; Accepted February 8, 1995 Abstract Lichens are the symbiotic phenotype of nutritionally specialised fungi that live in symbiosis with photosynthesising algal and/or cyanobacterial photobionts. Although the initiation and maintenance of the metabolic activity of lichens require that water is taken up and stored, excess water may potentially limit the photosynthetic activity of the lichen if this causes swelling of the fungal hyphae, which may impede the diffusion of CO2 to the photobiont. In free-living algae and cyanobacteria this potential limitation of photosynthesis has partly been compensated for by the evolution of a CO2 concentrating mechanism (CCM). This mechanism operates under conditions of low CO2 availability in their environment, such as when the diffusion of CO2 is slow or when HC03- is the dominating inorganic carbon source. This paper gives a brief presentation of the function of the CCM in free-living cyanobacteria and microalgae and summarises recently obtained evidence· for the presence of this mechanism in lichens with cyanobacterial Nostoc and green algal Trebouxia photobionts. However, the CCM is absent in some photobiont genera; evidence for this is also presented and possible reasons for this absence are discussed. Keywords: CQi concentrating mechanism, lichen, photobiont, photosynthesis, Rubisco Abbreviations: CA = Carbonic anhydrase (E.C. 4.2.1.1); CCM = CO2 concentrating mechanism, DIC= dissolved inorganic carbon; EZA = ethoxyzolamide (6-ethoxy-2-benzo• thiazole-2-sulfonamide); Km= Michaelis-Menten constant for an enzyme reaction; Rubisco = Ribulose-1,5-bisphosphate carboxylase-oxygenase (E.C.
    [Show full text]
  • Freshwater Algae in Britain and Ireland - Bibliography
    Freshwater algae in Britain and Ireland - Bibliography Floras, monographs, articles with records and environmental information, together with papers dealing with taxonomic/nomenclatural changes since 2003 (previous update of ‘Coded List’) as well as those helpful for identification purposes. Theses are listed only where available online and include unpublished information. Useful websites are listed at the end of the bibliography. Further links to relevant information (catalogues, websites, photocatalogues) can be found on the site managed by the British Phycological Society (http://www.brphycsoc.org/links.lasso). Abbas A, Godward MBE (1964) Cytology in relation to taxonomy in Chaetophorales. Journal of the Linnean Society, Botany 58: 499–597. Abbott J, Emsley F, Hick T, Stubbins J, Turner WB, West W (1886) Contributions to a fauna and flora of West Yorkshire: algae (exclusive of Diatomaceae). Transactions of the Leeds Naturalists' Club and Scientific Association 1: 69–78, pl.1. Acton E (1909) Coccomyxa subellipsoidea, a new member of the Palmellaceae. Annals of Botany 23: 537–573. Acton E (1916a) On the structure and origin of Cladophora-balls. New Phytologist 15: 1–10. Acton E (1916b) On a new penetrating alga. New Phytologist 15: 97–102. Acton E (1916c) Studies on the nuclear division in desmids. 1. Hyalotheca dissiliens (Smith) Bréb. Annals of Botany 30: 379–382. Adams J (1908) A synopsis of Irish algae, freshwater and marine. Proceedings of the Royal Irish Academy 27B: 11–60. Ahmadjian V (1967) A guide to the algae occurring as lichen symbionts: isolation, culture, cultural physiology and identification. Phycologia 6: 127–166 Allanson BR (1973) The fine structure of the periphyton of Chara sp.
