Can We See Martian Craters from Earth? By: Jeff Beish (Revised 01/15/2019)

Total Page:16

File Type:pdf, Size:1020Kb

Can We See Martian Craters from Earth? By: Jeff Beish (Revised 01/15/2019) Can We See Martian Craters From Earth? By: Jeff Beish (Revised 01/15/2019) INTRODUCTION Can we identify topographic features on the planet Mars using Earth-based telescopes? This argument has gone on for years and probably will continue even after counter proposals are offered here. It centers on claims by a small number of observers who have seen and identified craters, mountain ranges, canyons, volcanoes, and other Earth-like feature on the Red Planet Mars. An excellent illustration of how to identify an impact crater on a celestial object can be found here and here. Most assuredly, if we are to compare the appearance of an impact crater on the Moon to one on Mars then the following criteria should apply: A crater should have a raised rim, walls, a floor, possible central uplift, ejecta and rays. One should not forget that we are dealing with personal opinions and are often predicated on some loose and untried theories. To render an opinion on what someone else sees or does not see is difficult at best; however, we must follow conventional wisdom and what is known about the nature of telescopic observations. Theories vary from those that become "laws of physics" to completely wrong ones that defy replication. In any event, the discussions should not stray far from known and accepted facts. Of course, in the subjective minds of humans, who can define what a fact really is? Prior to the Mariner-4 Spacecraft passing by Mars during 14-15 July 1965 speculation about the existence of craters on this Red Planet was confined to a small group of astronomers. Well known observers, E.E. Barnard and John Mellish, are credited with the supposition that Mars had craters even before space age technology took us out there for a closer look. The problem with their claim is; Mellish’s drawings and observing notes were destroyed when his house burned, or as the story goes. Recently, Barnard's drawings and observation logs were recovered and from the preliminary reports no such evidence of Barnard’s crater sightings have been uncovered [Sheehan, 1995]. Without hard evidence, such as photographs, observational notes, or drawings with specific locations of these features, we cannot even begin to accept such claims. Other notables have speculated that Mars was a cratered planet. In 1944 science writer D.L. Cyr, in the book Life on Mars, suggested craters on Mars. In the late 1940's and early 1950's R.B. Baldwin, C.L. Tombaugh, and E.J. Opik independently predicted the possibility of Martian craters because of its close proximity to the asteroid belt. However, NASA and other space scientists questioned this. If being clos e to the asteroid belt was a major factor in the number of craters on Solar System objects then the crater density should have be significantly greater on Mars, more so than on the Moon -- something they did not find. [Glasstone, 1968]. NOTE: Spacecraft images revealed new impact craters on Mars: see Malin Space Science Systems . LIMITATIONS OF THE HUMAN EYE Since the human eye is capable of resolving objects no smaller than about 62 seconds of arc we cannot identify objects such as craters on the Moon, the disks of planets or their satellites with the unaided eye [Sidgwick, 1980]. We can see gross albedo features on the Moon, such as the dark maria or bright areas; however, Lunar relief is just too shallow to be resolved with the human eye without an optical system to magnify them. Planetary observers fantasize about being able to resolve Jupiter, Venus, or even Mars with their "naked" eyes, but it just isn't possible. Mars only reaches an apparent diameter of 25.1 seconds of arc during closest approach -- Jupiter and Venus only about 50 seconds of arc, we must use some instrument to magnify these objects. This is only common sense if we accept the conventional definition of resolution of the human eye [Sidgwick, 1980]. One interesting question should be asked; how do we identify a crater on another celestial body? The Moon has both craters and domes, so, how do we know which is a crater and which is a dome? When the Moon has a phase both features will have a bright side and a dark side. The obvious answer is to know the relative direction of Sunlight on the Moon or planet -- or find a mountain and remember which side is bright and which is dark. Then follow that convention to define craters and domes. Adding to the difficulty of recognizing Martian craters is its atmospheric activity. Ground -based telescopic observers regularly report clouds and hazes in heavily cratered areas on Mars. Spacecraft data indicates the planet's surface is nearly always covered by a dusty veil, further lowering