The Ribonuclease L-Dependent Antiviral Roles of Human 2€²,5€²

Total Page:16

File Type:pdf, Size:1020Kb

The Ribonuclease L-Dependent Antiviral Roles of Human 2€²,5€² View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector FEBS Letters 587 (2013) 156–164 journal homepage: www.FEBSLetters.org The ribonuclease L-dependent antiviral roles of human 20,50-oligoadenylate synthetase family members against hepatitis C virus ⇑ Young-Chan Kwon a, Ju-Il Kang a, Soon B. Hwang b, Byung-Yoon Ahn a, a School of Life Sciences and Biotechnology, Korea University, Anam-dong 5-1, Seoul 136-701, Republic of Korea b Ilsong Institute of Life Science, Hallym University, Gwanyang-dong 1605-4, Anyang 431-060, Republic of Korea article info abstract Article history: The latent ribonuclease RNase L and the interferon-inducible 20,50-oligoadenylate synthetase (OAS) Received 16 October 2012 have been implicated in the antiviral response against hepatitis C virus (HCV). However, the specific Accepted 9 November 2012 roles of these enzymes against HCV have not been fully elucidated. In this study, a scarce endoge- Available online 26 November 2012 nous expression and RNA degrading activity of RNase L in human hepatoma Huh7 cells enabled us to demonstrate the antiviral activity of RNase L against HCV replication through the transient Edited by Hans-Dieter Klenk expression of the enzyme. The antiviral potential of specific members of the OAS family was further examined through overexpression and RNA interference approaches. Our data suggested that Keywords: among the members of the OAS family, OAS1 p46 and OAS3 p100 mediate the RNase L-dependent RNase L, 20,50-Oligoadenylate synthetase antiviral activity against HCV. Hepatitis C virus Ó 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved. Antiviral protein 1. Introduction often lead to chronic infection, cirrhosis and hepatocellular carci- noma. It is estimated that 170 million individuals around the world RNase L is a latent ribonuclease that is expressed constitutively are currently infected with HCV. Type I IFN in combination with and ubiquitously in almost all mammalian cells. The binding of ribavirin and one of the two recently approved protease inhibitors 20,50-linked oligoadenylate (2–5A) to the N-terminal ankyrin re- is the current standard therapy for chronic hepatitis C [5]. peats of RNase L induces the dimerization of the enzyme and the RNase L and OAS have been implicated in the antiviral response activation of its endonuclease activity. Activated RNase L cleaves against HCV. The two proteins were found to be abundant in the viral and cellular RNAs at single-stranded regions, resulting in the liver tissues of patients with chronic hepatitis C, and they co-local- inhibition of the translation and replication of viral RNA [1]. In addi- ized with HCV NS5A protein, suggesting that they are likely en- tion to the direct antiviral effect of RNase L, an indirect antiviral role gaged in antagonizing interactions with HCV [6]. It has been for this enzyme has been suggested; in particular, it has been found that OAS transcripts are induced in the liver of HCV patients hypothesized that the small RNA fragments that are generated by and model animals [7,8]. HCV patients undergoing IFN therapy RNase L can act as a signal for interferon (IFN) production [2]. demonstrated an elevated level of OAS in sera; this increase in The structurally unique 2–5A, which is a specific activator of OAS was correlated with predicted virological responses in one RNase L, is synthesized through the oligomerization of ATP, which study [9], but they were uncorrelated in another study [10]. is catalyzed by the 20,50-oligoadenylate synthetases (OASs). Despite the strong implications that RNase L and OAS play a role Although the transcription of the OAS gene is induced by IFNs, in the