Genetic Analysis of the RNASEL Gene in Hereditary, Familial, and Sporadic Prostate Cancer

Total Page:16

File Type:pdf, Size:1020Kb

Genetic Analysis of the RNASEL Gene in Hereditary, Familial, and Sporadic Prostate Cancer 7150 Vol. 10, 7150–7156, November 1, 2004 Clinical Cancer Research Featured Article Genetic Analysis of the RNASEL Gene in Hereditary, Familial, and Sporadic Prostate Cancer Fredrik Wiklund,1 Bjo¨rn-Anders Jonsson,2 0.77; 95% confidence interval, 0.59–1.00) and reduced risk Anthony J. Brookes,3 Linda Stro¨mqvist,3 of prostate cancer in carriers of two different haplotypes being completely discordant. Jan Adolfsson,4 Monica Emanuelsson,1 5 5 Conclusions: Considering the high quality in genotyp- Hans-Olov Adami, Katarina Augustsson-Ba¨lter, ing and the size of this study, these results provide solid 1 and Henrik Gro¨nberg evidence against a major role of RNASEL in prostate cancer Department of 1Radiation Sciences, Oncology, and 2Medical etiology in Sweden. Biosciences, Pathology, University of Umeå, Umeå, Sweden; and 3Center for Genomics and Bioinformatics, 4Oncologic Center, Department of Surgical Sciences, and 5Department of Medical INTRODUCTION Epidemiology and Biostatistics, Karolinska Institutet, Sweden Accumulating evidence from epidemiologic and genetic studies indicates that hereditary predisposition has a consider- ABSTRACT able impact on the development of prostate cancer. Linkage analyses suggest that a number of chromosomal regions harbor Purpose: The RNASEL gene has been proposed as a prostate cancer susceptibility genes. However, lack of consis- candidate gene for the HPC1 locus through a positional tency between studies additionally indicates that prostate cancer cloning and candidate gene approach. Cosegregation be- is a genetically heterogeneous disorder, with multiple genetic tween the truncating mutation E265X and disease in a he- and environmental factors involved in its etiology (1). In 1996, reditary prostate cancer (HPC) family and association be- the first prostate cancer susceptibility locus, HPC1, was mapped tween prostate cancer risk and the common missense to chromosome 1q24-25 (2). Subsequent studies of linkage to variant R462Q has been reported. To additionally evaluate HPC1 have proven inconclusive; some confirmed linkage (3– the possible role of RNASEL in susceptibility to prostate 6), although others did not (7–11). However, in a pooled anal- cancer risk, we performed a comprehensive genetic analysis ysis of 772 families from nine international groups confirmatory of sequence variants in RNASEL in the Swedish population. linkage evidence was found with a maximum heterogeneity Experimental Design: Using 1624 prostate cancer cases logarithm of odds score of 1.4 (12). and 801 unaffected controls, the truncating mutation E265X RNASEL maps to HPC1 and is involved in the IFN-regu- and five common sequence variants, including the two missense lated 2Ј-5Ј–linked oligoadenylates system that mediates cell mutations R462Q and D541E, were evaluated for association proliferation and apoptosis (13, 14) and has been suggested as a between genotypes/haplotypes and prostate cancer risk. candidate tumor suppressor gene (15). RNASEL was recently Results: The prevalence of E265X carriers among un- identified as a candidate gene for HPC1 through a positional affected controls and prostate cancer patients was almost cloning and candidate gene approach. A truncating mutation identical (1.9 and 1.8% in controls and cases, respectively), (E265X) and an initiation codon mutation (M1I) was reported to and evidence for segregation of E265X with disease was not cosegregate within two hereditary prostate cancer (HPC; ref. 2) observed within any HPC family. Overall, the analyses of families linked to HPC1 (16). Furthermore, loss of the wild-type common sequence variants provided limited evidence