Jun 2 7 1995
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Development of a Quantitative PCR Assay for the Detection And
bioRxiv preprint doi: https://doi.org/10.1101/544247; this version posted February 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Development of a quantitative PCR assay for the detection and enumeration of a potentially ciguatoxin-producing dinoflagellate, Gambierdiscus lapillus (Gonyaulacales, Dinophyceae). Key words:Ciguatera fish poisoning, Gambierdiscus lapillus, Quantitative PCR assay, Great Barrier Reef Kretzschmar, A.L.1,2, Verma, A.1, Kohli, G.S.1,3, Murray, S.A.1 1Climate Change Cluster (C3), University of Technology Sydney, Ultimo, 2007 NSW, Australia 2ithree institute (i3), University of Technology Sydney, Ultimo, 2007 NSW, Australia, [email protected] 3Alfred Wegener-Institut Helmholtz-Zentrum fr Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany Abstract Ciguatera fish poisoning is an illness contracted through the ingestion of seafood containing ciguatoxins. It is prevalent in tropical regions worldwide, including in Australia. Ciguatoxins are produced by some species of Gambierdiscus. Therefore, screening of Gambierdiscus species identification through quantitative PCR (qPCR), along with the determination of species toxicity, can be useful in monitoring potential ciguatera risk in these regions. In Australia, the identity, distribution and abundance of ciguatoxin producing Gambierdiscus spp. is largely unknown. In this study we developed a rapid qPCR assay to quantify the presence and abundance of Gambierdiscus lapillus, a likely ciguatoxic species. We assessed the specificity and efficiency of the qPCR assay. The assay was tested on 25 environmental samples from the Heron Island reef in the southern Great Barrier Reef, a ciguatera endemic region, in triplicate to determine the presence and patchiness of these species across samples from Chnoospora sp., Padina sp. -
From Sulfur to Homoglutathione: Thiol Metabolism in Soybean
Amino Acids (2010) 39:963–978 DOI 10.1007/s00726-010-0572-9 REVIEW ARTICLE From sulfur to homoglutathione: thiol metabolism in soybean Hankuil Yi • Geoffrey E. Ravilious • Ashley Galant • Hari B. Krishnan • Joseph M. Jez Received: 19 December 2009 / Accepted: 16 March 2010 / Published online: 3 April 2010 Ó Springer-Verlag 2010 Abstract Sulfur is an essential plant nutrient and is soybean genome may guide the next steps in exploring this metabolized into the sulfur-containing amino acids (cys- biochemical system. teine and methionine) and into molecules that protect plants against oxidative and environmental stresses. Keywords Soybean Á Sulfur Á Cysteine Á Glutathione Á Although studies of thiol metabolism in the model plant Homoglutathione Á Metabolism Á Seed Á Biotechnology Á Arabidopsis thaliana (thale cress) have expanded our Food and feed understanding of these dynamic processes, our knowledge of how sulfur is assimilated and metabolized in crop plants, such as soybean (Glycine max), remains limited in com- Overview parison. Soybean is a major crop used worldwide for food and animal feed. Although soybeans are protein-rich, they Amino acid metabolism in plants not only provides basic do not contain high levels of the sulfur-containing amino metabolic building blocks for small molecules and pro- acids, cysteine and methionine. Ultimately, unraveling the teins, but also is a critical determinant of both the nutri- fundamental steps and regulation of thiol metabolism in tional composition of plants and the value of crops for food soybean is important for optimizing crop yield and quality. and feed purposes (Jez and Fukagawa 2008). For normal Here we review the pathways from sulfur uptake to glu- plant growth, sulfur, along with nitrogen, phosphorus, and tathione and homoglutathione synthesis in soybean, the potassium, is an essential nutrient. -
Environmental Quality Standards for Barium in Surface Water Proposal for an Update According to the Methodology of the Water Framework Directive