contrast and at times renders the surface completely featureless [Martin, 1994]. Unlike our Moon with its sharp crater boundaries, Mars has been subjected to billions of years of wind erosion, leaving its crater walls rounded and floors filled with dust. Figure 1. Cut away drawing of typical Martian crater. Drawing shows an average large Martian crater, such as Huygens (304ºW, 14ºS), with a depth of 3-km and diameter of 500-km. Maximum shadow for 47º phase defect = 3-km x sin 47º = 2.2- km. Another important aspect must be considered -- contrast. Even if we could resolve such topography on Mars as described above, would there be enough contrast between the shadowed or sunlit walls and the crater floor to be recognized by telescopic observers? Limb darkening, the ever present dusty haze, and clouds also reduce the contrast of these features considerably. The extension of the atmospheric mass near the limb of the planet will also decrease the contrast of a surface feature. Numerous Martian craters have dark floors, so, how could a shadow of a crater wall be separated from the albedo of its floor? Telescope Resolution Theory Discussed Initially, we use the Dawes criterion (4.56"/aperture) to define the resolving power of optical telescopes. However, planetary observers often use a higher resolving power than allowed by the Dawes limit for the threshold for planetary details. Dawes criterion only applies to resolving or "splitting" equally bright double stars and would not take into account the color, intensity, and contrast of the features on extended objects, or the effect of irradiation of bright objects that reduces the acuity of the eye. Irradiation of bright objects, especially planets in the eyepiece, is evidently a physiological effect, originating in the eye itself and occurs between adjoining areas of unequal brightness. The extent to which the bright area appears to encroach upon the fainter one is approximately proportional to their intensity difference. Equally important is whether the targeted feature is darker or brighter than its background [Sidgwick, 1980]. Experiments by well known planetary observers conclude that they can see planetary details in excess of the Dawes criteria and this limit may be as much as 5 to 14 times too low. Some observers have claimed they can detect black lines on a light background in moderately bright lighting conditions well below the limit of resolution for their instrument; however, they do not say that they actually resolve the line [Buchroeder, 1984]. Pickering and Steavenson found by empirical means that they could see black dots on a white background from 2.3 to 3 times smaller than the Dawes limit [Dobbins et al, 1987]. Did John Mellish See Martian Craters From Earth? Accounts from various sources, mainly from the Journal of the British Astronomical Association (Sheehan, 1994) and others, claim to have letters to and from John Mellish alleging that he had observed craters on Mars in November 1915 using the 40-inch Clark refractor at Yerkes Observatory in Williams Bay, WI (long. 88ºW 33.4’, 42ºN34.2’) during Central Standard Times (CST – UT = -6). Complying with the Dawes limit a 40-inch telescope, such as that used by John Mellish in 1915 [Gordon, 1975], can resolve 0.114 seconds of arc. This yields only 31-km resolution of Mars' surface area when it is at 25.13 arcsec (largest apparent diameter). We can easily calculate this value by multiplying the diameter of Mars (6,792-km) by the image scale of the telescope: 6792 x 0.114 /25.13 = 30.8-Km. However, when Mars is only 7.7 seconds of arc, as it was during Mellish's observations in 1915, the resolution of the giant Yerkes refractor would be reduced to only 100-km of surface area. Even believing we can resolve 14 times better than Dawes criterion with this giant telescope, that leaves us limited to 7 kilometers resolution. From various publications it is believed that John Mellish was observing Mars from 20 minutes to one hour before sunrise on November 13, 1915 and could have seen the crater Newton (154.5° – 161° W, 38.5° - 43.5° S) [Harris, 1995]. Let’s analyze this: The Sun rose at 1243UT (06:43CST) that day and Mars rose at 0444 UT (22:44 CST on 1915 Nov 12). That means that in order for Mellish to see and recognize the 6.5- degree wide crater Newton he would have to wait until the western wall of Crater Newton (161°W and 41°S) would appear on the southwest limb of Mars. Since the wall is at longitude ( ) = 161°W and latitude ( = 41°S, we find that the required Central Meridian (CM) to have to be 123.3°; mathematical proof: CM = / Cos - 90° = 161° / 0.75471 - 90° = 123.3°. Running the program WinJUPOS we find the western extent of Crater Newton (161°W and 41°S) would not appear on the limb until 1504 UT (09:04 CST) when the CM was 123.3° and the Ds = 6.7 and Phase Angle ( i ) = 38.3°.
