Practical Induction Heat Treating, Second Edition Copyright © 2015 ASM International® R.E

Total Page:16

File Type:pdf, Size:1020Kb

Practical Induction Heat Treating, Second Edition Copyright © 2015 ASM International® R.E Practical Induction Heat Treating, Second Edition Copyright © 2015 ASM International® R.E. Haimbaugh All rights reserved www.asminternational.org CHAPTER 1 History of Metallurgy and Induction Heating THIS CHAPTER includes a brief history of metallurgy, followed by a discussion of the development of scientific theories involving the electri- cal nature of induction heating. The author incorporates personal experi- ences and memories throughout. History of Metallurgy The Egyptians are believed to have worked copper for centuries before 3500 B.C. A piece of heat- treated steel was found in one of the pyramids, and it is thought to date from 3000 B.C. Early metal workers found certain metals and ores could be refined, processed, and made into tools and weapons, but it was not until the Iron Age and the Hittites that metallurgi- cal processes were developed that would consistently produce strong steel weapons. Although the art of metallurgy developed as early smiths found that heating and cooling iron in different ways could make iron either softer or harder, metallurgical theory lagged behind until relatively mod- ern times. In 1864 Henry Clifton Sorby first used a microscope to study metals. This was followed by Albert Sauveur trying to convince American steelmakers that something practical was to be gained from microscopic examination. However, it has only been since about 1930, when x- ray dif- fraction with wave mechanics was applied to metals, that the science of metallurgy was born. The first induction phenomenon was observed by Michael Faraday in the middle 1800s when the effect that caused the heating of transformer and motor windings was considered to be undesirable. The first construc- tive use of induction occurred in 1916 when it was used to melt metals. Induction heat treating came into prominence in the 1930s, when high- 2 / Practical Induction Heat Treating, Second Edition frequency motor- generator sets were developed and used for the induction hardening of crankshaft journals and bearings. In 1938, Caterpillar in- stalled a power supply for induction hardening track links, and by 1943 they had 16 induction-hardening units in production (Ref 1). In 1941 Vaugn, Farlow, and Meyer presented a paper titled “Metallurgical Control of Induction Hardening” at the convention of the American Society for Metals, which provided proof that alloy elements such as nickel and chro- mium were wholly unnecessary for maximum surface hardness and that carbon steels could be used in place of alloy steels. Caterpillar subse- quently purchased a 500 kW, 9.6 kHz motor generator set for induction hardening their final drive gear with a 642 mm (25.7 in.) diameter by a 125 mm (5 in.) wide face. In an article in the July 1943 issue of Metal Progress, the Caterpillar process for contour hardening this gear was pre- sented. Figure 1.1 shows the contour pattern produced at that time by Caterpillar. Caterpillar must be considered the early pioneer in the contour hardening of gear teeth. Progress in research in metallurgical principles of induction hardening continued, and at the 26th annual meeting of the American Society for Metals in 1944, D.L. Marten and F. E. Wiley presented a paper that re- ported investigation of temperature, composition, and previous structure upon induction-hardening characteristics of plain carbon steel (Ref 2). The basic metallurgical theory as presented at that time is still being taught today. Fig . 1 .1 Hardness survey (Rockwell C scale) of hardened tooth, sectioned on center. Magnified 2¾ diameters. Source: Ref 1 Chapter 1: History of Metallurgy and Induction Heating / 3 Induction Heating after World War II In 1946, Edwin Cady listed the basic types of induction equipment (Ref 3) with frequencies ranging from 25 Hz to 50 MHz: • Electronic circuit (vacuum tube, 300 to 530 kHz, and greater than 1 MHz) • Spark gap (15 to 60 kHz and 125 to 450 kHz) • Rotary converter (motor generator, 1 to 10 kHz) • Mercury arc (400 Hz to 3 kHz) • Standard power cycle (line frequency of 60 Hz, or 25 Hz as generated by some steel mills) While other types of power supplies and converters have been used over the years, the intent of this book is to discuss those commonly used for induction heat treating. The first induction heaters sold by General Electric during World War II had rectifier tubes for the conversion of the alternating current (ac) to di- rect current (dc). Output control and tuning were accomplished through a combination of different taps on the output of the tank coil and a control knob that tapped the plate transformer for different output voltages. The power was turned on and off through the use of a main solenoid- activated contactor. Cycle