Environmental quality standards for barium in surface water Proposal for an update according to the methodology of the Water Framework Directive This report contains an erratum d.d. 29-01-2021 on page 111 RIVM letter report 2020-0024 E.M.J. Verbruggen | C.E. Smit | P.L.A. van Vlaardingen Environmental quality standards for barium in surface water Proposal for an update according to the methodology of the Water Framework Directive This report contains an erratum d.d. 29-01-2021 on page 111 RIVM letter report 2020-0024 E.M.J. Verbruggen | C.E. Smit | P.L.A. van Vlaardingen RIVM letter report 2020-0024 Colophon © RIVM 2020 Parts of this publication may be reproduced, provided acknowledgement is given to: National Institute for Public Health and the Environment, along with the title and year of publication. DOI 10.21945/RIVM-2020-0024 E.M.J. Verbruggen (author), RIVM C.E. Smit (author), RIVM P.L.A. van Vlaardingen. (author), RIVM Contact: Els Smit Centre for Safety of Substances and Products [email protected] This investigation has been performed by order and for the account of Ministry of Infrastructure and Water Management, within the framework of the project ‘Chemical substances, standard setting and Priority Substances Directive’. Published by: National Institute for Public Health and the Environment, RIVM P.O. Box1 | 3720 BA Bilthoven The Netherlands www.rivm.nl/en Page 2 of 111 RIVM letter report 2020-0024 Synopsis Environmental quality standards for barium in surface water Proposal for an update according to the methodology of the Water Framework Directive RIVM is proposing new water quality standards for barium in surface water. -
Estuarine Response to Nutrient Enrichment, a Counterpart of Eutrophication
ESTUARINE RESPONSE TO NUTRIENT ENRICHMENT, A COUNTERPART OF EUTROPHICATION: AN ANNOTATED BIBLIOGRAPHY K. L. WEBB D. M. HAYWARD J. M. BAKER B. MURRAY VIRGINIA INSTITUTE OF MARINE SCIENCE AND SCHOOL OF MARINE SCIENCE COLLEGE OF WILLIAM AND MARY GLOUCESTER POINT, VA 23062 THIS RESEARCH WAS SUPPORTED BY GRANT NUMBER: R 806 189 010 FROM THE US ENVIRONMENTAL PROTECTION AGENCY TO THE CHESAPEAKE RESEARCH CONSORTIUM, INC. 1419 FOREST DRIVE, SUITE 207 ANNAPOLIS, MD 21403 MAY 1979 CRC PUBLICATION NUMBER: 67 SPECIAL SCIENTIFIC REPORT NUMBER: 94 VIRGINIA INSTITUTE OF MARINE SCIENCE PREFACE This work is a result of our efforts to compile the literature related to the results of nutrient enrichment of estuaries. It consists of two related publications, a bibliography and an annotated bibliography; both works are accompanied by an index which applies to either bibliography. An attempt has been made to include some key papers related to various processes, eg. nutrient uptake by phytoplankton, which influence or participate in the response process. Items included are wide ranging from articles in scientific journals, chapters in books, and manuscripts for such publications to the grey literature of project reports, theses and the like. They have been accumulated by a variety of methods including the use of the DIALOG Information Retrieval Service (Lockheed Information Systems), manual search of various abstracting publications and the original contemporary literature as well as direct input from authors responding to direct and indirect solicitation. Science Citation Index (Institute of Scientific Information) was also utilized as a source. Annotations rely heavily on abstracts from authors or abstracting services. Copies of all the original documents are being acquired and will be available for personal use at the CRC headquarters and the four Consortium member institutions. -
Dry Weight and Cell Density of Individual Algal and Cyanobacterial Cells for Algae
Dry Weight and Cell Density of Individual Algal and Cyanobacterial Cells for Algae Research and Development _______________________________________ A Thesis presented to the Faculty of the Graduate School at the University of Missouri-Columbia _______________________________________________________ In Partial Fulfillment of the Requirements for the Degree Master of Science _____________________________________________________ by WENNA HU Dr. Zhiqiang Hu, Thesis Supervisor July 2014 The undersigned, appointed by the Dean of the Graduate School, have examined the thesis entitled Dry Weight and Cell Density of Individual Algal and Cyanobacterial Cells for Algae Research and Development presented by Wenna Hu, a candidate for the degree of Master of Science, and hereby certify that, in their opinion, it is worthy of acceptance. Professor Zhiqiang Hu Professor Enos C. Inniss Professor Pamela Brown DEDICATION I dedicate this thesis to my beloved parents, whose moral encouragement and support help me earn my Master’s