for allele and reduced RNASEL activity was observed in microdis- association with prostate cancer risk. We found a marginally sected tumors carrying a germ-line mutation. In Finnish HPC significant inverse association between the missense muta- families, RNASEL mutations did not explain disease segrega- tion D541E and sporadic prostate cancer risk (odds ratio, tion; however, the truncating mutation E265X was associated with prostate cancer risk (17). In addition to rare mutations, several polymorphisms in RNASEL have been reported. A common missense variant of Received 5/19/04; accepted 7/26/04. RNASEL, R462Q, has been associated both with increased (17, Grant support: F. Wiklund received support from Swedish Cancer 18) and decreased (19, 20) risk of HPC. Recently, Xiang et al. Society (Cancerfonden), Lion’s Cancer Foundation, and Stiftelsen fo¨r (21) reported that the R462Q variant reduces the ability of Strategisk Forskning (Genome Program). RNase L to cause apoptosis in response to activation by 2-5A. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked Hence, this polymorphism might have a functional role in pros- advertisement in accordance with 18 U.S.C. Section 1734 solely to tate cancer development. Another missense variant, D541E, was indicate this fact. associated with an increased risk for prostate cancer in a study Requests for reprints: Fredrik Wiklund, Department of Radiation from Japan (19), although several other studies found no asso- Sciences, Oncology, University of Umeå, 901 87 Umeå, Sweden. Phone: 46-90-7852270; Fax: 46-90-127464; E-mail: fredrik.wiklund@ ciation (17, 18, 20). oc.umu.se. Additional evaluation of the impact that the RNASEL gene ©2004 American Association for Cancer Research. have on prostate cancer risk are required. Our aim was to assess Downloaded from clincancerres.aacrjournals.org on October 1, 2021. © 2004 American Association for Cancer Research. Clinical Cancer Research 7151 the possible role of RNASEL sequence variants on prostate (same as for cases). Subsequently, eight controls were excluded cancer risk in a Swedish population. We used a large popula- because linkage to the Swedish Cancer Registry revealed that tion-based case-control study, composed of 1624 prostate cancer they were diagnosed with a cancer of the prostate before inclu- cases and 801 controls. The truncating mutation E265X and sion. At the time of this study, DNA samples were available for several common polymorphisms in RNASEL were evaluated, 801 controls and 1427 cases (1247 sporadic prostate cancer both for individual association and through haplotype analyses. cases, 131 familial prostate cancer cases, and 49 HPC cases). Patients with Familial Prostate Cancer and HPC. Re- MATERIALS AND METHODS cruitment of Swedish families with prostate cancer is an ongo- Patients with Prostate Cancer and Controls. This ing activity that started at the Department of Oncology, Univer- study used men enrolled into the population based case-control sity of Umeå, in 1995. Identification of families has been based study Cancer Prostate in Sweden. A detailed description of the mainly on referrals by collaborating urologists and oncologists Cancer Prostate in Sweden study has been given elsewhere (22). throughout Sweden but also on self-reported family history of The Cancer Prostate in Sweden study is composed of all prostate prostate cancer from cases included into the Cancer Prostate in cancer patients, ages Յ 79 years, diagnosed between July 1, Sweden study, described above. Blood has been collected for as 2001, and September 30, 2002, from the central and northern many family members as possible. For the present study, all part of Sweden and all patients, ages Յ 65 years, diagnosed in affected family members with DNA information available (ex- the same calendar period from the southeastern part of Sweden cluding