Recommended publications
  • Interpretations of Gravity Anomalies at Olympus Mons, Mars: Intrusions, Impact Basins, and Troughs
    Lunar and Planetary Science XXXIII (2002) 2024.pdf INTERPRETATIONS OF GRAVITY ANOMALIES AT OLYMPUS MONS, MARS: INTRUSIONS, IMPACT BASINS, AND TROUGHS. P. J. McGovern, Lunar and Planetary Institute, Houston TX 77058-1113, USA, ([email protected]). Summary. New high-resolution gravity and topography We model the response of the lithosphere to topographic loads data from the Mars Global Surveyor (MGS) mission allow a re- via a thin spherical-shell flexure formulation [9, 12], obtain- ¡g examination of compensation and subsurface structure models ing a model Bouguer gravity anomaly ( bÑ ). The resid- ¡g ¡g ¡g bÓ bÑ in the vicinity of Olympus Mons. ual Bouguer anomaly bÖ (equal to - ) can be Introduction. Olympus Mons is a shield volcano of enor- mapped to topographic relief on a subsurface density interface, using a downward-continuation filter [11]. To account for the mous height (> 20 km) and lateral extent (600-800 km), lo- cated northwest of the Tharsis rise. A scarp with height up presence of a buried basin, we expand the topography of a hole Ö h h ¼ ¼ to 10 km defines the base of the edifice. Lobes of material with radius and depth into spherical harmonics iÐÑ up h with blocky to lineated morphology surround the edifice [1-2]. to degree and order 60. We treat iÐÑ as the initial surface re- Such deposits, known as the Olympus Mons aureole deposits lief, which is compensated by initial relief on the crust mantle =´ µh c Ñ c (hereinafter abbreviated as OMAD), are of greatest extent to boundary of magnitude iÐÑ . These interfaces the north and west of the edifice.
    [Show full text]
  • Meat: a Novel
    University of New Hampshire University of New Hampshire Scholars' Repository Faculty Publications 2019 Meat: A Novel Sergey Belyaev Boris Pilnyak Ronald D. LeBlanc University of New Hampshire, [email protected] Follow this and additional works at: https://scholars.unh.edu/faculty_pubs Recommended Citation Belyaev, Sergey; Pilnyak, Boris; and LeBlanc, Ronald D., "Meat: A Novel" (2019). Faculty Publications. 650. https://scholars.unh.edu/faculty_pubs/650 This Book is brought to you for free and open access by University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Faculty Publications by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. Sergey Belyaev and Boris Pilnyak Meat: A Novel Translated by Ronald D. LeBlanc Table of Contents Acknowledgments . III Note on Translation & Transliteration . IV Meat: A Novel: Text and Context . V Meat: A Novel: Part I . 1 Meat: A Novel: Part II . 56 Meat: A Novel: Part III . 98 Memorandum from the Authors . 157 II Acknowledgments I wish to thank the several friends and colleagues who provided me with assistance, advice, and support during the course of my work on this translation project, especially those who helped me to identify some of the exotic culinary items that are mentioned in the opening section of Part I. They include Lynn Visson, Darra Goldstein, Joyce Toomre, and Viktor Konstantinovich Lanchikov. Valuable translation help with tricky grammatical constructions and idiomatic expressions was provided by Dwight and Liya Roesch, both while they were in Moscow serving as interpreters for the State Department and since their return stateside.