times were controlled through use of a mechanical, cam- driven timer. The output was the high voltage obtained directly from the tank voltage, and low- turn work coils could not be used. Coil designs to heat small areas were developed in many creative ways. For example, to get around overloads, a shunt coil was used. This was a coil made of copper tubing that was placed directly across the high- voltage output from the tank circuit. The coils were typically wound to a 102 mm (4 in.) diameter; the number of turn shunts varied from 5 to 13. The shunts were water cooled, with the water coming from T connections on both sides of the shunt. While it seemed that all of the power would be lost in the shunts, they actually worked quite well. If power reduction to prevent a slight overload at the “heat on” position was needed, a 13-turn shunt could be installed and used. If the overload was severe, a 5- turn shunt could reduce the power substantially. Setup instructions would indicate what shunt was to be used. The shunts, when used properly, actually leveled the power output so that the plate amperage was held more constant. As the workpiece on heating passed through the Curie temperature, the plate amperage with the use of a shunt did not drop as much. The use and development of induction heat treating practices continued to grow after World War II, and output transformers were developed to help the power supplies and load match when using low-turn work coils. Around 1948, General Electric performed research on the optimum design 4 / Practical Induction Heat Treating, Second Edition for output transformers for radio-frequency (RF) induction heaters. They ran tests on both the size of the transformer (settling on 152 mm, or 6 in.) and the stepdown ratio (11:1 found to be most desirable). The primary was sealed in beeswax, and the secondary was one turn, water-cooled, similar to current output transformers. The first transformer tops for sealing and mounting the outputs were Bakelite, which was later replaced by Micolex. In the 1950s General Electric went to a 279 mm (11 in.) diameter trans- former with a 7:1 stepdown ratio. Because of the output transformers’ single turn secondary, low turn work coils could now be used. In addition, the coils could be grounded on one side, so arcs that occurred with high- voltage coils were practically eliminated. From the 1940s through the 1950s, the use and application of large motor generators and RF oscillator induction power supplies continued. In the mid-1950s General Electric introduced a new RF induction heater. It featured an aluminum-enclosed oscillator section; the internal bus compo- nents were silver plated. Rectifier tubes were still used for the dc conver- sion, but two of the models that were available had three triode rectifier tubes so that thyratron power controls could be used for stepless power control and for power turn-on. Two of the models featured an internal output transformer that was rigidly attached and had an air core. The out- put power ratings were proven through running a water load in a work coil. The induction heaters featured what was called a filament regulated transformer- capacitor network that provided about 3% regulation through swings of line voltage. Motor- driven voltage regulators could be furnished on request. The induction hardening of air-to- air missile fuse bodies was developed during the Korean War. These were the striking end of the air- to- air mis- siles. The bodies required a soft nose to allow collapse on impact, to ex- plode the missile. The requirement was for the body to be hard but the nose totally soft. At that time induction tempering did not produce parts in specification. A 20 kW RF induction heater was used for austenitizing with direct tank-loaded coils (high voltage). The coils themselves were contoured to the shape of the fuse body, starting with 6.35 mm (0.25 in.) 3 copper tubing at the top for about four turns, moving into 4.18 mm ( /16 in.) copper tubing around the bottom to provide higher current concentration. The nose of the fuse body was placed onto a brass, water- cooled nest to prevent the nose from heating and hardening. Nitrogen atmosphere was used to prevent scale, with an austenitizing cycle of 9 s. The parts were oil quenched in mineral oil and then furnace tempered. The final surface fin- ish was good enough that the fuse bodies could be plated afterward with any finish machining or polishing. About 1959, International Harvester (IH) found that customers who purchased new tractors were replacing the track shoe bolts with Cater- pillar bolts before use. The Caterpillar bolts were induction hardened and did not wear. The IH bolts were overall hardened and tempered but did Chapter 1: History of Metallurgy and Induction Heating / 5 not have contour- hardened heads. The heads of the bolts wore in use, and the bolts had to be chiseled out for replacement.