cases from the Cancer Prostate in Sweden cohort al- and the area of Stockholm. In total, 1961 prostate cancer pa- ready selected for this study) were included, resulting in 184 tients were invited for participation and 1444 (74%) agreed to HPC cases and 25 familial prostate cancer cases. All diagnoses participate. All these cases donated a blood sample and an- of prostate cancer in the families were confirmed both by swered a questionnaire, including questions regarding family reference to the Cancer Registry and by direct examination of history for prostate cancer. For all cases with at least one medical records. reported family member with prostate cancer, based on the Total Study Population. Our total study population is initial questionnaire, a more detailed family history was ob- composed of 1636 prostate cancer patients and 801 unaffected tained through a second questionnaire followed by a telephone controls. Of the 1636 prostate cancer patients, 156 (9.5%) and interview. 233 (14.2%) were classified as familial prostate cancer and HPC Of the 1444 cases included in the study, 143 were classified cases, respectively. Pertinent characteristics of the study popu- as familial prostate cancer cases (two relatives with verified lation are given in Table 1. Written informed consent was prostate cancer in a nuclear family) and 51 as HPC cases (three obtained from each subject. The ethical committee at the Karo- or more members with prostate cancer in a nuclear family). linska Institutet and University of Umeå approved the study. Detailed clinical data, including tumor-node-metastasis stage, Selection of RNASEL Single Nucleotide Polymorphisms Gleason score, prostate-specific antigen level at time of diag- (SNPs). Located on chromosome 1q22, the RNASEL gene nosis, means of diagnosis and primary treatment were obtained with eight exons is ϳ13 kb. To comprehensively evaluate as- through linkage to the National Prostate Cancer Registry. Cases sociation
Recommended publications
  • Ribonuclease L Mediates the Cell-Lethal Phenotype of the Double-Stranded RNA Editing
    1 2 Ribonuclease L mediates the cell-lethal phenotype of the double-stranded RNA editing 3 enzyme ADAR1 in a human cell line 4 5 Yize Lia,#, Shuvojit Banerjeeb,#, Stephen A. Goldsteina, Beihua Dongb, Christina Gaughanb, Sneha 6 Rathc, Jesse Donovanc, Alexei Korennykhc, Robert H. Silvermanb,* and Susan R Weissa,* 7 aDepartment of Microbiology, Perelman School of Medicine, University of Pennsylvania, 8 Philadelphia, PA, USA, 19104; b Department of Cancer Biology, Lerner Research Institute, 9 Cleveland Clinic, Cleveland, OH, USA 44195; c Department of Molecular Biology, Princeton 10 University, Princeton, NJ 08544 11 12 13 14 15 16 17 18 # These authors contributed equally to this work 19 * Corresponding authors 20 21 22 23 24 25 26 27 28 29 30 Abstract 31 ADAR1 isoforms are adenosine deaminases that edit and destabilize double-stranded RNA 32 reducing its immunostimulatory activities. Mutation of ADAR1 leads to a severe neurodevelopmental 33 and inflammatory disease of children, Aicardi-Goutiéres syndrome. In mice, Adar1 mutations are 34 embryonic lethal but are rescued by mutation of the Mda5 or Mavs genes, which function in IFN 35 induction. However, the specific IFN regulated proteins responsible for the pathogenic effects of 36 ADAR1 mutation are unknown. We show that the cell-lethal phenotype of ADAR1 deletion in human 37 lung adenocarcinoma A549 cells is rescued by CRISPR/Cas9 mutagenesis of the RNASEL gene or 38 by expression of the RNase L antagonist, murine coronavirus NS2 accessory protein. Our result 39 demonstrate that ablation of RNase L activity promotes survival of ADAR1 deficient cells even in the 40 presence of MDA5 and MAVS, suggesting that the RNase L system is the primary sensor pathway 41 for endogenous dsRNA that leads to cell death.