    [Show full text]
  • Autobiography of Sir George Biddell Airy by George Biddell Airy 1
    Autobiography of Sir George Biddell Airy by George Biddell Airy 1 CHAPTER I. CHAPTER II. CHAPTER III. CHAPTER IV. CHAPTER V. CHAPTER VI. CHAPTER VII. CHAPTER VIII. CHAPTER IX. CHAPTER X. CHAPTER I. CHAPTER II. CHAPTER III. CHAPTER IV. CHAPTER V. CHAPTER VI. CHAPTER VII. CHAPTER VIII. CHAPTER IX. CHAPTER X. Autobiography of Sir George Biddell Airy by George Biddell Airy The Project Gutenberg EBook of Autobiography of Sir George Biddell Airy by George Biddell Airy This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg Autobiography of Sir George Biddell Airy by George Biddell Airy 2 License included with this eBook or online at www.gutenberg.net Title: Autobiography of Sir George Biddell Airy Author: George Biddell Airy Release Date: January 9, 2004 [EBook #10655] Language: English Character set encoding: ISO-8859-1 *** START OF THIS PROJECT GUTENBERG EBOOK SIR GEORGE AIRY *** Produced by Joseph Myers and PG Distributed Proofreaders AUTOBIOGRAPHY OF SIR GEORGE BIDDELL AIRY, K.C.B., M.A., LL.D., D.C.L., F.R.S., F.R.A.S., HONORARY FELLOW OF TRINITY COLLEGE, CAMBRIDGE, ASTRONOMER ROYAL FROM 1836 TO 1881. EDITED BY WILFRID AIRY, B.A., M.Inst.C.E. 1896 PREFACE. The life of Airy was essentially that of a hard-working, business man, and differed from that of other hard-working people only in the quality and variety of his work. It was not an exciting life, but it was full of interest, and his work brought him into close relations with many scientific men, and with many men high in the State.
    [Show full text]
  • Martian Crater Morphology
    ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter.
    [Show full text]
  • The Solar Wind Prevents Re-Accretion of Debris After Mercury's Giant Impact
    Draft version February 21, 2020 Preprint typeset using LATEX style emulateapj v. 12/16/11 THE SOLAR WIND PREVENTS RE-ACCRETION OF DEBRIS AFTER MERCURY'S GIANT IMPACT Christopher Spalding1 & Fred C. Adams2;3 1Department of Astronomy, Yale University, New Haven, CT 06511 2Department of Physics, University of Michigan, Ann Arbor, MI 48109 and 3Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 Draft version February 21, 2020 ABSTRACT The planet Mercury possesses an anomalously large iron core, and a correspondingly high bulk density. Numerous hypotheses have been proposed in order to explain such a large iron content. A long-standing idea holds that Mercury once possessed a larger silicate mantle which was removed by a giant impact early in the the Solar system's history. A central problem with this idea has been that material ejected from Mercury is typically re-accreted onto the planet after a short ( Myr) timescale. Here, we show that the primordial Solar wind would have provided sufficient drag∼ upon ejected debris to remove them from Mercury-crossing trajectories before re-impacting the planet's surface. Specifically, the young Sun likely possessed a stronger wind, fast rotation and strong magnetic field. Depending upon the time of the giant impact, the ram pressure associated with this wind would push particles outward into the Solar system, or inward toward the Sun, on sub-Myr timescales, depending upon the size of ejected debris. Accordingly, the giant impact hypothesis remains a viable pathway toward the removal of planetary mantles, both on Mercury and extrasolar planets, particularly those close to young stars with strong winds.