Recommended publications
  • Ferritic Nitrocarburizing Gears to Increase Wear Resisitance And
    Ferritic Nitrocarburizing Gears tOI Increase Wear Resistance and Reduce Distortion Loren ,JI, Epler uaHtygear manufacturing depends on controlled toler- asa gaseous territic nitrocarl:mrizillg process and patented by ances and geometry. As a re ult, ferritic nillocarburizing Lucas Industries in 1961. Lucas demonstrated that they could ha become the heat treat process of choice for many produce surface layers identical to those produced in salt bath gear manufacturers. The primary reason for this are: processes using an endothermic, ammonia-based atmosphere. The process is performed at low temperatures, i.e. less than The process was classified as a "thermochemical susfece critical treatment" that involved !he diffusion of both nitrogenand car- 2. The quench methods increase fatigue strength by up to, L25% bon into the surface of a metal at a temperature below the au tell- without distorting. Ferritlc nitrocarboriziag is used in place ite transforrnation temperature. The process would yield .3 single of carburizing and hardening, carbonitriding, nltriding or in phase epsilon layer with an atomic weight of Fep3' The ingle conjunction wi.th conventional and induction hardening. phase layer makes !:heproduct much more wear resistant than gas 3. h establishes gradient base haronesses, i.e, eliminates egg- or ionnitriding, according to Dawc and Trantner 0). shell effect on TiN, TiAlN,. ere. etc. [II 1982, lronbeund HeatTreat developed Ni.tmwear® using In addition, the process can also be applied to hobs, broaches, similar atmo pheres in a fluidized bed medium. Subsequently. drills and other cutting tools. Jack Ross, owner and founder of lronbound,. patented and HisUJry, Fenitic nitrocarburizing was first established in licensed the process to Dynamic Metal Treating.
    [Show full text]
  • Induction Hardening on Drive Axle Shaft and It's
    www.ierjournal.org International Engineering Research Journal (IERJ) Special Issue Page 1197-1201, June 2016, ISSN 2395-1621 Induction Hardening on Drive axle shaft and it’s FEA #1Aniket A. Deshmukh, #2Prof. D.H. Burande 1 PG student, Automotive Engineering, Mechanical Engineering Department, Savitribai Phule Pune University, Pune, Maharashtra, India. 2Associate professor, Mechanical Engineering Department, Savitribai Phule Pune University, Pune, Maharashtra, India. Abstract: This work deals with increasing strength of steel drive axle shafts by placing an extra bush support. It includes the modeling of shaft in CATIA. Drive shaft made up of MS material will be analyzed first. Stress and deformation will be the output of analysis. The meshing and boundary condition application will be carried using Hypermesh; Structural analysis of shaft will be carried out using ANSYS. Re-designing the shaft placing a bush for additional support in the length of shaft, and applying induction hardening process at the place of bush support for increasing the strength and reducing the deflection of the shaft. The design optimization also improves the performance of drive shaft. Keywords: Finite Element Analysis, Drive axle shaft, Induction hardening, Bush support. 1. INTRODUCTION Power is transmitted from engine to differential through propeller shaft, Axle shaft is connected between Hardening process is used for parts that wears while differential and wheel. It takes torque from engine. In this operating. During hardening core of the part does not get paper, drive axle shaft of Bolero automobile is thought of affected. Hardening increases wear resistance of a for the study. This axle shaft is semi-floating kind.