degree. Acknowledgements Foremost, I would like to express my sincere gratitude to my advisor and mentor Dr. Zhiqiang Hu for the continuous support of my graduate studies, for his patience, motivation, enthusiasm, and immense knowledge. His guidance helped me in all the time of research and writing of this thesis. Without his guidance and persistent help this thesis would not have been possible. I would like to thank my committee members, Dr. Enos Inniss and Dr. Pamela Brown for being my graduation thesis committee. Their guidance and enthusiasm of my graduate research is greatly appreciated. Thanks to Daniel Jackson in immunology core for the flow cytometer operation training, and Arpine Mikayelyan in life science center for fluorescent images acquisition. -
Investigation of the Microbial Communities Associated with the Octocorals Erythropodium
Investigation of the Microbial Communities Associated with the Octocorals Erythropodium caribaeorum and Antillogorgia elisabethae, and Identification of Secondary Metabolites Produced by Octocoral Associated Cultivated Bacteria. By Erin Patricia Barbara McCauley A Thesis Submitted to the Graduate Faculty in Partial Fulfillment of the Requirements for a Degree of • Doctor of Philosophy Department of Biomedical Sciences Faculty of Veterinary Medicine University of Prince Edward Island Charlottetown, P.E.I. April 2017 © 2017, McCauley THESIS/DISSERTATION NON-EXCLUSIVE LICENSE Family Name: McCauley . Given Name, Middle Name (if applicable): Erin Patricia Barbara Full Name of University: University of Prince Edward Island . Faculty, Department, School: Department of Biomedical Sciences, Atlantic Veterinary College Degree for which Date Degree Awarded: , thesis/dissertation was presented: April 3rd, 2017 Doctor of Philosophy Thesis/dissertation Title: Investigation of the Microbial Communities Associated with the Octocorals Erythropodium caribaeorum and Antillogorgia elisabethae, and Identification of Secondary Metabolites Produced by Octocoral Associated Cultivated Bacteria. *Date of Birth. May 4th, 1983 In consideration of my University making my thesis/dissertation available to interested persons, I, :Erin Patricia McCauley hereby grant a non-exclusive, for the full term of copyright protection, license to my University, The University of Prince Edward Island: to archive, preserve, produce, reproduce, publish, communicate, convert into a,riv format, and to make available in print or online by telecommunication to the public for non-commercial purposes; to sub-license to Library and Archives Canada any of the acts mentioned in paragraph (a). I undertake to submit my thesis/dissertation, through my University, to Library and Archives Canada. Any abstract submitted with the . -
Ijms-17-00257
King’s Research Portal DOI: 10.3390/ijms17020257 Document Version Publisher's PDF, also known as Version of record Link to publication record in King's Research Portal Citation for published version (APA): Essig, Y., Webb, S. M., & Sturzenbaum, S. (2016). Deletion of phytochelatin synthase modulates the metal accumulation pattern of cadmium exposed C. elegans. International Journal of Molecular Sciences, 17(2), [257]. https://doi.org/10.3390/ijms17020257 Citing this paper Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are again advised to check the publisher's website for any subsequent corrections. General rights Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights. •Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research. •You may not further distribute the material or use it for any profit-making activity or commercial gain •You may freely distribute the URL identifying the publication in the Research Portal Take down policy If you believe that this document breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. -
Phytochelatins, a Class of Heavy-Metal-Binding Peptides From