    [Show full text]
  • Communications in Observations
    ISSN 0917-7388 COMMUNICATIONS IN CMO Since 1986 MARS No.383 10 April 2011 OBSERVATIONS No.09 PublishedbytheInternational Society of the Mars Observers The Craters of Mars By William SHEEHAN n November 1915, the First World War was rag‐ assistant astronomer at Yerkes Observatory in Iing in Europe. The Allies had started an offensive Southern Wisconsin, John Edward Mellish (1886~ on the Western Front; thedailyravagesofgales 1970), took advantage of the exceptional observing and illness were requiring three hundred men to be conditions to make one of the most remarkable ob‐ evacuated every day. Although America had not servations of Mars ever made. yet entered the war ‐‐ the sinking of the Lusitania Mellish had been born on his maternal grandfa‐ was still months away ‐‐ it was exerting itself in ther’s farm three miles south of Cottage Grove, Central America and the Caribbean, defying British Wisconsin (near Madison). He had received four tolls in the Panama canal zone and assuming a vir‐ years of formal schooling, which was all the time he tual protectorate over Haiti. needed to finish the curriculum. At sixteen, he ob‐ In Berlin, a pacifist professor of physics, Albert tained a four dollar spyglass; it was unsatisfactory, Einstein, completing work on the General Theory of but he saved enough money for a two‐inch refrac‐ Relativity, used the new theory of gravitation to tor, which was large enough to whet a burgeoning produce a small correction to that of Newton ex‐ astronomical interest. “With it, I was able to see plaining a hitherto unexplained excess in the pre‐ many new stars,” he later recalled.
    [Show full text]
  • Widespread Crater-Related Pitted Materials on Mars: Further Evidence for the Role of Target Volatiles During the Impact Process ⇑ Livio L
    Icarus 220 (2012) 348–368 Contents lists available at SciVerse ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Widespread crater-related pitted materials on Mars: Further evidence for the role of target volatiles during the impact process ⇑ Livio L. Tornabene a, , Gordon R. Osinski a, Alfred S. McEwen b, Joseph M. Boyce c, Veronica J. Bray b, Christy M. Caudill b, John A. Grant d, Christopher W. Hamilton e, Sarah Mattson b, Peter J. Mouginis-Mark c a University of Western Ontario, Centre for Planetary Science and Exploration, Earth Sciences, London, ON, Canada N6A 5B7 b University of Arizona, Lunar and Planetary Lab, Tucson, AZ 85721-0092, USA c University of Hawai’i, Hawai’i Institute of Geophysics and Planetology, Ma¯noa, HI 96822, USA d Smithsonian Institution, Center for Earth and Planetary Studies, Washington, DC 20013-7012, USA e NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA article info abstract Article history: Recently acquired high-resolution images of martian impact craters provide further evidence for the Received 28 August 2011 interaction between subsurface volatiles and the impact cratering process. A densely pitted crater-related Revised 29 April 2012 unit has been identified in images of 204 craters from the Mars Reconnaissance Orbiter. This sample of Accepted 9 May 2012 craters are nearly equally distributed between the two hemispheres, spanning from 53°Sto62°N latitude. Available online 24 May 2012 They range in diameter from 1 to 150 km, and are found at elevations between À5.5 to +5.2 km relative to the martian datum. The pits are polygonal to quasi-circular depressions that often occur in dense clus- Keywords: ters and range in size from 10 m to as large as 3 km.