response to HCV infection, their specific roles against HCV OAS proteins are translated as latent enzymes before they are acti- have not yet been elucidated. The cleavage of the HCV genome vated by the binding of dsRNA; this dsRNA is likely of viral origin. RNA by RNase L has been demonstrated in vitro [11]. The RNase Thus, OAS in combination with RNase L constitutes an essential L-mediated cleavage products of transfected HCV RNA triggered antiviral pathway that is induced in response to IFN [3]. IFN producing signals, suggesting an indirect antiviral role of RNase Hepatitis C virus (HCV) is a hepatotrophic member of the flavi- L against HCV [6]. Recently, RNase L was identified along with sev- viruses that possesses a positive-strand RNA genome [4]. HCV-in- eral cellular IFN-stimulated proteins as antiviral proteins that re- fected individuals typically develop persistent infections that strict HCV replicons through an RNAi-based knock-down screening approach [12]. In this study, we demonstrated the anti- viral activity of RNase L against HCV replication in human hepa- ⇑ Corresponding author. Fax: +82 2 923 9923. toma Huh7 cells through transient expression of the enzyme. Our E-mail address: [email protected] (B.-Y. Ahn). data further suggested that two members of the OAS family, 0014-5793/$36.00 Ó 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.febslet.2012.11.010 Y.-C. Kwon et al. / FEBS Letters 587 (2013) 156–164 157 OAS1 p46 and OAS3 p100, mediate the RNase L-dependent antivi- 2.4. The immunoblotting and immunofluorescence assays ral activity against HCV infection. For immunoblotting, cells were lysed in RIPA buffer (10 mM 2. Materials and methods Tris–HCl [pH 7.4], 150 mM NaCl, 1 mM EDTA, 0.5% Triton X-100, 0.1% SDS, 0.25% sodium deoxycholate, and 1 mM PMSF). The pro- 2.1. Cells and viruses teins were separated in a denaturating polyacrylamide gel and transferred onto nitrocellulose membranes (Hybond ECL; GE Human hepatoma Huh7 and Huh7.5 cells were grown in Dul- Healthcare). The blots were incubated with primary and secondary becco’s modified Eagle’s medium (DMEM) that had been supple- antibodies that had been diluted in TBST buffer (10 mM Tris–HCl mented with 50 lg/ml of gentamicin and 5% fetal bovine serum [pH 7.6], 150 mM NaCl, 0.1% Tween 20) containing 5% skim milk (Hyclone) at 37 °C in an atmosphere containing 5% CO2. HepG2 and were visualized with PicoWest SuperSignal ECL reagents cells were cultured in the aforementioned medium that had been (Pierce). Polyclonal antibodies to NS5A and MxA were raised in supplemented with 10% FBS. Human lung epithelial carcinoma accordance with previously described procedures [15]. The anti- A549 cells were maintained in RPMI 1640 medium that had been RNase L antibody that was used was purchased from Invitrogen. supplemented with 10% FBS. HCV replicon cells were prepared The anti-tubulin antibody that was used was purchased from Ap- by the electroporation of RNA from the genotype 2a HCV strains plied Biological Materials. The anti-Flag and anti-HA antibodies of JFH-1 [13], J6/JFH-1 [14] or SGR/Luc-JFH1 with a Gene Pulser II were purchased from Sigma, and the anti-core antibody was pur- RF module (Bio-Rad) in accordance with previously described pro- chased from Pierce. cedures [15]. The viral RNA genome was synthesized in vitro from For immunostaining, cells were fixed with 3.7% paraformalde- appropriate templates with the MEGAscript T7 Kit (Ambion). Virus hyde in PHEM buffer (60 mM Pipes, 25 mM HEPES, 10 mM EGTA, titer in the culture supernatant was determined in the focus-form- 2 mM MgSO4, pH 7.0), permeabilized for 10 min in PBS with 0.5% ing assay in accordance with previously characterized procedures Triton X-100, and incubated for 10 min in blocking buffer (PBS con- [16]. As described below, viral replication was assessed by immu- taining 