    [Show full text]
  • Optimal Design of High-Frequency Induction Heating Apparatus for Wafer Cleaning Equipment Using Superheated Steam
    energies Article Optimal Design of High-Frequency Induction Heating Apparatus for Wafer Cleaning Equipment Using Superheated Steam Sang Min Park 1 , Eunsu Jang 2, Joon Sung Park 1 , Jin-Hong Kim 1, Jun-Hyuk Choi 1 and Byoung Kuk Lee 2,* 1 Intelligent Mechatronics Research Center, Korea Electronics Technology Institute (KETI), Bucheon 14502, Korea; [email protected] (S.M.P.); [email protected] (J.S.P.); [email protected] (J.-H.K.); [email protected] (J.-H.C.) 2 Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-31-299-4581 Received: 19 October 2020; Accepted: 22 November 2020; Published: 25 November 2020 Abstract: In this study, wafer cleaning equipment was designed and fabricated using the induction heating (IH) method and a short-time superheated steam (SHS) generation process. To prevent problems arising from the presence of particulate matter in the fluid flow region, pure grade 2 titanium (Ti) R50400 was used in the wafer cleaning equipment for heating objects via induction. The Ti load was designed and manufactured with a specific shape, along with the resonant network, to efficiently generate high-temperature steam by increasing the residence time of the fluid in the heating object. The IH performance of various shapes of heating objects made of Ti was analyzed and the results were compared. In addition, the heat capacity required to generate SHS was mathematically calculated and analyzed. The SHS heating performance was verified by conducting experiments using the designed 2.2 kW wafer cleaning equipment.
    [Show full text]
  • Hardening of Small Gears in Well Under a Second
    Hardening of small gears PUTTING THE SMARTER HEAT TO SMARTER USE A guide to the benefits of induction heating FD - 2011236 02/16 ENG How to reduce distortion and costs when hardening small gears Induction is the cost-cutting alternative to furnace Induction can heat precisely localized zones in gears. case hardening of small- and medium-sized Achieving the same degree of localized hardening gears. Key features of induction hardening are with carburizing can be a time- and labor-intensive fast heating cycles, accurate heating patterns and procedure. When carburizing specific zones such as cores that remain relatively cold and stable. Such the teeth areas, it is usually necessary to mask the characteristics minimize distortion and make it more rest of the gear with ‘stop off’ coatings. These masks repetitive, reducing post-heat processing such as must be applied to each and every workpiece, and grinding. This is especially true when comparing removed following the hardening process. No such induction to case carburizing. masking is necessary with induction hardening. Induction hardening also reduces pre-processing, as Induction hardening is ideal for integrating into the geometry changes are less than those caused by production lines. Such integrated hardening is carburizing. Such minimal changes mean distortion more productive than thermochemical processes. does not need to be accounted for when making Moreover, integrated hardening minimizes costs, as the gear. With gears destined for gas carburizing, the gears do not have to be removed for separate however, ‘offsets’ that represent distortion are often heat treatment. In fact, induction heating makes introduced at the design stage.
    [Show full text]
  • Design of a Wireless Power Transfer System Using Inductive Coupling and MATLAB Programming Apoorva.P1 Deeksha.K.S2 Pavithra.N3 Student, Dept
    International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169 Volume: 3 Issue: 6 3817 - 3825 _______________________________________________________________________________________________ Design of a Wireless Power Transfer System using Inductive Coupling and MATLAB programming Apoorva.P1 Deeksha.K.S2 Pavithra.N3 Student, Dept. Of EEE, Student, Dept. Of EEE Student, Dept. Of EEE, Dr. T. Thimmaiah Institute of Dr. T. Thimmaiah Institute of Dr. T. Thimmaiah Institute of Technology Technology Technology K.G.F,India K.G.F, India K.G.F, India [email protected] [email protected] [email protected] Vijayalakshmi.M.N4 Somashekar.B5 David Livingston.D6 Student, Dept. Of EEE Asst Professor Dept. Of EEE, Asst Professor Dept. Of EEE, Dr. T. Thimmaiah Institute of Dr. T. Thimmaiah Institute of Dr. T. Thimmaiah Institute of Technology Technology Technology K.G.F, India K.G.F, India K.G.F, India [email protected] [email protected] [email protected] Abstract—Wireless power transfer (WPT) is the propagation of electrical energy from a power source to an electrical load without the use of interconnecting wires. It is becoming very popular in recent applications. Wireless transmission is useful in cases where interconnecting wires are difficult, hazardous, or non-existent. Wireless power transfer is becoming popular for induction heating, charging of consumer electronics (electric toothbrush, charger), biomedical implants, radio frequency identification (RFID), contact-less smart cards, and even for transmission of electrical energy from space to earth. In the design of the coils, the parameters of coils are obtained by using the basic calculations and measurements.