Proc. Natl. Acad. Sci. USA Vol. 84, pp. 439-443, January 1987 Botany Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins (glutathione/detoxifitcation/homeostasis/cadmium) ERWIN GRILL*, ERNST-L. WINNACKERt, AND MEINHART H. ZENK* *Lehrstuhl fur Pharmazeutische Biologie, Universitat Munchen, D-8000 Munchen 2, Federal Republic of Germany; and tGenzentrum der Universitat Munchen, D-8033 Martinsried, Federal Republic of Germany Communicated by H. A. Barker, September 15, 1986 (receivedfor review May 28, 1986) ABSTRACT Phytochelatins are a class of heavy-metal- grown in Linsmaier and Skoog medium (11) on a gyratory binding peptides previously isolated from cell suspension shaker (100 rpm) at 23°C in continuous light (650 lux). cultures of several dicotyledonous and monocotyledonous Two-week-old seedlings of Brassica oleracea var. capitata, plants. These peptides consist of repetitive y-glutamylcysteine Lycopersicon esculentum, and Zea mays were cultivated in units with a carboxyl-terminal glycine and range from 5 to 17 Hoagland medium (12) at 22°C with a daily light period of 12 amino acids in length. In the present paper we show that all hr. Plants of Eichhornia crassipes were maintained in plants tested synthesized phytochelatins upon exposure to Hoagland solution (12) diluted 1:10. heavy metal ions. No evidence for the occurrence of metal- Gel Filtration. According to the method of Wagner (13), lothionein-like proteins was found. All data so far obtained leaves of B. oleracea were extracted, and the extract was indicate that phytochelatins are involved in detoxification and applied to a Sephadex G-50 (Pharmacia) column (2.5 x 51 cm) homeostasis of heavy metals in plants and thus serve functions equilibrated and developed with 25 mM potassium phosphate analogous to those of metallothioneins in animals and some buffer (pH 7.5). -
Plant Sulphur Metabolism Is Stimulated by Photorespiration
ARTICLE https://doi.org/10.1038/s42003-019-0616-y OPEN Plant sulphur metabolism is stimulated by photorespiration Cyril Abadie1,2 & Guillaume Tcherkez 1* 1234567890():,; Intense efforts have been devoted to describe the biochemical pathway of plant sulphur (S) assimilation from sulphate. However, essential information on metabolic regulation of S assimilation is still lacking, such as possible interactions between S assimilation, photo- synthesis and photorespiration. In particular, does S assimilation scale with photosynthesis thus ensuring sufficient S provision for amino acids synthesis? This lack of knowledge is problematic because optimization of photosynthesis is a common target of crop breeding and furthermore, photosynthesis is stimulated by the inexorable increase in atmospheric CO2. Here, we used high-resolution 33S and 13C tracing technology with NMR and LC-MS to access direct measurement of metabolic fluxes in S assimilation, when photosynthesis and photorespiration are varied via the gaseous composition of the atmosphere (CO2,O2). We show that S assimilation is stimulated by photorespiratory metabolism and therefore, large photosynthetic fluxes appear to be detrimental to plant cell sulphur nutrition. 1 Research School of Biology, Australian National University, Canberra, ACT 2601, Australia. 2Present address: IRHS (Institut de Recherche en Horticulture et Semences), UMR 1345, INRA, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, 49071 Angers, Beaucouzé, France. *email: guillaume. [email protected] COMMUNICATIONS BIOLOGY -
Deletion of Phytochelatin Synthase Modulates the Metal Accumulation Pattern of Cadmium Exposed C
International Journal of Molecular Sciences Article Deletion of Phytochelatin Synthase Modulates the Metal Accumulation Pattern of Cadmium Exposed C. elegans Yona J. Essig 1,2, Samuel M. Webb 3 and Stephen R. Stürzenbaum 1,2,* 1 Analytical and Environmental Sciences Division, Faculty of Life Sciences & Medicine, King’s College London, London SE1 9NH, UK; [email protected] 2 Medical Research Council-Public Health England (MRC-PHE) Centre for Environment & Health, King’s College London, London SE1 9NH, UK 3 Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA; [email protected] * Correspondence: [email protected]; Tel.: +44-207-848-4406 Academic Editor: Reinhard Dallinger Received: 14 January 2016; Accepted: 14 February 2016; Published: 19 February 2016 Abstract: Environmental metal pollution is a growing health risk to flora and fauna. It is therefore important to fully elucidate metal detoxification pathways. Phytochelatin synthase (PCS), an enzyme involved in the biosynthesis of phytochelatins (PCs), plays an important role in cadmium detoxification. The PCS and PCs are however not restricted to plants, but are also present in some lower metazoans. The model nematode Caenorhabditis elegans, for example, contains a fully functional phytochelatin synthase and phytochelatin pathway. By means of a transgenic nematode strain expressing a pcs-1 promoter-tagged GFP (pcs-1::GFP) and a pcs-1 specific qPCR assay, further evidence is presented that the expression of the C. elegans phytochelatin synthase gene (pcs-1) is transcriptionally non-responsive to a chronic (48 h) insult of high levels of zinc (500 µM) or acute (3 h) exposures to high levels of cadmium (300 µM). -