    [Show full text]
  • Chloroplasts Morphology Investigation With
    Florida International University FIU Digital Commons Department of Biological Sciences College of Arts, Sciences & Education 12-1-2015 Chloroplasts morphology investigation with diverse microscopy approaches and inter-specific variation in Laurencia species (Rhodophyta) Wladimir Costa Paradas Instituto de Pesquisas Jardim Botânico do Rio de Janeiro Leonardo Rodrigues Andrade Universidade Federal do Rio de Janeiro Leonardo Tavares Salgado Instituto de Pesquisas Jardim Botânico do Rio de Janeiro Ligia Collado-Vides Department of Biological Sciences and Southeast Environmental Research Center, Florida International University, [email protected] Renato Crespo Pereira niversidade Federal Fluminense See next page for additional authors Follow this and additional works at: https://digitalcommons.fiu.edu/cas_bio Recommended Citation Paradas, Wladimir Costa; Andrade, Leonardo Rodrigues; Salgado, Leonardo Tavares; Collado-Vides, Ligia; Pereira, Renato Crespo; and Amado-Filho, Gilberto Menezes, "Chloroplasts morphology investigation with diverse microscopy approaches and inter-specific variation in Laurencia species (Rhodophyta)" (2015). Department of Biological Sciences. 74. https://digitalcommons.fiu.edu/cas_bio/74 This work is brought to you for free and open access by the College of Arts, Sciences & Education at FIU Digital Commons. It has been accepted for inclusion in Department of Biological Sciences by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. Authors Wladimir Costa Paradas, Leonardo
    [Show full text]
  • The Parachlorella Genome and Transcriptome Endorse Active RWP-RK, Meiosis and Flagellar Genes in Trebouxiophycean Algae
    © 2019 The Japan Mendel Society Cytologia 84(4): 323–330 The Parachlorella Genome and Transcriptome Endorse Active RWP-RK, Meiosis and Flagellar Genes in Trebouxiophycean Algae Shuhei Ota1,2*†, Kenshiro Oshima3,4, Tomokazu Yamazaki1,2, Tsuyoshi Takeshita1,2,5, Kateřina Bišová6, Vilém Zachleder6, Masahira Hattori4,7 and Shigeyuki Kawano1,2,5* 1 Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277–8561, Japan 2 Japan Science and Technology Agency, CREST/START, Kashiwanoha, Kashiwa, Chiba 277–8561, Japan 3 Laboratory of Metagenomics, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277–8561, Japan 4 Center for Omics and Bioinformatics, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277–8561, Japan 5 Future Center Initiative, The University of Tokyo, Wakashiba, Kashiwa, Chiba 277–0871, Japan 6 Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, Třeboň, Czech Republic 7 Graduate School of Advanced Science and Engineering, Waseda University, Okubo, Shinjuku-ku, Tokyo 169–8555, Japan Received June 19, 2019; accepted July 17, 2019 Summary The genus Chlorella is a well-known member of the green algal class Trebouxiophyceae, which is characterized by an immotile and asexual life cycle. Here, we performed an analysis of the whole genome and transcriptome of Parachlorella kessleri NIES-2152 with emphasis on the evolution of meiosis and the flagel- lar proteins. The Parachlorella transcriptomic data showed that the MID-related RWP-RK genes and meiosis- specific and flagellar proteins were expressed; at the transcriptional level, the DNA repair protein RAD50 was upregulated in the stationary phase, with four-fold more reads per kilobase of transcript per million mapped reads (RPKM) compared with the early stage of culture.
    [Show full text]
  • Green Algae Secondary Article
    Green Algae Secondary article Mark A Buchheim, University of Tulsa, Tulsa, Oklahoma, USA Article Contents . Introduction The green algae comprise a large and diverse group of organisms that range from the . Major Groups microscopic to the macroscopic. Green algae are found in virtually all aquatic and some . Economic and Ecological Importance terrestrial habitats. Introduction generalization). The taxonomic and phylogenetic status of The green algae comprise a large and diverse group of the green plant group is supported by both molecular and organisms that range from the microscopic (e.g. Chlamy- nonmolecular evidence (Graham, 1993; Graham and domonas) to the macroscopic (e.g. Acetabularia). In Wilcox, 2000). This group of green organisms has been addition to exhibiting a considerable range of structural termed the Viridaeplantae or Chlorobionta. Neither the variability, green algae are characterized by extensive euglenoids nor the chlorarachniophytes, both of which ecological diversity. Green algae are found in virtually all have apparently acquired a green chloroplast by a aquatic (both freshwater and marine) and some terrestrial secondary endosymbiosis, are included in the green plant habitats. Although most are free-living, a number of green lineage (Graham and Wilcox, 2000). Furthermore, the algae are found in symbiotic associations with other Chloroxybacteria (e.g. Prochloron), which possess chlor- organisms (e.g. the lichen association between an alga ophyll a and b organized on thylakoids, are true and a fungus). Some green algae grow epiphytically (e.g. prokaryotes, and are not, therefore, included in the green Characiochloris, which grows on other filamentous algae plant lineage. The green algal division Chlorophyta forms or higher aquatic plants), epizoically (e.g.