    [Show full text]
  • Induction Heating Principles PRESENTATION
    Induction Heating Principles PRESENTATION www.ceia-power.com This document is property of CEIA which reserves all rights. Total or partial copying, modification and translation is forbidden FC040K0068V1000UK Main Applications of Induction Heating ¾ Hard (Silver) Brazing ¾ Tin Soldering ¾ Heat Treatment (Hardening, Annealing, Tempering, …) ¾ Melting Applications (ferrous and non ferrous metal) ¾ Forging This document is property of CEIA which reserves all rights. Total or partial copying, modification and translation is forbidden FC040K0068V1000UK Examples of induction heating applications This document is property of CEIA which reserves all rights. Total or partial copying, modification and translation is forbidden FC040K0068V1000UK Advantages of Induction Reduced Heating Time Localized Heating Efficient Energy Consumption Heating Process Controllable and Repeatable Improved Product Quality Safety for User Improving of the working condition This document is property of CEIA which reserves all rights. Total or partial copying, modification and translation is forbidden FC040K0068V1000UK Basics of Induction INDUCTIVE HEATING is based on the supply of energy by means of electromagnetic induction. A coil, suitably dimensioned, placed close to the metal parts to be heated, conducting high or medium frequency alternated current, induces on the work piece currents (eddy currents) whose intensity can be controlled and modulated. This document is property of CEIA which reserves all rights. Total or partial copying, modification and translation is forbidden FC040K0068V1000UK Basics of induction The heating occurs without physical contact, it involves only the metal parts to be treated and it is characterized by a high efficiency transfer without loss of heat. The depth of penetration of the generated currents is directly correlated to the working frequency of the generator used; higher it is, much more the induced currents concentrate on the surface.
    [Show full text]
  • Magnetic Flux Controllers in Induction Heating and Melting
    ASM Handbook, Volume 4C, Induction Heating and Heat Treatment Copyright # 2014 ASM InternationalW V. Rudnev and G.E. Totten, editors All rights reserved www.asminternational.org Magnetic Flux Controllers in Induction Heating and Melting Robert Goldstein, Fluxtrol, Inc. MAGNETIC FLUX CONTROLLERS are workpiece. For both cases, there are three closed is applied, it strongly reduces the reluctance of materials other than the copper coil that are used loops: flow of current in the coil, flow of mag- the back path for the magnetic flux (Ref 3). All in induction systems to alter the flow of the mag- netic flux, and flow of current in the workpiece. induction heating systems can be described in netic field. Magnetic flux controllers used in In most cases, the difference between induc- this way. power supplying components are not considered tion heating applications and transformers is that The benefits of a magnetic flux concentrator in this article. the magnetic circuit is open. The magnetic field on the electrical parameters for a given applica- Magnetic flux controllers have been in exis- path includes not only the area with the control- tion depends on the ratio of the reluctance of tence since the development of the induction ler, but also the workpiece surface layer and the the back path for magnetic flux to the overall technique. Michael Faraday used two coils of air between the surface and controller, which reluctance in the system. It is also possible to wire wrapped around an iron core in his experi- cannot be changed. Therefore, the reluctance of break down basic system components into sub- ments that led to Faraday’s law of electromagnetic the magnetic path only partially depends on the components to determine the most economical induction, which states that the electromotive magnetic permeability of the controller (Ref 3).
