Fertilizer Guide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Potash Case Study
Mining, Minerals and Sustainable Development February 2002 No. 65 Potash Case Study Information supplied by the International Fertilizer Industry Association This report was commissioned by the MMSD project of IIED. It remains the sole Copyright © 2002 IIED and WBCSD. All rights reserved responsibility of the author(s) and does not necessarily reflect the views of the Mining, Minerals and MMSD project, Assurance Group or Sponsors Group, or those of IIED or WBCSD. Sustainable Development is a project of the International Institute for Environment and Development (IIED). The project was made possible by the support of the World Business Council for Sustainable Development (WBCSD). IIED is a company limited by guarantee and incorporated in England. Reg No. 2188452. VAT Reg. No. GB 440 4948 50. Registered Charity No. 800066 1 Introduction 2 2 Global Resources and Potash Production 3 3 The use of potassium in fertilizer 4 3.1 Potassium Fertilizer Consumption 4 3.2 Potassium fertilization issues 6 Appendix A 8 1 Introduction Potash and Potassium Potassium (K) is essential for plant and animal life wherein it has many vital nutritional roles. In plants, potassium and nitrogen are the two elements required in greatest amounts, while in animals and humans potassium is the third most abundant element, after calcium and phosphorus. Without sufficient plant and animal intake of potassium, life as we know it would cease. Human and other animals atop the food chain depend upon plants for much of their nutritional needs. Many soils lack sufficient quantities of available potassium for satisfactory yield and quality of crops. For this reason available soil potassium levels are commonly supplemented by potash fertilization to improve the potassium nutrition of plants, particularly for sustaining production of high yielding crop species and varieties in modern agricultural systems. -
MORDANTING NATURAL DYES IRON SULPHATE (Ferrous Sulphate) Is Usually Used to Change the Colour of a Dye
MORDANTING NATURAL DYES IRON SULPHATE (Ferrous Sulphate) is usually used to change the colour of a dye. It also makes natural dyes Most natural dyes have great affinity for fibre but more light and wash fast. More often used with cellulose poor light and wash fastness. If the fibre is pre than protein as it can make protein fibres brittle and harsh. mordanted you create a bond between the dye Iron changes shades to deeper, darker shades and is better and the fibre which will improve this dramatically. used in a premordant bath than directly into the dyebath. The most common and least environmentally toxic Use at a maximum of 2 to 4 % WOF . are Alum, Iron and Tannin. Copper is a useful mordant but is toxic to marine COPPER (Copper Sulphate)tends dull colours and turn life and humans. It needs to be handled and them blue green ie. yellows become greens, pinks become disposed of carefully. Historically Tin and Chrome purple. You can use Copper as a premordant or as an after have been used but are hazardous to the treatment to adjust colours. Colours dyed with Copper are environment & your health and need to be usually more lightfast than those dyed with Alum. Copper disposed of with great care. For that reason we has a less harsh effect on Protein fibres than Iron. Dispose recommend only using Alum, Iron, Copper and of Copper solution responsibly by exhausting your Tannin. Copper is probably the least safe but will dyebaths, diluting the residue with clean water and don’t give you much brighter shades and is safe to use put it down the storm water. -
The Art of Mordanting and Staining and the Complete Treatment of Wood