1% BSA and 0.1% Tween 20). The cells were incubated for noblotting, northern blotting or RT-PCR analyses. The luciferase 1 h at room temperature with a 1:1,000 dilution of primary anti- activity for SGR/Luc-JFH1 was measured with the Luciferase Assay bodies in blocking buffer, washed with PBS and incubated for 1 h System (Promega). The recombinant Newcastle disease virus at room temperature in blocking buffer with a 1:1,000 dilution of rNDV-GFP was described in the published literature [17]. Sendai FITC-conjugated sheep anti-mouse IgG (F-3008, Sigma) or Alexa virus was grown in eggs and titrated by a hemagglutination assay. FluorÒ 568 goat-rabbit IgG (Invitrogen Molecular Probes). The cells were stained with 1 lg/ml DAPI in PBS for 1 min, washed with PBS, 2.2. Plasmid construction and transfection and mounted on a slide glass with FluoroGuard antifade reagent (Bio-Rad). Images were obtained with a confocal laser scanning The cDNA for human RNase L, OAS1 isoforms p42, p48 and p52, microscope (LSM 700, Carl Zeiss). OAS2 isoforms p69 and p71, and OAS3 p100 were amplified from the RNA of A549 cells following IFN-a treatment. OAS1 p46 cDNA was prepared from human HT1080 fibrosarcoma cells. The RT-PCR 3. Results was conducted using the ImProm II RT-PCR system (Promega) with oligo(dT) and the specific primers shown in the Supplementary Ta- 3.1. The scarce endogenous expression of RNase L in human hepatoma ble 1. The PCR products were digested with HindIII–BamHI (for cells RNase L) or NotI-XbaI (for OAS1 isoforms) and were then subcloned into p3ÂFlag-CMV10 (Sigma). Amplified OAS2 and OAS3 cDNAs Before investigating the antiviral activity of RNase L against were subcloned into pHM6 (Roche). The nuclease-defective RNase HCV, we examined the expression of RNase L in the human hepa- L constructs, R667A, H672A and R462Q were generated by PCR with toma Huh7 cell line and its subclone Huh7.5, both of which sup- primers shown in Table 1.
Recommended publications
  • Ribonuclease L Mediates the Cell-Lethal Phenotype of the Double-Stranded RNA Editing
    1 2 Ribonuclease L mediates the cell-lethal phenotype of the double-stranded RNA editing 3 enzyme ADAR1 in a human cell line 4 5 Yize Lia,#, Shuvojit Banerjeeb,#, Stephen A. Goldsteina, Beihua Dongb, Christina Gaughanb, Sneha 6 Rathc, Jesse Donovanc, Alexei Korennykhc, Robert H. Silvermanb,* and Susan R Weissa,* 7 aDepartment of Microbiology, Perelman School of Medicine, University of Pennsylvania, 8 Philadelphia, PA, USA, 19104; b Department of Cancer Biology, Lerner Research Institute, 9 Cleveland Clinic, Cleveland, OH, USA 44195; c Department of Molecular Biology, Princeton 10 University, Princeton, NJ 08544 11 12 13 14 15 16 17 18 # These authors contributed equally to this work 19 * Corresponding authors 20 21 22 23 24 25 26 27 28 29 30 Abstract 31 ADAR1 isoforms are adenosine deaminases that edit and destabilize double-stranded RNA 32 reducing its immunostimulatory activities. Mutation of ADAR1 leads to a severe neurodevelopmental 33 and inflammatory disease of children, Aicardi-Goutiéres syndrome. In mice, Adar1 mutations are 34 embryonic lethal but are rescued by mutation of the Mda5 or Mavs genes, which function in IFN 35 induction. However, the specific IFN regulated proteins responsible for the pathogenic effects of 36 ADAR1 mutation are unknown. We show that the cell-lethal phenotype of ADAR1 deletion in human 37 lung adenocarcinoma A549 cells is rescued by CRISPR/Cas9 mutagenesis of the RNASEL gene or 38 by expression of the RNase L antagonist, murine coronavirus NS2 accessory protein. Our result 39 demonstrate that ablation of RNase L activity promotes survival of ADAR1 deficient cells even in the 40 presence of MDA5 and MAVS, suggesting that the RNase L system is the primary sensor pathway 41 for endogenous dsRNA that leads to cell death.
