The Untold Story: Nature's Burnt Offering to 19Th Century Settlers

Total Page:16

File Type:pdf, Size:1020Kb

The Untold Story: Nature's Burnt Offering to 19Th Century Settlers Document generated on 09/28/2021 11:21 p.m. Histoire Québec Ash to Cash – The Untold Story Nature’s Burnt Offering to 19th Century Settlers Georges Létourneau and Jay Sames Volume 18, Number 3, 2013 URI: https://id.erudit.org/iderudit/68966ac See table of contents Publisher(s) Les Éditions Histoire Québec La Fédération Histoire Québec ISSN 1201-4710 (print) 1923-2101 (digital) Explore this journal Cite this article Létourneau, G. & Sames, J. (2013). Ash to Cash – The Untold Story: Nature’s Burnt Offering to 19th Century Settlers. Histoire Québec, 18(3), 25–30. Tous droits réservés © Les Éditions Histoire Québec, 2013 This document is protected by copyright law. Use of the services of Érudit (including reproduction) is subject to its terms and conditions, which can be viewed online. https://apropos.erudit.org/en/users/policy-on-use/ This article is disseminated and preserved by Érudit. Érudit is a non-profit inter-university consortium of the Université de Montréal, Université Laval, and the Université du Québec à Montréal. Its mission is to promote and disseminate research. https://www.erudit.org/en/ H-Q Vol 18, no 3_Layout 1 2013-02-26 17:32 Page 25 HISTOIRE QUÉBEC VOLUME 18 NUMÉRO 3 2013 Ash to Cash – The Untold Story Nature’s Burnt Offering to 19 th Century Settlers By Georges Létourneau and Jay Sames Georges Létourneau is Vice President of Heritage Sutton, the historical society of Sutton, Québec. ( www.heritage - sutton.ca ). A previous version of this article appeared in the society’s publication, History Sketchbooks , No. 15, November 2011. Jay Sames is a member of Heritage Sutton and the Copy Editor / Proofreader for the English side of Cahiers d’histoire / History Sketchbooks. Though having spent much of his life as a chemical engineer, Jay has a lifelong interest in both language and history, as well as a law degree. A voracious and multifarious reader, Jay especially loves fine literature; he is a writer (locally for Le Tour in Sutton and History Sketchbooks ), a hiker and a backpacker. For Le Tour , he has written from Belarus, India, Malaysia and the UK. “Life must be lived forward, but knew that. They actively cut clean wool in preparation for it can only be understood back - down trees, and burned the weaving. The first definite and ward.” trunks, branches and stumps to tangible proofs of soap-making Søren Kierkegaard produce potash, which sold at are found on a clay tablet from good profit. The demand for Mesopotamia, dated 2200 BCE, The arc of history can often be potash, and the price paid for it, where an actual soap recipe is seen only at great temporal became quite high when that given. In Rome, Pliny the Elder remove. Only then is the impor - demand later included indus - described soap-making from tance of certain practices trial operations. goat tallow and ashes. Even the revealed. Likewise, some under - ruins of Pompeii include a soap takings are so prevalent and Potash was, during the pioneer factory, complete with finished quotidian that their mention era, extracted from hard wood bars. In Mexico, as early as three seems almost unnecessary. ashes, and rather easily pro - thousands years ago, ashes were Thus, it seems, was nascent duced. You leached one volume used when boiling maze to potash production. Everyone of ashes with two volumes of make hominy. saved ash from the woodstove; water, and boiled the water it’s how you made soap. Doing until you had a black cake of Nearer to us, in Nouvelle-France, so was as unremarkable as feed - salts. These black salts could be the production of potash was ing the horses or collecting the sold as such, or baked into pearl promoted by Intendant Talon. eggs. Like eggs, you could sell ash (so called because of its In 1669, he gave to Nicolas excess ash. Perhaps the sheer white color) by heating the black normalcy of ash collection is salts to 1000 degrees Fahrenheit why it has been given scant and boiling them to remove all attention in the histories of impurities. Pearl ash was only Lower Canada. But whether left made by asheries who had more unmentioned due to ignorance expensive kettles that could or to misunderstanding, the sale withstand the necessary heat. of potash contributed signifi - To yield more potash, some cantly to the prosperity of the used boiling water at the begin - Eastern Townships in the first ning of the leaching, and others half of the 19 th century. leached the same ashes twice. Pioneers cut down trees and burned the “[A] man’s profits are never A Very Ancient Craft trunks and branches to ash from which greater than at the time of clea - they produced potash. Prices were so good ring his lands”, wrote Judge The use of ashes