    [Show full text]
  • Relative Ages
    CONTENTS Page Introduction ...................................................... 123 Stratigraphic nomenclature ........................................ 123 Superpositions ................................................... 125 Mare-crater relations .......................................... 125 Crater-crater relations .......................................... 127 Basin-crater relations .......................................... 127 Mapping conventions .......................................... 127 Crater dating .................................................... 129 General principles ............................................. 129 Size-frequency relations ........................................ 129 Morphology of large craters .................................... 129 Morphology of small craters, by Newell J. Fask .................. 131 D, method .................................................... 133 Summary ........................................................ 133 table 7.1). The first three of these sequences, which are older than INTRODUCTION the visible mare materials, are also dominated internally by the The goals of both terrestrial and lunar stratigraphy are to inte- deposits of basins. The fourth (youngest) sequence consists of mare grate geologic units into a stratigraphic column applicable over the and crater materials. This chapter explains the general methods of whole planet and to calibrate this column with absolute ages. The stratigraphic analysis that are employed in the next six chapters first step in reconstructing
    [Show full text]
  • DMAAC – February 1973
    LUNAR TOPOGRAPHIC ORTHOPHOTOMAP (LTO) AND LUNAR ORTHOPHOTMAP (LO) SERIES (Published by DMATC) Lunar Topographic Orthophotmaps and Lunar Orthophotomaps Scale: 1:250,000 Projection: Transverse Mercator Sheet Size: 25.5”x 26.5” The Lunar Topographic Orthophotmaps and Lunar Orthophotomaps Series are the first comprehensive and continuous mapping to be accomplished from Apollo Mission 15-17 mapping photographs. This series is also the first major effort to apply recent advances in orthophotography to lunar mapping. Presently developed maps of this series were designed to support initial lunar scientific investigations primarily employing results of Apollo Mission 15-17 data. Individual maps of this series cover 4 degrees of lunar latitude and 5 degrees of lunar longitude consisting of 1/16 of the area of a 1:1,000,000 scale Lunar Astronautical Chart (LAC) (Section 4.2.1). Their apha-numeric identification (example – LTO38B1) consists of the designator LTO for topographic orthophoto editions or LO for orthophoto editions followed by the LAC number in which they fall, followed by an A, B, C or D designator defining the pertinent LAC quadrant and a 1, 2, 3, or 4 designator defining the specific sub-quadrant actually covered. The following designation (250) identifies the sheets as being at 1:250,000 scale. The LTO editions display 100-meter contours, 50-meter supplemental contours and spot elevations in a red overprint to the base, which is lithographed in black and white. LO editions are identical except that all relief information is omitted and selenographic graticule is restricted to border ticks, presenting an umencumbered view of lunar features imaged by the photographic base.
    [Show full text]
  • The Comet's Tale
    THE COMET’S TALE Journal of the Comet Section of the British Astronomical Association Number 33, 2014 January Not the Comet of the Century 2013 R1 (Lovejoy) imaged by Damian Peach on 2013 December 24 using 106mm F5. STL-11k. LRGB. L: 7x2mins. RGB: 1x2mins. Today’s images of bright binocular comets rival drawings of Great Comets of the nineteenth century. Rather predictably the expected comet of the century Contents failed to materialise, however several of the other comets mentioned in the last issue, together with the Comet Section contacts 2 additional surprise shown above, put on good From the Director 2 appearances. 2011 L4 (PanSTARRS), 2012 F6 From the Secretary 3 (Lemmon), 2012 S1 (ISON) and 2013 R1 (Lovejoy) all Tales from the past 5 th became brighter than 6 magnitude and 2P/Encke, 2012 RAS meeting report 6 K5 (LINEAR), 2012 L2 (LINEAR), 2012 T5 (Bressi), Comet Section meeting report 9 2012 V2 (LINEAR), 2012 X1 (LINEAR), and 2013 V3 SPA meeting - Rob McNaught 13 (Nevski) were all binocular objects. Whether 2014 will Professional tales 14 bring such riches remains to be seen, but three comets The Legacy of Comet Hunters 16 are predicted to come within binocular range and we Project Alcock update 21 can hope for some new discoveries. We should get Review of observations 23 some spectacular close-up images of 67P/Churyumov- Prospects for 2014 44 Gerasimenko from the Rosetta spacecraft. BAA COMET SECTION NEWSLETTER 2 THE COMET’S TALE Comet Section contacts Director: Jonathan Shanklin, 11 City Road, CAMBRIDGE. CB1 1DP England. Phone: (+44) (0)1223 571250 (H) or (+44) (0)1223 221482 (W) Fax: (+44) (0)1223 221279 (W) E-Mail: [email protected] or [email protected] WWW page : http://www.ast.cam.ac.uk/~jds/ Assistant Director (Observations): Guy Hurst, 16 Westminster Close, Kempshott Rise, BASINGSTOKE, Hampshire.