The Artof/Aordanting and Staining ' N:i^\><v 5W^ \\ \ ^^^ Class. X ) 3^^ Book -A fe Copyright }1® - COPYRIGHT DEPOSIT. C^z-A-^^UX-ftUv^w*^ %««<«^vvwn''v<^t'^"t^'>vva-'VU'nH^ , THE ART OF M ORD A NTI NG AND STAINING AND THE COMPLETE TREATMENT OF WOOD SURFACES A HANDBOOK AND AID FOR ARCHITECTS, CABINET MAKERS, DECORATORS, PAINTERS, PIANO FACTORIES AND TRADE SCHOOLS BY WILLIAM ZIMMERMANN INSTRUCTOR OF CHKMISTRY IN POLYTECHNIC INSTITUTE, BARMEN, GERMANY BOSTON, MASS.: THE ARTI-STAIN CO. 1911 \J> First English Edition Copyright 191 i BY W. F. PURSCHER All Rights Reserved ^ r/> ARTI-STAIN CO. Sole Agents for U. S. A. and the Dominion of Canada / !)CI.A28t)433 PREFACE Since the appearance of the Fifth Edition of this work in 1908, it has again been considerably enlarged and revised and the results incorporated in the present Sixth Edition. In the portion relating to staining, the chapter on Brown Stains, which occupy an important position in connection with modern furniture and fittings, has been completely revised and enlarged by the introduction of the new and practically-tested Special-Oak Stains, An- thracene Stains and Genuine-Mahogany Stains, which have been very favorably received. Because of their lesser importance, the number of staining formulas for bright colors has been diminished, but these have been replaced by staining formulas for new products of greater fastness to light. All suggestions and experiments since the last edition have been incorporated here. The Sample Card of colors (in the Supplement) has been made to correspond with the new formulas in the book. -
Coal Characteristics
CCTR Indiana Center for Coal Technology Research COAL CHARACTERISTICS CCTR Basic Facts File # 8 Brian H. Bowen, Marty W. Irwin The Energy Center at Discovery Park Purdue University CCTR, Potter Center, 500 Central Drive West Lafayette, IN 47907-2022 http://www.purdue.edu/dp/energy/CCTR/ Email: [email protected] October 2008 1 Indiana Center for Coal Technology Research CCTR COAL FORMATION As geological processes apply pressure to peat over time, it is transformed successively into different types of coal Source: Kentucky Geological Survey http://images.google.com/imgres?imgurl=http://www.uky.edu/KGS/coal/images/peatcoal.gif&imgrefurl=http://www.uky.edu/KGS/coal/coalform.htm&h=354&w=579&sz= 20&hl=en&start=5&um=1&tbnid=NavOy9_5HD07pM:&tbnh=82&tbnw=134&prev=/images%3Fq%3Dcoal%2Bphotos%26svnum%3D10%26um%3D1%26hl%3Den%26sa%3DX 2 Indiana Center for Coal Technology Research CCTR COAL ANALYSIS Elemental analysis of coal gives empirical formulas such as: C137H97O9NS for Bituminous Coal C240H90O4NS for high-grade Anthracite Coal is divided into 4 ranks: (1) Anthracite (2) Bituminous (3) Sub-bituminous (4) Lignite Source: http://cc.msnscache.com/cache.aspx?q=4929705428518&lang=en-US&mkt=en-US&FORM=CVRE8 3 Indiana Center for Coal Technology Research CCTR BITUMINOUS COAL Bituminous Coal: Great pressure results in the creation of bituminous, or “soft” coal. This is the type most commonly used for electric power generation in the U.S. It has a higher heating value than either lignite or sub-bituminous, but less than that of anthracite. Bituminous coal -
STATES PATENT OFFICE 2,497,519 ART of STABLZNG RAYON TYPE FABRIC Archibald S
Patented Feb. 14, 1950 2497,519 UNITED STATES PATENT OFFICE 2,497,519 ART OF STABLZNG RAYON TYPE FABRIC Archibald S. Stevenson, Pawtucket, and Leo Beer, Providence, R. I., assignors to Alrose Chemical Company, Cranston, R. ., a corporation of Rhode Island No Drawing. Application December 4, 1946, Serial No. 13,918 15 Claims. (C. 8-125) 2 The textile fabric with the stabilization of the alternative, costly ventilating equipment is which the present invention is concerned, con 'equired, and tains Synthetic fibers of regenerated cellulose, h. Fabrics treated with resins frequently cause Such as viscose or cupra-ammonium rayon or of dermatitis when worn by persons whose skin is cellulose-acetate or other cellulose derivative, the Sensitive to such resins. fabric consisting of any of said fibers, alone or in It is among the objects of the present inven admixture with one or more of the other fibers, tion to produce textile fabrics of the rayon-type with or without components of wool, cotton or which are stabilized to a highly satisfactory de other fiber, natural or synthetic. Fabric of the gree against laundering shrinkage, without there character referred to is designated hereinafter () by incurring excessive loss of yardage and with both in the specification and the claims in the in out the need to this end for incorporating in or terest of brevity as "rayon-type fabric.' on the fibre any foreign substance, or altering As conducive to a clear understanding of the the molecular structure of the fiber or detracting from the weight or the tensile strength or the invention, it is noted that if such rayon-type abrasion resistance of the fibre or fabric or in fabric were subjected to the action of caustic 5 pairing the hand of feel thereof, or objectionably under conditions similar to those of mercerizing detracting from its luster. -