goes back thou - in the first half of the 19 th century that William Cooper, founder of sands of years. It is recorded some farmers did little else. Cooperstown, New York [1] . The that the Babylonians were mak - (Photo not from Sutton.) pioneers of Eastern Townships ing soap as early as 2800 BCE to 25 H-Q Vol 18, no 3_Layout 1 2013-02-26 17:32 Page 26 HISTOIRE QUÉBEC VOLUME 18 NUMÉRO 3 2013 There were no large forests in Catherine M. Day noted that England, and what remained asheries were usually an appen - was protected, or used only to dage of a store. build ships, houses and furni - ture. (Heating was done using The Export Demand coal, not wood.) Aware of this, the Commerce Board continual - In Europe, the Napoleonic Wars ly asked Governors of colonies (1799-1815) caused an increase Farmers kept some potash for their own to promote the production of in the North American potash use. Most families made their own soap in potash, but the Governors trade. Between 1806 and 1808, their back yards, which they used around always found excuses not to do the Continental Embargo pro - the house. (Photo not from Sutton.) so. The first few who tried went claimed by France and its allies bankrupted because of lack of against England, the embargo Follin the exclusive right to pro - competence, and it was soon by England against France, and duce potash from ashes collec - judged too risky. the embargo of the United States ted from the inhabitants of Qué - against England, brought inter - bec. In 1671, Talon built a Beginnings of Production in national commerce to a stand - potashery in Québec that stop - Lower Canada still. England had to rely enti rely ped production only a few years on its colonies for potash, and after his departure. Finally, after the American War Canada was the only reliable of Independence, in northern supplier. By 1809, the price of The Growing Needs of English New York and Vermont where potash was so high that farmers Industries by 1780 thousands of farmers became more interested in burn - had settled, merchants started to ing wood to make potash than The production of potash resu - buy ashes and make potash. in doing anything else. Consi - med with the arrival of the Potash brought high prices, and derable quantities of potash British. English industries nee - the large quantity of cheap were made in the Eastern Town - ded potash to process tons of ashes meant huge profits. Many ships. Reverend Charles Stewart wool from Australia and tons of were motivated to go into reported in 1815 that some far - cotton from America. The Bri - potash production. At the same mers, in fact, did nothing else. tish Empire was expanding too, time, Americans, loyalists and This continued for many years. creating an ever more numerous others moved to Lower Canada clientele for British products. Pro - bringing with them not only the The first export to England was cessing wool and cotton means skills for making potash, but the made in 1765, but it remained a washing, bleaching and dying, motivation of great profit. The low-key activity until 1800. Then, and potash is essential in all Eastern Townships, which at the in the first half of the 19 th cen - three operations. England was time extended from the Riche - tury, production escalated. In producing cheap glassware in lieu River to Lac Mégantic, 1832, Joseph Bouchette, gene ral large quantities for its colonies, became home to the majority of surveyor of Lower Canada, as well as expensive lead crystal the American immigrants, and published his Topographical Dic - for export. Making glass takes potash-making spread quickly tionary of the Province of Lower potash. In 1750, John Mitchell, a through all of southern Québec, Canada . In it he records 211 pota - Cambridge professor, in a pres - anywhere hardwood grew in sheries and 157 pearl asheries. entation to the Philosophical large quantities. About the same time, fiscal year Transactions of the Royal 1835-36, potash exports from Society, concluded: “No nation Most merchants accepted black Lower Canada rose to 6003 tons. [2] can do without potash, an essen - salt and ashes in exchange for tial ingredient in soap, dye, goods; there was profit in To appreciate what it takes to bleach and glass, and England is reselling ashes and producing produce 6003 tons of potash, a nation that does not know black salt. In her History of first note that this is over 12 mil - how to make it right.’’ the Eastern Townships , 1869, lion pounds. It takes 10 pounds 26 H-Q Vol 18, no 3_Layout 1 2013-02-26 17:32 Page 27 HISTOIRE QUÉBEC VOLUME 18 NUMÉRO 3 2013 of ashes to produce one pound Lower Canada had been, by far, Blanchard write that black salts of potash, and 12 pounds of wood the most important producer of were an absolutely necessary must be burned to yield just one potash, and by 1850 it was export product.