    [Show full text]
  • Interactions Between Protein Kinase R Activity, Rnase L Cleavage and Elastase Activity, and Their Clinical Relevance
    in vivo 22: 115-122 (2008) Unravelling Intracellular Immune Dysfunctions in Chronic Fatigue Syndrome: Interactions between Protein Kinase R Activity, RNase L Cleavage and Elastase Activity, and their Clinical Relevance MIRA MEEUS1,2, JO NIJS1,2, NEIL MCGREGOR3, ROMAIN MEEUSEN1, GUY DE SCHUTTER1, STEVEN TRUIJEN2, MARC FRÉMONT4, ELKE VAN HOOF1 and KENNY DE MEIRLEIR1 1Department of Human Physiology, Faculty of Physical Education and Physiotherapy; Vrije Universiteit Brussel (VUB); 2Division of Musculoskeletal Physiotherapy, Department of Health Sciences, University College Antwerp (HA), Belgium; 3Bio21, Institute of Biomedical Research, University of Melbourne, Parksville, Victoria 3000, Australia; 4RED Laboratories, Pontbeek 61, 1731 Zellik, Belgium Abstract. This study examined possible interactions between the 1994 definition of the Centre for Disease Control and immunological abnormalities and symptoms in CFS. Sixteen Prevention (CDCP) (2), besides severe fatigue, a CFS CFS patients filled in a battery of questionnaires, evaluating patient presents a number of other symptoms, such as daily functioning, and underwent venous blood sampling, in myalgia, arthralgia, low-grade fever, concentration order to analyse immunological abnormalities. Ribonuclease difficulties. Because CFS is often preceded by viral episodes (RNase) L cleavage was associated with RNase L activity (3, 4) or negative, stressful life events (5), it is possible that (rs=0.570; p=0.021), protein kinase R (PKR) (rs=0.716; infectious agents and environmental factors trigger p=0.002) and elastase activity (rs=0.500; p=0.049). RNase persistent immunological dysregulations. L activity was related to elastase (rs=0.547; p=0.028) and Two intracellular immune dysregulations are widely PKR activity (rs=0.625; p=0.010).
    [Show full text]
  • A Small Interfering ABCE1 -Targeting RNA Inhibits the Proliferation And
    687-693.qxd 23/3/2010 01:55 ÌÌ Page 687 INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 25: 687-693, 2010 687 A small interfering ABCE1-targeting RNA inhibits the proliferation and invasiveness of small cell lung cancer BO HUANG, YING GAO, DALI TIAN and MAOGEN ZHENG Department of Thoracic Surgery, the Fourth Affiliated Hospital of China Medical University, Liaoning Shenyan 110032, P.R. China Received November 13, 2009; Accepted December 22, 2009 DOI: 10.3892/ijmm_00000392 Abstract. Small cell lung cancer (SCLC) is a highly aggres- cases. SCLC is generally unsuitable for surgical resection. sive lung neoplasm. To study the pathogenesis of SCLC, we Although radiotherapy and chemotherapy have produced investigated roles of ABCE1, a member of the ATP-binding modest benefits for some patients, it could lead to recurrent cassette (ABC) superfamily, in the development of small cell and multidrug resistance (4). Recently gene therapy, as one lung cancer. RNA interference was used to knock down prevalent strategy, has being considered and employed in ABCE1 expression in human small cell lung cancer cell lines practice. Several genes have been explored for treating cancer, (NCI-H446). Then we examined the effects of ABCE1 knock- including tumor necrosis factor, p53, tumor suppressor gene, down in cancer cells, including proliferation, invasiveness, Herpes Simplex Virus Type-1 (HSV-1) and bacterial cytosine apoptosis, and gene expression. We found that ABCE1 could deaminase (CD) gene. However, clinical trials have shown be efficiently knocked down by siRNA, and the ABCE1 that the therapeutic outcome was severely restricted by the silence inhibited the proliferation, invasiveness of small cell poor efficiency of current gene transfer vector systems.