Plants, Skä•Noñh
Skä•noñh Center: List and text for signs Existing plants and plants added to garden Catherine Landis August 1, 2016 1. Existing plants on Skä•noñh Center grounds Trees red oak Quercus rubra • widely distributed, one of most northerly oaks • leaves lobed with bristle tips • acorns relatively large and abundant, take 2 years to mature • throughout history, acorns served as staple food for peoples all over the world • acorn remains occur in local archaeological sites; acorn meats part of diet • must leach tannins (with water) before eating; wood ash (lye) can also draw tannins out • dried acorns store well, for long periods without spoiling • oaks are projected to increase in this area due to climate change staghorn sumac Rhus hirta • small tree or shrub; found in open, sunny places • branchlets covered with dense, soft hairs; pinnately compound leaves turn brilliant crimson in autumn • clonal or colonial; new plants sprout from existing root system • many birds, mammals eat fruit, thus spreading seeds; eat bark also • showy, red fruits ripen early August; contain malic acid (sour), and can be soaked in cool (not hot!) water to create a refreshing drink (“sumac lemonade”) • many medicines from this tree: the “sumac-ade” drink from the red fruits used for fevers; bark has antimicrobial activity; chewing a branchlet releases substances that act against oral bacteria (tooth decay) • most sumac populations have male and female flowers on separate trees, and only female bear fruit • sumac fresh white sap (milky latex) used as a sealant; sumac wood used for spiles to tap maple trees for sap eastern white pine Pinus strobus • “The primary national symbol of the Haudenosaunee is the Great White Pine (the Great Tree of Peace), which serves throughout the Great Law of Peace as a metaphor for the confederacy. -
Variations in Wildfire Ash Properties and Implications for Post-Fire Hydrological Response Within Western North American Ecosystems
University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2013 Variations in wildfire ash properties and implications for post-fire hydrological response within Western North American ecosystems Victoria Balfour The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Part of the Forest Sciences Commons Let us know how access to this document benefits ou.y Recommended Citation Balfour, Victoria, "Variations in wildfire ash properties and implications for post-fire hydrological response within Western North American ecosystems" (2013). Graduate Student Theses, Dissertations, & Professional Papers. 10742. https://scholarworks.umt.edu/etd/10742 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. 1 VARIATIONS IN WILDFIRE ASH PROPERTIES AND IMPLICATIONS FOR POST- 2 FIRE HYDROLOGICAL RESPONSE WITHIN WESTERN NORTH AMERICAN 3 ECOSYSTEMS. 4 5 6 By 7 VICTORIA NAIRN BALFOUR 8 9 B.S., College of Charleston, Charleston, SC, 2002 10 M.S., University of Montana, Missoula, MT, 2007 11 12 Dissertation 13 14 presented in partial fulfillment of the requirements 15 for the degree of 16 17 Doctorate of Philosophy in College of Forestry, 18 Department of Ecosystem and Conservation Sciences 19 The University of Montana 20 Missoula, Montana 21 22 May 2013 23 24 Approved by: 25 26 Sandy Ross, Dean of The Graduate School 27 Graduate School 28 29 Dr. -
Yield and Biomass Composition of Miscanthus X Giganteus in the Mountain Area of Croatia