Recommended publications
  • Potash Case Study
    Mining, Minerals and Sustainable Development February 2002 No. 65 Potash Case Study Information supplied by the International Fertilizer Industry Association This report was commissioned by the MMSD project of IIED. It remains the sole Copyright © 2002 IIED and WBCSD. All rights reserved responsibility of the author(s) and does not necessarily reflect the views of the Mining, Minerals and MMSD project, Assurance Group or Sponsors Group, or those of IIED or WBCSD. Sustainable Development is a project of the International Institute for Environment and Development (IIED). The project was made possible by the support of the World Business Council for Sustainable Development (WBCSD). IIED is a company limited by guarantee and incorporated in England. Reg No. 2188452. VAT Reg. No. GB 440 4948 50. Registered Charity No. 800066 1 Introduction 2 2 Global Resources and Potash Production 3 3 The use of potassium in fertilizer 4 3.1 Potassium Fertilizer Consumption 4 3.2 Potassium fertilization issues 6 Appendix A 8 1 Introduction Potash and Potassium Potassium (K) is essential for plant and animal life wherein it has many vital nutritional roles. In plants, potassium and nitrogen are the two elements required in greatest amounts, while in animals and humans potassium is the third most abundant element, after calcium and phosphorus. Without sufficient plant and animal intake of potassium, life as we know it would cease. Human and other animals atop the food chain depend upon plants for much of their nutritional needs. Many soils lack sufficient quantities of available potassium for satisfactory yield and quality of crops. For this reason available soil potassium levels are commonly supplemented by potash fertilization to improve the potassium nutrition of plants, particularly for sustaining production of high yielding crop species and varieties in modern agricultural systems.
    [Show full text]
  • MORDANTING NATURAL DYES IRON SULPHATE (Ferrous Sulphate) Is Usually Used to Change the Colour of a Dye
    MORDANTING NATURAL DYES IRON SULPHATE (Ferrous Sulphate) is usually used to change the colour of a dye. It also makes natural dyes Most natural dyes have great affinity for fibre but more light and wash fast. More often used with cellulose poor light and wash fastness. If the fibre is pre than protein as it can make protein fibres brittle and harsh. mordanted you create a bond between the dye Iron changes shades to deeper, darker shades and is better and the fibre which will improve this dramatically. used in a premordant bath than directly into the dyebath. The most common and least environmentally toxic Use at a maximum of 2 to 4 % WOF . are Alum, Iron and Tannin. Copper is a useful mordant but is toxic to marine COPPER (Copper Sulphate)tends dull colours and turn life and humans. It needs to be handled and them blue green ie. yellows become greens, pinks become disposed of carefully. Historically Tin and Chrome purple. You can use Copper as a premordant or as an after have been used but are hazardous to the treatment to adjust colours. Colours dyed with Copper are environment & your health and need to be usually more lightfast than those dyed with Alum. Copper disposed of with great care. For that reason we has a less harsh effect on Protein fibres than Iron. Dispose recommend only using Alum, Iron, Copper and of Copper solution responsibly by exhausting your Tannin. Copper is probably the least safe but will dyebaths, diluting the residue with clean water and don’t give you much brighter shades and is safe to use put it down the storm water.