    [Show full text]
  • Water on the Moon, III. Volatiles & Activity
    Water on The Moon, III. Volatiles & Activity Arlin Crotts (Columbia University) For centuries some scientists have argued that there is activity on the Moon (or water, as recounted in Parts I & II), while others have thought the Moon is simply a dead, inactive world. [1] The question comes in several forms: is there a detectable atmosphere? Does the surface of the Moon change? What causes interior seismic activity? From a more modern viewpoint, we now know that as much carbon monoxide as water was excavated during the LCROSS impact, as detailed in Part I, and a comparable amount of other volatiles were found. At one time the Moon outgassed prodigious amounts of water and hydrogen in volcanic fire fountains, but released similar amounts of volatile sulfur (or SO2), and presumably large amounts of carbon dioxide or monoxide, if theory is to be believed. So water on the Moon is associated with other gases. Astronomers have agreed for centuries that there is no firm evidence for “weather” on the Moon visible from Earth, and little evidence of thick atmosphere. [2] How would one detect the Moon’s atmosphere from Earth? An obvious means is atmospheric refraction. As you watch the Sun set, its image is displaced by Earth’s atmospheric refraction at the horizon from the position it would have if there were no atmosphere, by roughly 0.6 degree (a bit more than the Sun’s angular diameter). On the Moon, any atmosphere would cause an analogous effect for a star passing behind the Moon during an occultation (multiplied by two since the light travels both into and out of the lunar atmosphere).
    [Show full text]
  • Scientific Instrument Society
    Scientific Instrument Society Bulletin of the Scientific Instrument Society No. 46 September 1995 Bulletin of the Scientific Instrument Society LSSN0956-8271 For Table of Contents, see inside back cover President Gerard Turner Honorary Committee Howard Dawes, Chairman Stuart Talbot, Secretary John Didcock, Treasurer Willem Hackmann, Editor Michael Cowham, Ad~wtising Manager Trevor Waterman, Meetings Secretary Gloria Clifton Jane [nsley Arthur Middleton Alan Morton Membership and Administrative Matters The Executive Officer (Wing Cmdr. Geoffnm] Bennett) 31 High Street Stanford in the Vale Faringdon Tel: 01367 710223 Oxon SN7 8LH Fax: 01367 718963 See inside back cover for information on membership Editorial Matters Dr. Willem D. Hackmann Museum of the History of Science Old Ashmolean Building Tel: 01865 277282 (office) Broad Street Fax: 01865 277288 Oxford OXI 3AZ Tel: 01865 54058 (home) Advertising Mr Michael Cowham The Mount "loft Tel: 01223 263532/262684 Cambridge CB3 7RL Fax: 01223 263948 Organization of Meetings Mr Trevor Waterman 75a Jermyn Street Tel: 0171-930 2954 London SWIY 6NP Fax: 0171-321 0212 Typesetting and Printing Lithoflow Lid 26-36 Wharfdale Road Kings Cross Tel: 0171-833 2344 London NI 9RY Fax: 0171-833 8150 Price: £6 per issue, including back numbers where available. (Please enquire 04 Exec. Officer if sets are required.) The Scientific Instrument Society is Registered Charity No. 326733 © The Scientific lnsVument Society 19')5 Editorial X-ray image of a metal grid taken in THE EM)iF.'.; G.A,ZETTL Crookes' laboratory, but not by him as he -. + .__ was in South Africa when Rontgen's discovery was announced. There is also the metal grid and the X-ray tube used in producing this image.
    [Show full text]