    [Show full text]
  • Induction Hardening of Gears and Critical Components
    Induction Hardening of Gears and Critical Components Dr.Valery Rudnev hypoid gears and noncircular gears are rarely heat treated by Management Summary induction. Induction hardening is a heat treating technique that Importance of Gear Material and Its Condition can be used to selectively harden portions of a gear, such Gear operating conditions, the required hardness and cost as the fl anks, roots and tips of teeth, providing improved are important factors to consider when selecting materials for hardness, wear resistance, and contact fatigue strength induction hardened gears. Plain carbon steels and low-alloy without affecting the metallurgy of the core and other steels containing 0.40 to 0.55% carbon content are commonly parts of the component that don’t require change. This article provides an overview of the process and special specifi ed (Refs. 1, 5). Examples include AISI 1045, 1552, considerations for heat treating gears. Part I covers 4140, 4150, 4340, and 5150. Depending on the application, gear materials, desired microsctructure, coil design tooth hardness after tempering is typically in the 48 to 60 HRC and tooth-by-tooth induction hardening. Part II, which range. Core hardness primarily depends upon steel chemical will appear in the next issue, covers spin hardening composition and steel condition prior to induction hardening. and various heating concepts used with it. For quenching and tempering, prior structure core hardness is usually in the 28–35 HRC range. When discussing induction hardening, it is imperative to Introduction mention the importance of having “favorable” steel conditions Over the years, gear manufacturers have gained knowledge prior to gear hardening.
    [Show full text]
  • Handbook of Induction Heating Theoretical Background
    This article was downloaded by: 10.3.98.104 On: 28 Sep 2021 Access details: subscription number Publisher: CRC Press Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: 5 Howick Place, London SW1P 1WG, UK Handbook of Induction Heating Valery Rudnev, Don Loveless, Raymond L. Cook Theoretical Background Publication details https://www.routledgehandbooks.com/doi/10.1201/9781315117485-3 Valery Rudnev, Don Loveless, Raymond L. Cook Published online on: 11 Jul 2017 How to cite :- Valery Rudnev, Don Loveless, Raymond L. Cook. 11 Jul 2017, Theoretical Background from: Handbook of Induction Heating CRC Press Accessed on: 28 Sep 2021 https://www.routledgehandbooks.com/doi/10.1201/9781315117485-3 PLEASE SCROLL DOWN FOR DOCUMENT Full terms and conditions of use: https://www.routledgehandbooks.com/legal-notices/terms This Document PDF may be used for research, teaching and private study purposes. Any substantial or systematic reproductions, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The publisher shall not be liable for an loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. 3 Theoretical Background Induction heating (IH) is a multiphysical phenomenon comprising a complex interac- tion of electromagnetic, heat transfer, metallurgical phenomena, and circuit analysis that are tightly interrelated and highly nonlinear because the physical properties of materi- als depend on magnetic field intensity, temperature, and microstructure.
    [Show full text]
  • Part No: 26109031 Rev/Chg Level: 002A Specification Name: SPEC, REQ for HT PARTS
    MATERIAL SPECIFICATION Part No: 26109031 Rev/Chg Level : 002A Specification Name: SPEC, REQ FOR HT PARTS Production Release SAFETY AND/OR GOVERNMENT REGULATED PART ☐YES ☒NO DESIGNATED CHARACTERISTICS DC SYMBOL QCL TYPE QCI TYPE REF: NEXTEER GLOBAL PROCEDURE G1331 0 LAST NO USED QS-100V SAFETY/COMPLIANCE CL1/CL2 QS-DR 0 TOTAL ON DRAWING CI-100V FIT/FUNCTION CL4/CL5 CI-DR DC NO TYPE DESCRIPTION RATIONALE ZONE SH Substances of Concern and Recycled Content per Nexteer Automotive 23000000 This document is protected by copyright and nothing in this document shall grant a license or any other rights to this document or the information conveyed therein. The reproduction, distribution, and utilization of this document or its related CAD math data, as well as communication of any content to others without express written authorization is prohibited. X-3461 June 2014 Nexteer Automotive Reference Procedure G1337 Nexteer Automotive Production Release 2 of 21 Part No: 26109031 Rev/Chg Level: 002A Specification Name: SPEC, REQ FOR HT PARTS 1. SCOPE: 1.1. The purpose of this specification is to provide the expectations and requirements for heat treated components for Nexteer Automotive. This specification is applicable to all heat treat processes being conducted on the intended component(s) at any point in the value stream. Heat treat processes governed by this standard include all of those referenced in AIAG CQI-9. Heat treaters are expected to conform to the Quality System Requirement provided in the Nexteer Automotive Global Supply Management Supplier Requirements. It assumes that quality planning, a quality manual, and continuous improvement programs are established.