    [Show full text]
  • Activation of Innate Immunity by Mitochondrial Dsrna in Mouse Cells Lacking
    Downloaded from rnajournal.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press Wiatrek D. et al. Activation of innate immunity by mitochondrial dsRNA in mouse cells lacking p53 protein. Dagmara M. Wiatrek1#, Maria E. Candela1#, Jiří Sedmík1#, Jan Oppelt1,2, Liam P. Keegan1 and Mary A. O’Connell1,* 1CEITEC Masaryk University, Kamenice 735/5, A35, 62 500 Brno, Czech Republic 2National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic # All authors have contributed equally. * Corresponding author Telephone number + 420 54949 5460 Email addresses: [email protected] Word count: 9433 Running title: p53 and mitochondrial dsRNA Key words: Mitochondrial dsRNA, p53, innate immunity, RNaseL 1 Downloaded from rnajournal.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press Wiatrek D. et al. Viral and cellular double-stranded RNA (dsRNA) is recognized by cytosolic innate immune sensors including RIG-I-like receptors. Some cytoplasmic dsRNA is commonly present in cells, and one source is mitochondrial dsRNA, which results from bidirectional transcription of mitochondrial DNA (mtDNA). Here we demonstrate that Trp 53 mutant mouse embryo fibroblasts contain immune-stimulating endogenous dsRNA of mitochondrial origin. We show that the immune response induced by this dsRNA is mediated via RIG-I-like receptors and leads to the expression of type I interferon and proinflammatory cytokine genes. The mitochondrial dsRNA is cleaved by RNase L, which cleaves all cellular RNA including mitochondrial mRNAs, increasing activation of RIG-I-like receptors. When mitochondrial transcription is interrupted there is a subsequent decrease in this immune stimulatory dsRNA.
    [Show full text]
  • Rnase L) (OAS) [(Baglioni Et Al
    R Ribonuclease L (RNase L) (OAS) [(Baglioni et al. 1978), reviewed by (Hovanessian and Justesen 2007)]. Melissa Drappier and Thomas Michiels Based on these observations, an RNase de Duve Institute, Université catholique de L activation model was proposed (Fig. 2). In this Louvain, Brussels, Belgium model, virus infection induces IFN expression, which, in turn, triggers the upregulation of OAS expression. dsRNA synthesized in the course of Synonyms viral infection binds OAS, leading to the activa- tion of OAS catalytic activity and to the synthesis PRCA1; RNS4 of 2-5A molecules. 2-5A in turn bind to RNase L, which is present in cells as a latent enzyme. Upon 2-5A binding, RNase L becomes activated by dimerization and cleaves viral and cellular RNA Historical Background (Fig. 2). Since then, cloning of the RNase L gene in In early stages of viral infection, the innate 1993 (Zhou et al. 1993), generation of RNase immune response and particularly the interferon À À L-deficient (RNase L / ) mice in 1997 (Zhou response play a critical role in restricting viral et al. 1997), and solving RNase L structure (Han replication and propagation, awaiting the estab- et al. 2014; Huang et al. 2014) were the major lishment of the adaptive immune response. One of milestones in the understanding of RNase the best-described IFN-dependent antiviral L function. responses is the OAS/RNase L pathway. This two-component system is controlled by type I and type III interferons (IFN). Back in the General Features, Biochemistry, 1970s, the groups of I. Kerr and P. Lengyel dis- and Regulation of RNase L Activity covered a cellular endoribonuclease (RNase) activity that was increased by IFN and depended RNase L is the effector enzyme of the on the presence of double-stranded RNA IFN-induced, OAS/RNase L pathway.
    [Show full text]
  • 1 Activation of the Antiviral Factor Rnase L Triggers Translation of Non
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.10.291690; this version posted September 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. Activation of the antiviral factor RNase L triggers translation of non-coding mRNA sequences Agnes Karasik1,2, Grant D. Jones1, Andrew V. DePass1 and Nicholas R. Guydosh1* 1Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 2Postdoctoral Research Associate Training Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD 20892 *Corresponding author: [email protected] (lead contact) Keywords: 2-5-oligoadenylate, 2-5A, antiviral response, 2-5AMD, ribosome profiling, altORF, OAS, innate immunity, viral infection, cryptic peptide SUMMARY Ribonuclease L (RNase L) is activated as part of the innate immune response and plays an important role in the clearance of viral infections. When activated, it endonucleolytically cleaves both viral and host RNAs, leading to a global reduction in protein synthesis. However, it remains unknown how widespread RNA decay, and consequent changes in the translatome, promote the elimination of viruses. To study how this altered transcriptome is translated, we assayed the global distribution of ribosomes in RNase L activated human cells with ribosome profiling. We found that RNase L activation leads to a substantial increase in the fraction of translating ribosomes in ORFs internal to coding sequences (iORFs) and ORFs within 5’ and 3’ UTRs (uORFs and dORFs).