    [Show full text]
  • The Art of Mordanting and Staining and the Complete Treatment of Wood
    The Artof/Aordanting and Staining ' N:i^\><v 5W^ \\ \ ^^^ Class. X ) 3^^ Book -A fe Copyright }1® - COPYRIGHT DEPOSIT. C^z-A-^^UX-ftUv^w*^ %««<«^vvwn''v<^t'^"t^'>vva-'VU'nH^ , THE ART OF M ORD A NTI NG AND STAINING AND THE COMPLETE TREATMENT OF WOOD SURFACES A HANDBOOK AND AID FOR ARCHITECTS, CABINET MAKERS, DECORATORS, PAINTERS, PIANO FACTORIES AND TRADE SCHOOLS BY WILLIAM ZIMMERMANN INSTRUCTOR OF CHKMISTRY IN POLYTECHNIC INSTITUTE, BARMEN, GERMANY BOSTON, MASS.: THE ARTI-STAIN CO. 1911 \J> First English Edition Copyright 191 i BY W. F. PURSCHER All Rights Reserved ^ r/> ARTI-STAIN CO. Sole Agents for U. S. A. and the Dominion of Canada / !)CI.A28t)433 PREFACE Since the appearance of the Fifth Edition of this work in 1908, it has again been considerably enlarged and revised and the results incorporated in the present Sixth Edition. In the portion relating to staining, the chapter on Brown Stains, which occupy an important position in connection with modern furniture and fittings, has been completely revised and enlarged by the introduction of the new and practically-tested Special-Oak Stains, An- thracene Stains and Genuine-Mahogany Stains, which have been very favorably received. Because of their lesser importance, the number of staining formulas for bright colors has been diminished, but these have been replaced by staining formulas for new products of greater fastness to light. All suggestions and experiments since the last edition have been incorporated here. The Sample Card of colors (in the Supplement) has been made to correspond with the new formulas in the book.
    [Show full text]
  • STATES PATENT OFFICE 2,497,519 ART of STABLZNG RAYON TYPE FABRIC Archibald S
    Patented Feb. 14, 1950 2497,519 UNITED STATES PATENT OFFICE 2,497,519 ART OF STABLZNG RAYON TYPE FABRIC Archibald S. Stevenson, Pawtucket, and Leo Beer, Providence, R. I., assignors to Alrose Chemical Company, Cranston, R. ., a corporation of Rhode Island No Drawing. Application December 4, 1946, Serial No. 13,918 15 Claims. (C. 8-125) 2 The textile fabric with the stabilization of the alternative, costly ventilating equipment is which the present invention is concerned, con 'equired, and tains Synthetic fibers of regenerated cellulose, h. Fabrics treated with resins frequently cause Such as viscose or cupra-ammonium rayon or of dermatitis when worn by persons whose skin is cellulose-acetate or other cellulose derivative, the Sensitive to such resins. fabric consisting of any of said fibers, alone or in It is among the objects of the present inven admixture with one or more of the other fibers, tion to produce textile fabrics of the rayon-type with or without components of wool, cotton or which are stabilized to a highly satisfactory de other fiber, natural or synthetic. Fabric of the gree against laundering shrinkage, without there character referred to is designated hereinafter () by incurring excessive loss of yardage and with both in the specification and the claims in the in out the need to this end for incorporating in or terest of brevity as "rayon-type fabric.' on the fibre any foreign substance, or altering As conducive to a clear understanding of the the molecular structure of the fiber or detracting from the weight or the tensile strength or the invention, it is noted that if such rayon-type abrasion resistance of the fibre or fabric or in fabric were subjected to the action of caustic 5 pairing the hand of feel thereof, or objectionably under conditions similar to those of mercerizing detracting from its luster.
    [Show full text]
  • Potassium and Phosphorus Have No Effect on Severity of Charcoal Rot of Soybean
    Can. J. Plant Pathol., 2016 http://dx.doi.org/10.1080/07060661.2016.1168869 Disease control/Moyens de lutte Potassium and phosphorus have no effect on severity of charcoal rot of soybean ALEMU MENGISTU1, XINHUA YIN2, NACER BELLALOUI3, ANGELA M. McCLURE2, DON D. TYLER4 AND KRISHNA N. REDDY5 1Crop Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Jackson, TN, 38301, USA 2Department of Plant Sciences, University of Tennessee, Jackson, TN, 38301, USA 3Crop Genetics Research Unit, USDA-ARS, Stoneville, MS, 38776, USA 4Department of Biosystems Engineering and Soil Science, University of Tennessee, Jackson, TN, 38301, USA 5Crop Production Systems Research Unit, USDA-ARS, Stoneville, MS, 38776, USA (Accepted 17 March 2016) Abstract: Charcoal rot of soybean [Glycine max (L.) Merr.] caused by Macrophomina phaseolina is a disease of economic significance throughout the world. The effects of potassium (K) and phosphorus (P) fertilizer on disease development are unknown. Therefore, two separate trials were conducted in the field during 2008, 2009 and 2010 at Jackson and Milan, TN, USA to evaluate the effects of K and P on severity of −1 −1 charcoal rot. Rates of K (0, 45, 90, 134 and 179 kg K2Oha ) and P (0, 22, 45, 67 and 90 kg P2O5 ha ) were used, with a sixth rate ranging from 0–22 for P and 0–37 for K equal to the recommended K or P fertilizer application based on annual soil testing. The colony forming units of M. phaseolina in soil indicated no significant response for any P treatments in five of six location-by-year and for K applications in all six location-by-year environments.