    [Show full text]
  • Interactions Between Protein Kinase R Activity, Rnase L Cleavage and Elastase Activity, and Their Clinical Relevance
    in vivo 22: 115-122 (2008) Unravelling Intracellular Immune Dysfunctions in Chronic Fatigue Syndrome: Interactions between Protein Kinase R Activity, RNase L Cleavage and Elastase Activity, and their Clinical Relevance MIRA MEEUS1,2, JO NIJS1,2, NEIL MCGREGOR3, ROMAIN MEEUSEN1, GUY DE SCHUTTER1, STEVEN TRUIJEN2, MARC FRÉMONT4, ELKE VAN HOOF1 and KENNY DE MEIRLEIR1 1Department of Human Physiology, Faculty of Physical Education and Physiotherapy; Vrije Universiteit Brussel (VUB); 2Division of Musculoskeletal Physiotherapy, Department of Health Sciences, University College Antwerp (HA), Belgium; 3Bio21, Institute of Biomedical Research, University of Melbourne, Parksville, Victoria 3000, Australia; 4RED Laboratories, Pontbeek 61, 1731 Zellik, Belgium Abstract. This study examined possible interactions between the 1994 definition of the Centre for Disease Control and immunological abnormalities and symptoms in CFS. Sixteen Prevention (CDCP) (2), besides severe fatigue, a CFS CFS patients filled in a battery of questionnaires, evaluating patient presents a number of other symptoms, such as daily functioning, and underwent venous blood sampling, in myalgia, arthralgia, low-grade fever, concentration order to analyse immunological abnormalities. Ribonuclease difficulties. Because CFS is often preceded by viral episodes (RNase) L cleavage was associated with RNase L activity (3, 4) or negative, stressful life events (5), it is possible that (rs=0.570; p=0.021), protein kinase R (PKR) (rs=0.716; infectious agents and environmental factors trigger p=0.002) and elastase activity (rs=0.500; p=0.049). RNase persistent immunological dysregulations. L activity was related to elastase (rs=0.547; p=0.028) and Two intracellular immune dysregulations are widely PKR activity (rs=0.625; p=0.010).
    [Show full text]
  • A Small Interfering ABCE1 -Targeting RNA Inhibits the Proliferation And
    687-693.qxd 23/3/2010 01:55 ÌÌ Page 687 INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 25: 687-693, 2010 687 A small interfering ABCE1-targeting RNA inhibits the proliferation and invasiveness of small cell lung cancer BO HUANG, YING GAO, DALI TIAN and MAOGEN ZHENG Department of Thoracic Surgery, the Fourth Affiliated Hospital of China Medical University, Liaoning Shenyan 110032, P.R. China Received November 13, 2009; Accepted December 22, 2009 DOI: 10.3892/ijmm_00000392 Abstract. Small cell lung cancer (SCLC) is a highly aggres- cases. SCLC is generally unsuitable for surgical resection. sive lung neoplasm. To study the pathogenesis of SCLC, we Although radiotherapy and chemotherapy have produced investigated roles of ABCE1, a member of the ATP-binding modest benefits for some patients, it could lead to recurrent cassette (ABC) superfamily, in the development of small cell and multidrug resistance (4). Recently gene therapy, as one lung cancer. RNA interference was used to knock down prevalent strategy, has being considered and employed in ABCE1 expression in human small cell lung cancer cell lines practice. Several genes have been explored for treating cancer, (NCI-H446). Then we examined the effects of ABCE1 knock- including tumor necrosis factor, p53, tumor suppressor gene, down in cancer cells, including proliferation, invasiveness, Herpes Simplex Virus Type-1 (HSV-1) and bacterial cytosine apoptosis, and gene expression. We found that ABCE1 could deaminase (CD) gene. However, clinical trials have shown be efficiently knocked down by siRNA, and the ABCE1 that the therapeutic outcome was severely restricted by the silence inhibited the proliferation, invasiveness of small cell poor efficiency of current gene transfer vector systems.