    [Show full text]
  • Genetic Analysis of the RNASEL Gene in Hereditary, Familial, and Sporadic Prostate Cancer
    7150 Vol. 10, 7150–7156, November 1, 2004 Clinical Cancer Research Featured Article Genetic Analysis of the RNASEL Gene in Hereditary, Familial, and Sporadic Prostate Cancer Fredrik Wiklund,1 Bjo¨rn-Anders Jonsson,2 0.77; 95% confidence interval, 0.59–1.00) and reduced risk Anthony J. Brookes,3 Linda Stro¨mqvist,3 of prostate cancer in carriers of two different haplotypes being completely discordant. Jan Adolfsson,4 Monica Emanuelsson,1 5 5 Conclusions: Considering the high quality in genotyp- Hans-Olov Adami, Katarina Augustsson-Ba¨lter, ing and the size of this study, these results provide solid 1 and Henrik Gro¨nberg evidence against a major role of RNASEL in prostate cancer Department of 1Radiation Sciences, Oncology, and 2Medical etiology in Sweden. Biosciences, Pathology, University of Umeå, Umeå, Sweden; and 3Center for Genomics and Bioinformatics, 4Oncologic Center, Department of Surgical Sciences, and 5Department of Medical INTRODUCTION Epidemiology and Biostatistics, Karolinska Institutet, Sweden Accumulating evidence from epidemiologic and genetic studies indicates that hereditary predisposition has a consider- ABSTRACT able impact on the development of prostate cancer. Linkage analyses suggest that a number of chromosomal regions harbor Purpose: The RNASEL gene has been proposed as a prostate cancer susceptibility genes. However, lack of consis- candidate gene for the HPC1 locus through a positional tency between studies additionally indicates that prostate cancer cloning and candidate gene approach. Cosegregation be- is a genetically heterogeneous disorder, with multiple genetic tween the truncating mutation E265X and disease in a he- and environmental factors involved in its etiology (1). In 1996, reditary prostate cancer (HPC) family and association be- the first prostate cancer susceptibility locus, HPC1, was mapped tween prostate cancer risk and the common missense to chromosome 1q24-25 (2).
    [Show full text]
  • Interferon-Inducible Antiviral Effectors
    REVIEWS Interferon-inducible antiviral effectors Anthony J. Sadler and Bryan R. G. Williams Abstract | Since the discovery of interferons (IFNs), considerable progress has been made in describing the nature of the cytokines themselves, the signalling components that direct the cell response and their antiviral activities. Gene targeting studies have distinguished four main effector pathways of the IFN-mediated antiviral response: the Mx GTPase pathway, the 2′,5′-oligoadenylate-synthetase-directed ribonuclease L pathway, the protein kinase R pathway and the ISG15 ubiquitin-like pathway. As discussed in this Review, these effector pathways individually block viral transcription, degrade viral RNA, inhibit translation and modify protein function to control all steps of viral replication. Ongoing research continues to expose additional activities for these effector proteins and has revealed unanticipated functions of the antiviral response. Pattern-recognition Interferon (IFN) was discovered more than 50 years ago in components of the IFNR signalling pathway (STAT1 receptors as an agent that inhibited the replication of influenza (signal transducer and activator of transcription 1), TYK2 (PRRs). Host receptors that can virus1. The IFN family of cytokines is now recognized as (tyrosine kinase 2) or UNC93B) die of viral disease, with sense pathogen-associated a key component of the innate immune response and the the defect in IFNAR (rather than IFNGR) signalling molecular patterns and initiate 6–9 signalling cascades that lead to first line of defence against viral infection. Accordingly, having the more significant role . an innate immune response. IFNs are currently used therapeutically, with the most The binding of type I IFNs to the IFNAR initiates a These can be membrane bound noteworthy example being the treatment of hepatitis C signalling cascade, which leads to the induction of more (such as Toll-like receptors) or virus (HCV) infection, and they are also used against than 300 IFN-stimulated genes (ISGs)10.