    [Show full text]
  • Fertilizer Guide
    Jts - Using Wood Ashes in Fertilizer the Home Garden FG61 Guide Revised May 1982 Wood ashes can be useful as a fertilizer and magnesium oxides in fresh ash can react with liming material in home gardens, particularly on water to produce hydroxides or with carbon dioxide acid soils low in potassium. to produce carbonates. Calcium and magnesium oxides, hydroxides, and carbonates are found in Wood contains a small proportion of mineral, or commercial liming materials. inorganic matter. When wood is burned, mineral matter is left behind as a white-gray ash. Potassium (K) Hardwoods, or deciduous trees, when burned, produce a greater percent of ash than softwoods, Potassium is found in wood ash as potassium car- or conifers. Within a given tree, different bonate and potassium oxide. The potash content parts produce varying amounts of ash. Generally (K 0) of wood ash varies from 10 to 35%. These the percent of ash in the bark exceeds that of compounds, like lime, have a neutralizing effect the branches with the branches containing more on soil acidity. ash than the stem wood. The ash content not only Phosphorus (P) varies with tree species or the part of a tree, but also with the age of the tree, season of The content of phosphorus (as P^O ) in wood ash felling and method of burning. For woods in is usually less than 10%. temperate regions, the ash content usually ranges from 0.2% to 1.0%, occasionally approaching 3% to Fertilizer Value of Wood Ash 4%. The fertilizer value of wood ash depends on the Prior to World War II, wood ashes were used on a type of wood burned.
    [Show full text]
  • Feature Eurochem Widens Its Sights
    VOLGAKALIY PROJECT feature EuroChem widens its sights Fertilizer Focus discusses EuroChem’s potash capacity with Clark Bailey, Head of Mining, and future plans with Olivier Harvey, Head of Investor Relations Fertilizer Focus (FF): I understand in Brazil - the start of its potash (from source to solution) and as such, EuroChem are looking to offer N, P operations will add another dimension also enjoys many key partnerships and K nutrients to the market, which to its international presence, and and market relationships, which would make you a one-stop shop undoubtedly increase the Group’s remain valuable for our continuing for all fertilizers. How do you plan focus on the Asian, South American market penetration. This applies for to market these products and are and African markets. Needless to say all nutrients and will be particularly you looking at any joint marketing that with its global reach, the Group’s important in growth markets like Asia opportunities? premium products and distribution and Latin America, where we see business (EuroChem Agro), offers a EuroChem (EC): EuroChem is known the need for more balanced nutrient natural platform to leverage potash to be an ambitious company, whether sales. application. by its intensive value creating projects in Russia or growing M&A track- Still, due to internal potash In essence, with so many opportunities record. While today the Group has a requirements the Group’s potash available, it is probably still early solid presence in Europe, the CIS and market entry is expected to be rather to imagine what shape or form the the US - and recently announced the gradual, which also means flexible.