    [Show full text]
  • Activation of Innate Immunity by Mitochondrial Dsrna in Mouse Cells Lacking
    Downloaded from rnajournal.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press Wiatrek D. et al. Activation of innate immunity by mitochondrial dsRNA in mouse cells lacking p53 protein. Dagmara M. Wiatrek1#, Maria E. Candela1#, Jiří Sedmík1#, Jan Oppelt1,2, Liam P. Keegan1 and Mary A. O’Connell1,* 1CEITEC Masaryk University, Kamenice 735/5, A35, 62 500 Brno, Czech Republic 2National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic # All authors have contributed equally. * Corresponding author Telephone number + 420 54949 5460 Email addresses: [email protected] Word count: 9433 Running title: p53 and mitochondrial dsRNA Key words: Mitochondrial dsRNA, p53, innate immunity, RNaseL 1 Downloaded from rnajournal.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press Wiatrek D. et al. Viral and cellular double-stranded RNA (dsRNA) is recognized by cytosolic innate immune sensors including RIG-I-like receptors. Some cytoplasmic dsRNA is commonly present in cells, and one source is mitochondrial dsRNA, which results from bidirectional transcription of mitochondrial DNA (mtDNA). Here we demonstrate that Trp 53 mutant mouse embryo fibroblasts contain immune-stimulating endogenous dsRNA of mitochondrial origin. We show that the immune response induced by this dsRNA is mediated via RIG-I-like receptors and leads to the expression of type I interferon and proinflammatory cytokine genes. The mitochondrial dsRNA is cleaved by RNase L, which cleaves all cellular RNA including mitochondrial mRNAs, increasing activation of RIG-I-like receptors. When mitochondrial transcription is interrupted there is a subsequent decrease in this immune stimulatory dsRNA.
    [Show full text]
  • Rnase L) (OAS) [(Baglioni Et Al
    R Ribonuclease L (RNase L) (OAS) [(Baglioni et al. 1978), reviewed by (Hovanessian and Justesen 2007)]. Melissa Drappier and Thomas Michiels Based on these observations, an RNase de Duve Institute, Université catholique de L activation model was proposed (Fig. 2). In this Louvain, Brussels, Belgium model, virus infection induces IFN expression, which, in turn, triggers the upregulation of OAS expression. dsRNA synthesized in the course of Synonyms viral infection binds OAS, leading to the activa- tion of OAS catalytic activity and to the synthesis PRCA1; RNS4 of 2-5A molecules. 2-5A in turn bind to RNase L, which is present in cells as a latent enzyme. Upon 2-5A binding, RNase L becomes activated by dimerization and cleaves viral and cellular RNA Historical Background (Fig. 2). Since then, cloning of the RNase L gene in In early stages of viral infection, the innate 1993 (Zhou et al. 1993), generation of RNase immune response and particularly the interferon À À L-deficient (RNase L / ) mice in 1997 (Zhou response play a critical role in restricting viral et al. 1997), and solving RNase L structure (Han replication and propagation, awaiting the estab- et al. 2014; Huang et al. 2014) were the major lishment of the adaptive immune response. One of milestones in the understanding of RNase the best-described IFN-dependent antiviral L function. responses is the OAS/RNase L pathway. This two-component system is controlled by type I and type III interferons (IFN). Back in the General Features, Biochemistry, 1970s, the groups of I. Kerr and P. Lengyel dis- and Regulation of RNase L Activity covered a cellular endoribonuclease (RNase) activity that was increased by IFN and depended RNase L is the effector enzyme of the on the presence of double-stranded RNA IFN-induced, OAS/RNase L pathway.