    [Show full text]
  • ABCE1 Antibody Cat
    ABCE1 Antibody Cat. No.: 23-432 ABCE1 Antibody Western blot analysis of extracts of various cell lines, using ABCE1 antibody (23-432) at 1:1000 dilution. Secondary antibody: HRP Goat Anti-Rabbit IgG (H+L) at 1:10000 dilution. Lysates/proteins: 25ug per lane. Blocking buffer: 3% nonfat dry milk in TBST. Detection: ECL Basic Kit. Exposure time: 10s. Specifications HOST SPECIES: Rabbit SPECIES REACTIVITY: Human, Mouse, Rat Recombinant fusion protein containing a sequence corresponding to amino acids 320-599 IMMUNOGEN: of human ABCE1 (NP_002931.2). TESTED APPLICATIONS: IF, WB WB: ,1:500 - 1:2000 APPLICATIONS: IF: ,1:50 - 1:200 September 26, 2021 1 https://www.prosci-inc.com/abce1-antibody-23-432.html POSITIVE CONTROL: 1) MCF7 2) Jurkat 3) 293T 4) HeLa 5) Mouse liver PREDICTED MOLECULAR Observed: 67kDa WEIGHT: Properties PURIFICATION: Affinity purification CLONALITY: Polyclonal ISOTYPE: IgG CONJUGATE: Unconjugated PHYSICAL STATE: Liquid BUFFER: PBS with 0.02% sodium azide, 50% glycerol, pH7.3. STORAGE CONDITIONS: Store at -20˚C. Avoid freeze / thaw cycles. Additional Info OFFICIAL SYMBOL: ABCE1 ABCE1, RLI, OABP, ABC38, RNS4I, RNASEL1, RNASELI, ATP-binding cassette, sub-family E ALTERNATE NAMES: (OABP), member 1, RNase L inhibitor, ribonuclease L (2', 5'-oligoisoadenylate synthetase- dependent) inhibitor, HP68, OK/SW-cl.40 GENE ID: 6059 USER NOTE: Optimal dilutions for each application to be determined by the researcher. Background and References The protein encoded by this gene is a member of the superfamily of ATP-binding cassette (ABC) transporters. ABC proteins transport various molecules across extra- and intra- cellular membranes. ABC genes are divided into seven distinct subfamilies (ABC1, MDR/TAP, MRP, ALD, OABP, GCN20, White).