Use of Algae and Aquatic Macrophytes As Feed in Small-Scale Aquaculture a Review Use of Algae and Aquatic Macrophytes As Feed in Small-Scale Aquaculture – a Review
FAO ISSN 2070-7010 FISHERIES AND 531 AQUACULTURE TECHNICAL PAPER 531 Use of algae and aquatic macrophytes as feed in small-scale aquaculture A review Use of algae and aquatic macrophytes as feed in small-scale aquaculture – A review While the contribution of small-scale aquaculture (SSA) to rural development is generally recognized, until now there has been no systematic assessment to clearly measures its contribution. The FAO Expert Workshop on Methods and Indicators for Evaluating the Contribution of Small-scale Aquaculture to Sustainable Rural Development held in Nha Trang, Viet Nam, from 24 to 28 November 2009, attempted to develop an indicator system to measure the contribution of SSA. The workshop used a number of processes and steps in the developping the indicator system, including: (i) understanding the subject of measurements; (ii) identifying an analytical framework and ratting criteria (iii) developing a list of SSA contributions; (iv) categorizing the contributions; (v) devising and organizing the indicators of contribution; and (vi) measuring the indicators. The major outcome was the development, through an iterative process, of an indicator system which can provide a good measure of the contribution of SSA based on agreed criteria (accuracy, measurability and efficiency) and the sustainable livelihood approach analytical framework which consists of five capital assets (human, financial, physical, social and natural) and can be used for various livelihoods options. F AO Cover photographs: Left: Woman collecting water chestnut fruits from a floodplain, Rangpur, Bangladesh (courtesy of Mohammad R. Hasan). Right top to bottom: Sale of water spinach leaves, Ho Chi Minh City, Viet Nam (courtesy of William Leschen). -
Evolution and Function of Phytochelatin Synthase in Cyanobacteria and Viridiplantae
EVOLUTION AND FUNCTION OF PHYTOCHELATIN SYNTHASE IN CYANOBACTERIA AND VIRIDIPLANTAE Ph.D. Student: Erika Bellini / Supervisors: Dott.ssa Laura Bruno; Prof. Luigi Sanità di Toppi Cycle: XXXIII A.Y.: 2017/2018 The enzyme phytochelatin synthase (PCS) is a cytosolic γ-glutamylcysteine dipeptidyl (trans)peptidase (EC 2.3.2.15), belonging to the clan CA of the papain-like cysteine proteases, known as a key enzyme for heavy- metal detoxification in plants. The PCS catalyzes the prompt enzymatic formation of some peculiar thiol- peptide compounds, the so-called “phytochelatins”, starting from the reduced glutathione (GSH) via a transpeptidase reaction. Phytochelatins (PCs) are thiol-peptides whose general structure is (γ-glutamate– cysteine)n–glycine, with n usually ranging from 2 to 5. Due to the thiol group of the cysteine residues, PCs can bind cadmium (Cd) and other thiophilic metals and prevent them from circulating in the cytosol. It is now well known that higher plants, as well as a number of marine and freshwater algae (Chlorophyta, Chrysophyta, Phaeophyta, Rhodophyta), some fungi, lichens and even some animal species do actually produce PCs in response to metal stress, in particular Cd. PCS is of particular interest from an evolutionary prospect due to its constitutive expression and its widespread presence in nature. Recently, the constitutive presence of functional PCS leading to full PC synthesis was confirmed in bryophytes and in lycophytes. Moreover, some PCS-like enzymes, sharing significant sequence homologies with plant PCSs, were identified in cyanobacteria and in some gamma- and beta- proteobacteria. Why would organisms spend so much energy in producing protective proteins even when they are not exposed to the respective stressors? This may suggest that conceiving a role of PCS and PCs exclusively addressed to toxic metal detoxification could be reductive; by contrast, we could hypothesize that PCS performs other, still largely unknown, essential functions.