    [Show full text]
  • 1 Activation of the Antiviral Factor Rnase L Triggers Translation of Non
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.10.291690; this version posted September 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. Activation of the antiviral factor RNase L triggers translation of non-coding mRNA sequences Agnes Karasik1,2, Grant D. Jones1, Andrew V. DePass1 and Nicholas R. Guydosh1* 1Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 2Postdoctoral Research Associate Training Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD 20892 *Corresponding author: [email protected] (lead contact) Keywords: 2-5-oligoadenylate, 2-5A, antiviral response, 2-5AMD, ribosome profiling, altORF, OAS, innate immunity, viral infection, cryptic peptide SUMMARY Ribonuclease L (RNase L) is activated as part of the innate immune response and plays an important role in the clearance of viral infections. When activated, it endonucleolytically cleaves both viral and host RNAs, leading to a global reduction in protein synthesis. However, it remains unknown how widespread RNA decay, and consequent changes in the translatome, promote the elimination of viruses. To study how this altered transcriptome is translated, we assayed the global distribution of ribosomes in RNase L activated human cells with ribosome profiling. We found that RNase L activation leads to a substantial increase in the fraction of translating ribosomes in ORFs internal to coding sequences (iORFs) and ORFs within 5’ and 3’ UTRs (uORFs and dORFs).
    [Show full text]
  • Interferon-Inducible Antiviral Effectors
    REVIEWS Interferon-inducible antiviral effectors Anthony J. Sadler and Bryan R. G. Williams Abstract | Since the discovery of interferons (IFNs), considerable progress has been made in describing the nature of the cytokines themselves, the signalling components that direct the cell response and their antiviral activities. Gene targeting studies have distinguished four main effector pathways of the IFN-mediated antiviral response: the Mx GTPase pathway, the 2′,5′-oligoadenylate-synthetase-directed ribonuclease L pathway, the protein kinase R pathway and the ISG15 ubiquitin-like pathway. As discussed in this Review, these effector pathways individually block viral transcription, degrade viral RNA, inhibit translation and modify protein function to control all steps of viral replication. Ongoing research continues to expose additional activities for these effector proteins and has revealed unanticipated functions of the antiviral response. Pattern-recognition Interferon (IFN) was discovered more than 50 years ago in components of the IFNR signalling pathway (STAT1 receptors as an agent that inhibited the replication of influenza (signal transducer and activator of transcription 1), TYK2 (PRRs). Host receptors that can virus1. The IFN family of cytokines is now recognized as (tyrosine kinase 2) or UNC93B) die of viral disease, with sense pathogen-associated a key component of the innate immune response and the the defect in IFNAR (rather than IFNGR) signalling molecular patterns and initiate 6–9 signalling cascades that lead to first line of defence against viral infection. Accordingly, having the more significant role . an innate immune response. IFNs are currently used therapeutically, with the most The binding of type I IFNs to the IFNAR initiates a These can be membrane bound noteworthy example being the treatment of hepatitis C signalling cascade, which leads to the induction of more (such as Toll-like receptors) or virus (HCV) infection, and they are also used against than 300 IFN-stimulated genes (ISGs)10.
    [Show full text]
  • ABCE1 Antibody Cat
    ABCE1 Antibody Cat. No.: 23-432 ABCE1 Antibody Western blot analysis of extracts of various cell lines, using ABCE1 antibody (23-432) at 1:1000 dilution. Secondary antibody: HRP Goat Anti-Rabbit IgG (H+L) at 1:10000 dilution. Lysates/proteins: 25ug per lane. Blocking buffer: 3% nonfat dry milk in TBST. Detection: ECL Basic Kit. Exposure time: 10s. Specifications HOST SPECIES: Rabbit SPECIES REACTIVITY: Human, Mouse, Rat Recombinant fusion protein containing a sequence corresponding to amino acids 320-599 IMMUNOGEN: of human ABCE1 (NP_002931.2). TESTED APPLICATIONS: IF, WB WB: ,1:500 - 1:2000 APPLICATIONS: IF: ,1:50 - 1:200 September 26, 2021 1 https://www.prosci-inc.com/abce1-antibody-23-432.html POSITIVE CONTROL: 1) MCF7 2) Jurkat 3) 293T 4) HeLa 5) Mouse liver PREDICTED MOLECULAR Observed: 67kDa WEIGHT: Properties PURIFICATION: Affinity purification CLONALITY: Polyclonal ISOTYPE: IgG CONJUGATE: Unconjugated PHYSICAL STATE: Liquid BUFFER: PBS with 0.02% sodium azide, 50% glycerol, pH7.3. STORAGE CONDITIONS: Store at -20˚C. Avoid freeze / thaw cycles. Additional Info OFFICIAL SYMBOL: ABCE1 ABCE1, RLI, OABP, ABC38, RNS4I, RNASEL1, RNASELI, ATP-binding cassette, sub-family E ALTERNATE NAMES: (OABP), member 1, RNase L inhibitor, ribonuclease L (2', 5'-oligoisoadenylate synthetase- dependent) inhibitor, HP68, OK/SW-cl.40 GENE ID: 6059 USER NOTE: Optimal dilutions for each application to be determined by the researcher. Background and References The protein encoded by this gene is a member of the superfamily of ATP-binding cassette (ABC) transporters. ABC proteins transport various molecules across extra- and intra- cellular membranes. ABC genes are divided into seven distinct subfamilies (ABC1, MDR/TAP, MRP, ALD, OABP, GCN20, White).