    [Show full text]
  • SARS-Cov-2 Induces Double-Stranded RNA-Mediated Innate Immune Responses in Respiratory Epithelial-Derived Cells and Cardiomyocytes
    SARS-CoV-2 induces double-stranded RNA-mediated innate immune responses in respiratory epithelial-derived cells and cardiomyocytes Yize Lia,b,1,2,3, David M. Rennera,b,1, Courtney E. Comara,b,1, Jillian N. Whelana,b,1, Hanako M. Reyesa,b, Fabian Leonardo Cardenas-Diazc,d, Rachel Truittc,e, Li Hui Tanf, Beihua Dongg, Konstantinos Dionysios Alysandratosh, Jessie Huangh, James N. Palmerf, Nithin D. Adappaf, Michael A. Kohanskif, Darrell N. Kottonh, Robert H. Silvermang, Wenli Yangc, Edward E. Morriseyc,d, Noam A. Cohenf,i,j, and Susan R. Weissa,b,2 aDepartment of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104; bPenn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104; cDepartment of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104; dPenn-CHOP Lung Biology Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104; eInstitute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104; fDepartment of Otorhinolaryngology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104; gDepartment of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195; hDepartment of Medicine, The Pulmonary Center, Center for Regenerative Medicine, Boston University School of Medicine, Boston, MA 02118; iDivision of Otolaryngology,
    [Show full text]
  • Antiviral Rnai in Insects and Mammals: Parallels and Differences
    viruses Review Antiviral RNAi in Insects and Mammals: Parallels and Differences Susan Schuster, Pascal Miesen and Ronald P. van Rij * Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, 6500 HB Nijmegen, The Netherlands; [email protected] (S.S.); [email protected] (P.M.) * Correspondence: [email protected]; Tel.: +31-24-3617574 Received: 16 April 2019; Accepted: 15 May 2019; Published: 16 May 2019 Abstract: The RNA interference (RNAi) pathway is a potent antiviral defense mechanism in plants and invertebrates, in response to which viruses evolved suppressors of RNAi. In mammals, the first line of defense is mediated by the type I interferon system (IFN); however, the degree to which RNAi contributes to antiviral defense is still not completely understood. Recent work suggests that antiviral RNAi is active in undifferentiated stem cells and that antiviral RNAi can be uncovered in differentiated cells in which the IFN system is inactive or in infections with viruses lacking putative viral suppressors of RNAi. In this review, we describe the mechanism of RNAi and its antiviral functions in insects and mammals. We draw parallels and highlight differences between (antiviral) RNAi in these classes of animals and discuss open questions for future research. Keywords: small interfering RNA; RNA interference; RNA virus; antiviral defense; innate immunity; interferon; stem cells 1. Introduction RNA interference (RNAi) or RNA silencing was first described in the model organism Caenorhabditis elegans [1] and following this ground-breaking discovery, studies in the field of small, noncoding RNAs have advanced tremendously. RNAi acts, with variations, in all eukaryotes ranging from unicellular organisms to complex species from the plant and animal kingdoms [2].
    [Show full text]
  • Goat Anti-ABCE1/ Rnase L Inhibitor Antibody Peptide-Affinity Purified Goat Antibody Catalog # Af1014a
    10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 Goat Anti-ABCE1/ RNAse L inhibitor Antibody Peptide-affinity purified goat antibody Catalog # AF1014a Specification Goat Anti-ABCE1/ RNAse L inhibitor Antibody - Product Information Application WB Primary Accession P61221 Other Accession NP_001035809, 6059, 24015 (mouse), 361390 (rat) Reactivity Human Predicted Mouse, Rat, Dog, Cow Host Goat Clonality Polyclonal Concentration 100ug/200ul AF1014a (0.3 µg/ml) staining of A431 lysate Isotype IgG (35 µg protein in RIPA buffer). Primary Calculated MW 67314 incubation was 1 hour. Detected by chemiluminescence. Goat Anti-ABCE1/ RNAse L inhibitor Antibody - Additional Information Goat Anti-ABCE1/ RNAse L inhibitor Antibody - Background Gene ID 6059 The protein encoded by this gene is a member of the superfamily of ATP-binding cassette Other Names (ABC) transporters. ABC proteins transport ATP-binding cassette sub-family E member 1, 2'-5'-oligoadenylate-binding protein, various molecules across extra- and HuHP68, RNase L inhibitor, Ribonuclease 4 intra-cellular membranes. ABC genes are inhibitor, RNS4I, ABCE1, RLI, RNASEL1, divided into seven distinct subfamilies (ABC1, RNASELI, RNS4I MDR/TAP, MRP, ALD, OABP, GCN20, White). This protein is a member of the OABP Format subfamily. Alternatively referred to as the 0.5 mg IgG/ml in Tris saline (20mM Tris RNase L inhibitor, this protein functions to pH7.3, 150mM NaCl), 0.02% sodium azide, block the activity of ribonuclease L. Activation with 0.5% bovine serum albumin of ribonuclease L leads to inhibition of protein synthesis in the 2-5A/RNase L system, the Storage central pathway for viral interferon action.
    [Show full text]