    [Show full text]
  • Induction Heating: Fundamentals
    30/10/17 LEP ELECTROMAGNETIC PROCESSING OF MATERIALS TECNOLGIE DEI PROCESSI ELETTROTERMICI Induction Heating: fundamentals Fabrizio Dughiero 2017-2018 Induction heating fundamentals May 28-30, 2014 1 30/10/17 Summary 1. Induction heating physical principles 2. Characteristics of the induction heating process • Physical parameters that affect induction heating 3. The skin effect: • What parameters modify the skin effect? • Change of skin effect during the heating 4. Examples: • Heating of a magnetic billet • Choosing the frequency appropriate to the workpiece • Coil thickness as a function of frequency 5. Proximity effect, ring effect, flux concentrators effect 1. Induction heating physical principles May 28-30, 2014 2 30/10/17 Induction heating physical principles Characteristics of induction heating • High temperature in the workpiece (in most cases). • High power density for a short heating time (in many applications). • High frequency (in many applications). • Thermal sources are inside the workpiece. Induction heating physical principles Induction heating: fundamental laws ? They state: A. Maxwell’s equations • how the electromagnetic (e.m.) field is generated rd 3 Maxwell’s equation or • how the e.m. field propagates and is Faraday-Neumann-Lenz’s law distributed in the space 4th Maxwell’s equation or • how the e.m. field interacts with the Ampere’s law charged particles. • they state what is the (approximate) B. Constitutive relations response of a specific material to an for materials external field or force. ? Ohm’s law Magnetic
    [Show full text]
  • Induction Heat Treatment
    a ...... ...... ....... ..... ...... .... ... ..... ...... .... ... ..... ...... ....... ..... ...... ....,...... ..... ...... .... ... ..... ...... ....... ..... ...... ....... ..... ...... .... ... ....I ...... ....... ..... ...... ....... ..... ...... ....... ..... ...... ....... ..... ...... .... ... ..... ...... .... ... ...... .... ... ...... .... ... ...... ....... ...... .... ... ...... ,....... ... ...... .... ... .....I .... .... ..... ... ... .....(... ....... ... ..... ... ........ ... ... ..... ...... i iG -i Publishedby the EPRl Center for MaterialsFabrication Vol. 2, No. 2, 1985Reprinted March, 1990 Using Induction Heat speed and selective heating capabil- Vol. 2, No. 1. Advantages specific to Treatment to Obtain ity, to produce quality parts cost induction heat treating are: Special Properties effectively. It will answer such ques- Speed - In heat treatment, the Cost Effectively tions as: What are the advantages higher heating rates play a central of induction heat treatment? What role in designing rapid, high- Heat treatment is often one of the heat treatments can I conduct with temperature heat treating most important stages of metal induction? What are some typical processes. Induction heat treating of processing because it determines parts and materials that are induc- steel may take as little as the final properties that enable tion heat treated? What properties 10 percent or less of the time cqmponents to perform under such can I obtain with induction heat required for furnace treatment. demanding service conditions
    [Show full text]