    [Show full text]
  • 7 Systematics of the Green Algae
    7989_C007.fm Page 123 Monday, June 25, 2007 8:57 PM Systematics of the green 7 algae: conflict of classic and modern approaches Thomas Pröschold and Frederik Leliaert CONTENTS Introduction ....................................................................................................................................124 How are green algae classified? ........................................................................................125 The morphological concept ...............................................................................................125 The ultrastructural concept ................................................................................................125 The molecular concept (phylogenetic concept).................................................................131 Classic versus modern approaches: problems with identification of species and genera.....................................................................................................................134 Taxonomic revision of genera and species using polyphasic approaches....................................139 Polyphasic approaches used for characterization of the genera Oogamochlamys and Lobochlamys....................................................................................140 Delimiting phylogenetic species by a multi-gene approach in Micromonas and Halimeda .....................................................................................................................143 Conclusions ....................................................................................................................................144
    [Show full text]
  • The Lichen Symbiosis Re-Viewed Through the Genomes of Cladonia
    Armaleo et al. BMC Genomics (2019) 20:605 https://doi.org/10.1186/s12864-019-5629-x RESEARCH ARTICLE Open Access The lichen symbiosis re-viewed through the genomes of Cladonia grayi and its algal partner Asterochloris glomerata Daniele Armaleo1* , Olaf Müller1,2, François Lutzoni1, Ólafur S. Andrésson3, Guillaume Blanc4, Helge B. Bode5, Frank R. Collart6, Francesco Dal Grande7, Fred Dietrich2, Igor V. Grigoriev8,9, Suzanne Joneson1,10, Alan Kuo8, Peter E. Larsen6, John M. Logsdon Jr11, David Lopez12, Francis Martin13, Susan P. May1,14, Tami R. McDonald1,15, Sabeeha S. Merchant9,16, Vivian Miao17, Emmanuelle Morin13, Ryoko Oono18, Matteo Pellegrini19, Nimrod Rubinstein20,21, Maria Virginia Sanchez-Puerta22, Elizabeth Savelkoul11, Imke Schmitt7,23, Jason C. Slot24, Darren Soanes25, Péter Szövényi26, Nicholas J. Talbot27, Claire Veneault-Fourrey13,28 and Basil B. Xavier3,29 Abstract Background: Lichens, encompassing 20,000 known species, are symbioses between specialized fungi (mycobionts), mostly ascomycetes, and unicellular green algae or cyanobacteria (photobionts). Here we describe the first parallel genomic analysis of the mycobiont Cladonia grayi and of its green algal photobiont Asterochloris glomerata.We focus on genes/predicted proteins of potential symbiotic significance, sought by surveying proteins differentially activated during early stages of mycobiont and photobiont interaction in coculture, expanded or contracted protein families, and proteins with differential rates of evolution. Results: A) In coculture, the fungus upregulated small secreted proteins, membrane transport proteins, signal transduction components, extracellular hydrolases and, notably, a ribitol transporter and an ammonium transporter, and the alga activated DNA metabolism, signal transduction, and expression of flagellar components. B) Expanded fungal protein families include heterokaryon incompatibility proteins, polyketide synthases, and a unique set of G- protein α subunit paralogs.
    [Show full text]