    [Show full text]
  • Linking Material Research on Alum-Treated Wood from The
    Braovac et al. Herit Sci (2018) 6:77 https://doi.org/10.1186/s40494-018-0241-y REVIEW Open Access Navigating conservation strategies: linking material research on alum‑treated wood from the Oseberg collection to conservation decisions Susan Braovac1* , Caitlin M. A. McQueen1, Malin Sahlstedt1,3, Hartmut Kutzke1, Jeannette J. Łucejko2 and Torunn Klokkernes1 Abstract From the mid-1800s to the late 1950s, conservation by alum salts (aluminum potassium sulfate dodecahydrate)— with some variations—was a routine method for treating highly deteriorated waterlogged archaeological wood in many countries, especially in Scandinavia. It was eventually replaced by newer methods in the 1960s, such as that using polyethylene glycol. Accordingly, the signs of deterioration in such collections and the reasons behind them are not well known among current preservation specialists. The research in the Saving Oseberg project (2014–2019) has shed light on the consequences of this treatment and reasons behind the severe deterioration observed today in many objects of the Oseberg Viking Age wooden fnds, which were conserved in the early 1900s. Saving Oseberg aims to provide research-based recommendations for the future preservation of the fnds, and as such, a large part of the project is aimed at improving our understanding of this complex material. Here the consequences of the method are summarized, drawing on the research to date. Chemical analyses of the Oseberg wood showed its current condi- tion to be highly degraded: little polysaccharide content is left and the lignin is signifcantly oxidized and extensively depolymerized. The conservation implications are also discussed. Keywords: Oseberg fnd, Wood degradation, Alum-treated wood, Alum, Potassium aluminum sulfate, Ammonium aluminum sulfate, Chemical analyses, Retreatment, Saving Oseberg Introduction obsolete.
    [Show full text]
  • Successful Biological Orcharding
    Successful Biological Orcharding with Michael Phillips author of “The Holistic Orchard” and “The Apple Grower from Lost Nation Orchard, New Hampshire Fascinating biological connections make for a healthy orchard ecosystem. All insect pests and fruit tree disease – whether fungal or bacterial – have launching points and particular timing. Healthy trees address these challenges first and foremost from within. Growers utilizing an ongoing investment in soil nutrition and biodiversity set the stage for gentler organic sprays to grow a successful fruit crop. The challenges you face at your locale will become far more manageable as you build a holistic system that keeps trees and berry plantings healthy from the get-go. Healthy Plant Metabolism Photosynthesis efficiency Protein synthesis Fats energy Resistance metabolites (essential oils and phenolics) Fungal Duff Management Forest edge ecology Mycorrhizal boon Tree root cycles Ramial wood chips Rechargeable biochar Biological mowing Fungal design notions Orchard Soil Health: Food Web Interaction & Fertility Ratios Compost wisdom Stocking the pantry Nutrient density Canadian Organic Growers 2019 2 Ecosystem Connections Understory fertility loop Root space, light space Bridge trees Biodiversity to the nth degree …Beneficial mathematics Pollinator habitat Braconid inspiration Spider glory Disease Progression Staging areas Fungal strategies Bacterial opportunists Integrating Holistic Tenets into Orchard Practice Phytochemical pathways Stimulating induced resistance Fatty acid nutrition Competitive
    [Show full text]
  • Potash, What Is It?
    Grade 7: Earth’s Crust and Resources Lesson: Potash, What Is It? Overview Students will discover what potash is, what it is used for, and interesting facts while reading a potash poster in search for answers. Students will consider the impact of potash on their lives. Duration: One Class Learning Outcomes and Indicators EC7.2 Identify locations and processes used to extract Materials: Earth’s geological resources and examine the impacts of Student Question Sheets those locations and processes on society and the Teacher Answer Sheets environment. Potash , What is It Poster PDF Identify locations of Saskatchewan’s primary mineral Potash Poster On-line resources (e.g., potash, gold, diamond, salt, uranium, copper, and graphite) and their primary uses. (EC7.2d) Provide examples of technologies used to further Notes to Teacher: This is an introductory lesson on scientific research related to extracting geological potash. resources (e.g., satellite imaging, magnetometer, and core sample drilling).(EC7.2f) Provide examples of Canadian contributions to the Prior Knowledge: scientific understanding and technological Before attempting these activities students should have developments related to surface and sub-surface some understanding of the following: geology and mining, and identify societal and The difference between rocks and minerals. economic factors that drive such exploration and research. (EC7.2h) Instructional Methods: Source: Saskatchewan Evergreen Curriculum Brainstorming Individual learning, research Big Picture Questions 1. What is Potash? 2. Why is it so important? Background Information Around 380 million years ago Saskatchewan was located south of the equator. (Modified from Storer, J., 1989) Saskatchewan Saskatchewan Mining Mining Association Association www.saskmining.ca Page 1 Grade 7 Earth’s Crust and Resources: Potash, What is it? continued A large salt water sea covered most of Saskatchewan and fertilizers.