Nikola Bilandžija Neven Voća Josip Leto Vanja Jurišić Mateja Grubor Ana Matin Anja Geršić Tajana Krička https://doi.org/10.21278/TOF.42Si105 ISSN 1333-1124 eISSN 1849-1391 YIELD AND BIOMASS COMPOSITION OF MISCANTHUS X GIGANTEUS IN THE MOUNTAIN AREA OF CROATIA Summary Although biomass of Miscanthus x giganteus shows a significant potential for production of second-generation biofuels, it is currently mostly used as a combustion fuel. The objective of this paper is to investigate: (I) dry matter yield and yield components; (II) biomass composition; and (III) potential divergences of the investigated parameters from the standard for solid fuels CEN/TS 14961:2005, in relation to two harvest seasons and six fertilizer treatments. The investigation has determined that there is a potential for producing significant quantity of biomass from M x giganteus in the investigated agro-ecological conditions of the mountain areas of Croatia. The laboratory analyses indicated the suitability of using biomass in direct combustion. Key words: Energy crop, Miscanthus x giganteus, dry matter yield, combustion properties 1. Introduction According to the objectives of the Energy Strategy for Europe until 2020, Framework for climate and energy policies until 2030 and the UN Climate Change Conference (Paris Climate Agreement - COP 21), the renewable energy sources emerge as one of the most important element of energy self-sufficiency and for mitigating climate changes [1, 2]. Agricultural biomass as a component of renewable energy sources represents a significant source of different raw materials in the “green energy” production system. Perennial grasses represent the biomass crops suitable for sustainable bioenergy production. -
ABSTRACT KESLING, HARRISON FIELD. Economic Analysis of Wood Waste Gasification for Use in Combined Heat and Power Applications (
ABSTRACT KESLING, HARRISON FIELD. Economic Analysis of Wood Waste Gasification for Use in Combined Heat and Power Applications (Under the direction of Dr. Stephen Terry). A significant issue facing the world is that of waste, primarily wasted material and wasted energy. A response to this has been “green” type programs to help reduce the amount of waste generated through recycling and improving energy efficiency in devices as well as installing renewable energy. One specific area of note is that of converting waste to usable energy. This is the primary focus of the findings presented in this thesis. The specific focus is using waste wood material to generate a natural gas type substitute through gasification and then using that gas to power a reciprocating gas engine with the exhaust being used to provide process hot water or run an Organic Rankine Cycle. While the process of replacing fossil fuels with biomass materials is certainly greener, there are still some disadvantages, particularly when it comes to the economics of installing these types of systems. The results of this study have found that the economics are highly dependent on offsetting the costs of disposing of the waste as well as the currents costs electricity and natural gas. The lower the cost of waste disposal, electricity, and natural gas, the less likely the economics will work in favor for a facility to install a system such as the one described. The economics are also highly dependent on how the waste heat from the engine exhaust is used. The two scenarios studied were piping hot water to a distribution network and installing an organic Rankine cycle. -
Potassium and Phosphorus Have No Effect on Severity of Charcoal Rot of Soybean
Can. J. Plant Pathol., 2016 http://dx.doi.org/10.1080/07060661.2016.1168869 Disease control/Moyens de lutte Potassium and phosphorus have no effect on severity of charcoal rot of soybean ALEMU MENGISTU1, XINHUA YIN2, NACER BELLALOUI3, ANGELA M. McCLURE2, DON D. TYLER4 AND KRISHNA N. REDDY5 1Crop Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Jackson, TN, 38301, USA 2Department of Plant Sciences, University of Tennessee, Jackson, TN, 38301, USA 3Crop Genetics Research Unit, USDA-ARS, Stoneville, MS, 38776, USA 4Department of Biosystems Engineering and Soil Science, University of Tennessee, Jackson, TN, 38301, USA 5Crop Production Systems Research Unit, USDA-ARS, Stoneville, MS, 38776, USA (Accepted 17 March 2016) Abstract: Charcoal rot of soybean [Glycine max (L.) Merr.] caused by Macrophomina phaseolina is a disease of economic significance throughout the world. The effects of potassium (K) and phosphorus (P) fertilizer on disease development are unknown. Therefore, two separate trials were conducted in the field during 2008, 2009 and 2010 at Jackson and Milan, TN, USA to evaluate the effects of K and P on severity of −1 −1 charcoal rot. Rates of K (0, 45, 90, 134 and 179 kg K2Oha ) and P (0, 22, 45, 67 and 90 kg P2O5 ha ) were used, with a sixth rate ranging from 0–22 for P and 0–37 for K equal to the recommended K or P fertilizer application based on annual soil testing. The colony forming units of M. phaseolina in soil indicated no significant response for any P treatments in five of six location-by-year and for K applications in all six location-by-year environments. -