    [Show full text]
  • SARS-Cov-2 Induces Double-Stranded RNA-Mediated Innate Immune Responses in Respiratory Epithelial-Derived Cells and Cardiomyocytes
    SARS-CoV-2 induces double-stranded RNA-mediated innate immune responses in respiratory epithelial-derived cells and cardiomyocytes Yize Lia,b,1,2,3, David M. Rennera,b,1, Courtney E. Comara,b,1, Jillian N. Whelana,b,1, Hanako M. Reyesa,b, Fabian Leonardo Cardenas-Diazc,d, Rachel Truittc,e, Li Hui Tanf, Beihua Dongg, Konstantinos Dionysios Alysandratosh, Jessie Huangh, James N. Palmerf, Nithin D. Adappaf, Michael A. Kohanskif, Darrell N. Kottonh, Robert H. Silvermang, Wenli Yangc, Edward E. Morriseyc,d, Noam A. Cohenf,i,j, and Susan R. Weissa,b,2 aDepartment of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104; bPenn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104; cDepartment of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104; dPenn-CHOP Lung Biology Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104; eInstitute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104; fDepartment of Otorhinolaryngology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104; gDepartment of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195; hDepartment of Medicine, The Pulmonary Center, Center for Regenerative Medicine, Boston University School of Medicine, Boston, MA 02118; iDivision of Otolaryngology,
    [Show full text]
  • Antiviral Rnai in Insects and Mammals: Parallels and Differences
    viruses Review Antiviral RNAi in Insects and Mammals: Parallels and Differences Susan Schuster, Pascal Miesen and Ronald P. van Rij * Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, 6500 HB Nijmegen, The Netherlands; [email protected] (S.S.); [email protected] (P.M.) * Correspondence: [email protected]; Tel.: +31-24-3617574 Received: 16 April 2019; Accepted: 15 May 2019; Published: 16 May 2019 Abstract: The RNA interference (RNAi) pathway is a potent antiviral defense mechanism in plants and invertebrates, in response to which viruses evolved suppressors of RNAi. In mammals, the first line of defense is mediated by the type I interferon system (IFN); however, the degree to which RNAi contributes to antiviral defense is still not completely understood. Recent work suggests that antiviral RNAi is active in undifferentiated stem cells and that antiviral RNAi can be uncovered in differentiated cells in which the IFN system is inactive or in infections with viruses lacking putative viral suppressors of RNAi. In this review, we describe the mechanism of RNAi and its antiviral functions in insects and mammals. We draw parallels and highlight differences between (antiviral) RNAi in these classes of animals and discuss open questions for future research. Keywords: small interfering RNA; RNA interference; RNA virus; antiviral defense; innate immunity; interferon; stem cells 1. Introduction RNA interference (RNAi) or RNA silencing was first described in the model organism Caenorhabditis elegans [1] and following this ground-breaking discovery, studies in the field of small, noncoding RNAs have advanced tremendously. RNAi acts, with variations, in all eukaryotes ranging from unicellular organisms to complex species from the plant and animal kingdoms [2].