    [Show full text]
  • Wood Byproducts
    Wood Byproducts 867. Absorption of calcium and magnesium by the 870. Alteration of soil temperature and moisture fruiting body of the cultivated mushroom Hypsizigus through mulching on the morpho-physiological marmoreus (Peck) bigelow from sawdust culture differentiation in maize. media. Awal, M. A. and Khan, M. A. H. Tabata, T. and Ogura, T. Pakistan Journal of Biological Sciences (Pakistan) 2(4): Journal of Food Science 68(1): 76-79. (2003); ISSN: 0022- 1164-1167. (Oct. 1999) 1147 NAL Call #: QH301 .P355; ISSN: 1028-8880. Descriptors: absorption/ calcium/ calcium carbonate/ Descriptors: mulching / soil/ wood waste/ maize calcium phosphates/ culture media/ growth/ magnesium/ Abstract: Mulching effects of sawdust, ash, rice straw and magnesium carbonate/ magnesium chloride/ magnesium water hyacinth on the morpho-physiological differentiation sulfate/ mycelium/ sawdust/ Basidiomycetes/ of maize (Zea mays L.) and to relate these with soil Basidiomycota/ calcium phosphate/ Hypsizygus/ environment were described. Water hyacinth and rice straw Hypsizygus marmoreus/ magnesium sulphate/ mulches had significant promotive effects on shoot Tricholomataceae elongation, root penetration, LAI and DM accumulation. All Abstract: H. marmoreus was cultivated in potato-sucrose- mulches conserved soil moisture but water hyacinth and agar (PSA) and in sawdust media supplemented with Ca or rice straw retained comparatively greater amount. Water Mg salts. The radial growth of mycelia was determined. The hyacinth and rice straw mulches reduced soil temperature mushroom spawn did not grow on PSA supplemented with fluctuations in all soil depths (5 to 15 cm) and retained Ca carbonate, Mg carbonate, or Mg hydroxide. However, higher soil temperatures at the early hours of the day (02 to the mycelia grew well on sawdust media supplemented with 06 hrs) which were considered to be the decisive factor for Ca phosphate, Ca carbonate, or Mg sulfate.
    [Show full text]
  • Craig S. Davis Craig Davis Practices in the Firm’S Complex Litigation and Class Action Group
    Craig S. Davis Craig Davis practices in the firm’s complex litigation and class action group. He has worked on lawsuits about business, including antitrust, consumer or product liability, and personal injury. His antitrust and product liability work focuses on representing buyers in class actions and other complex litigation with businesses or cartels that have manufactured defective products or disrupted buyers’ markets or supply chains. Craig S. Davis Craig has written on antitrust law, has presented on antitrust law, Associate contracts and warranties, and has recently chaired the Minnesota State 612-339-6900 Bar Association’s Antitrust Law Section. [email protected] Representative Cases Practices • Precision Associates, Inc., et al v. Panalpina World Transport (Holdings) Ltd., et Antitrust Law al., No. 08-CV-0042 (E.D.N.Y.) (over $300 million recovered to date) Products Liability & Consumer Fraud Litigation • In re Kitec Plumbing System Product Liability Litig., No. 09-md-2098 (MDL 2098) Education (N.D. Tex.) ($125 million recovered) Washington & Lee University School of Law, 1982 • In re Bristol-Myers Squibb Co. Securities Litigation, No. 07-CV-5867 (S.D.N.Y.) ($125 million recovered) Bar Admissions • In re Potash Antitrust Litigation (II), No. 1:08-cv-06910 (MDL 1996) (N.D. Ill.) 1983, Minnesota ($90 million recovered) • In re CertainTeed Corporation Roofing Shingles Products Liability Litigation,No. Court Admissions 2:07-md-01817 (MDL 1817) (E.D. Pa.) U.S. District Court, District of Minnesota • In re: Syngenta Litigation, No. 27-CV-15-3785 (Hennepin County, MN) U.S. Court of Appeals, Seventh Circuit • In re CertainTeed Fiber Cement Siding Litigation, No.
    [Show full text]