Wood Ash As Raw Material for Portland Cement Bjarte Øye1 1SINTEF Materials and Chemistry, NO-7465 Trondheim, Norway, [email protected]
Ash Utilisation 2012 Wood ash as raw material for Portland cement Bjarte Øye1 1SINTEF Materials and Chemistry, NO-7465 Trondheim, Norway, [email protected] This work is part of the CenBio - Bioenergy Innovation Centre - one of the eight Norwegian Centres for Environment-friendly Energy Research. The centre is co-funded by the Research Council of Norway, a number of industrial partners and the participating research institutions. Technology for a better society 1 Outline • Norwegian Bioenergy goals – ash production • Portland cement • Traditional use of ash in concrete - pozzolan • Wood ash as raw material for Portland cement • Ash preferences • Significance of minor constituents • Conclusion Technology for a better society 2 Norwegian Bioenergy Goals • Total Norwegian biomass resources Biomass fuel Ash content (2003): 55 TWh, of which 16 TWh is utilized (wt%) as energy. Bark 5.0 – 8.0 • Norwegian goal: 14 TWh increase by 2020 Woodchips with bark (forest) 1.0 – 2.5 • A rough estimate of ash production: 70 000 Woodchips without bark 0.8 – 1.4 tons per year Sawdust 0.5 – 1.1 • Much of this ash will be rich in calcium - Waste wood 3.0 – 12.0 possible raw matedrial for Portland cement Straw and cereals 4.0 – 12.0 production Technology for a better society 3 Portland cement constituents • Cement clinker • Gypsum (2-3% as SO3) Oxide constituents of Portland cement Fe2O3 MgO SO3 Na2O K2O 3 % 3 % 2 % 1 % 1 % Al2O3 6 % SiO2 20 % CaO 64 % Technology for a better society 4 Portland cement mineralogy – major phases Phase Mineralogical Cement chemical -
Hundred Words for Fire: an Etymological and Micromorphological Consideration of Combustion Features in Indigenous Archaeological Sites of Western Australia
Hundred words for fire: an etymological and micromorphological consideration of combustion features in Indigenous archaeological sites of Western Australia By Ingrid A. K. Ward1.* and David E. Friesem2, 3. 1. Social Sciences, University of Western Australia, Australia 2. Recanatti Institute for Marine Studies, Department of Maritime Civilizations, School of Marine Sciences, University of Haifa, Haifa, Israel 3. Haifa Center for Mediterranean History, University of Haifa, Haifa, Israel * Corresponding Author Abstract Fire is a word that holds an enormous variety of human activity with a wide diversity of cultural meanings and archaeological presentation. The word hearth not only has links with fire but also as a social focus both in its Latin origins and in Australian Indigenous language, where hearth fire is primary to all other anthropogenic fires. The importance of fire to First Nations people is reflected in the rich vocabulary of words associated with fire from the different hearth types and fuel types to the different purposes of fire in relation to cooking, medicine, ritual or control of the environment. The archaeological expression of hearths and related combustion features is equally complex and nuanced but can be explored at the microscale using micromorphology. Here we aim to highlight the complexity in both language and micromorphological expression around combustion features using published and unpublished examples from archaeological sites in Western Australia. Our purpose is to discourage the over-ready use of the term hearth to describe charcoal and ash-rich features and encourage a more nuanced study of the burnt record in cultural sites. Background “The hearth fire defined the human world…” (Pyne 1991: 91) Australia is a continent that burns regularly and burned or blackened features are common in Australian archaeological sites.