    [Show full text]
  • Goat Anti-ABCE1/ Rnase L Inhibitor Antibody Peptide-Affinity Purified Goat Antibody Catalog # Af1014a
    10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 Goat Anti-ABCE1/ RNAse L inhibitor Antibody Peptide-affinity purified goat antibody Catalog # AF1014a Specification Goat Anti-ABCE1/ RNAse L inhibitor Antibody - Product Information Application WB Primary Accession P61221 Other Accession NP_001035809, 6059, 24015 (mouse), 361390 (rat) Reactivity Human Predicted Mouse, Rat, Dog, Cow Host Goat Clonality Polyclonal Concentration 100ug/200ul AF1014a (0.3 µg/ml) staining of A431 lysate Isotype IgG (35 µg protein in RIPA buffer). Primary Calculated MW 67314 incubation was 1 hour. Detected by chemiluminescence. Goat Anti-ABCE1/ RNAse L inhibitor Antibody - Additional Information Goat Anti-ABCE1/ RNAse L inhibitor Antibody - Background Gene ID 6059 The protein encoded by this gene is a member of the superfamily of ATP-binding cassette Other Names (ABC) transporters. ABC proteins transport ATP-binding cassette sub-family E member 1, 2'-5'-oligoadenylate-binding protein, various molecules across extra- and HuHP68, RNase L inhibitor, Ribonuclease 4 intra-cellular membranes. ABC genes are inhibitor, RNS4I, ABCE1, RLI, RNASEL1, divided into seven distinct subfamilies (ABC1, RNASELI, RNS4I MDR/TAP, MRP, ALD, OABP, GCN20, White). This protein is a member of the OABP Format subfamily. Alternatively referred to as the 0.5 mg IgG/ml in Tris saline (20mM Tris RNase L inhibitor, this protein functions to pH7.3, 150mM NaCl), 0.02% sodium azide, block the activity of ribonuclease L. Activation with 0.5% bovine serum albumin of ribonuclease L leads to inhibition of protein synthesis in the 2-5A/RNase L system, the Storage central pathway for viral interferon action.
    [Show full text]
  • RNA Recognition and Immunity—Innate Immune Sensing and Its Posttranscriptional Regulation Mechanisms
    cells Review RNA Recognition and Immunity—Innate Immune Sensing and Its Posttranscriptional Regulation Mechanisms Takuya Uehata and Osamu Takeuchi * Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-75-753-9500 Received: 23 June 2020; Accepted: 15 July 2020; Published: 16 July 2020 Abstract: RNA acts as an immunostimulatory molecule in the innate immune system to activate nucleic acid sensors. It functions as an intermediate, conveying genetic information to control inflammatory responses. A key mechanism for RNA sensing is discriminating self from non-self nucleic acids to initiate antiviral responses reliably, including the expression of type I interferon (IFN) and IFN-stimulated genes. Another important aspect of the RNA-mediated inflammatory response is posttranscriptional regulation of gene expression, where RNA-binding proteins (RBPs) have essential roles in various RNA metabolisms, including splicing, nuclear export, modification, and translation and mRNA degradation. Recent evidence suggests that the control of mRNA stability is closely involved in signal transduction and orchestrates immune responses. In this study, we review the current understanding of how RNA is sensed by host RNA sensing machinery and discuss self/non-self-discrimination in innate immunity focusing on mammalian species. Finally, we discuss how posttranscriptional regulation by RBPs shape immune reactions. Keywords: RNA virus; Toll-like receptors; RIG-I-like receptors; type I interferons; cytokines; RNA binding proteins; Regnase-1; mRNA decay 1. Introduction Innate immunity is a first-line host defense mechanism that initiates inflammatory responses against pathogen invasion.
    [Show full text]