The Interaction of A-Actinin-2 with ZASP and Titin

Total Page:16

File Type:pdf, Size:1020Kb

The Interaction of A-Actinin-2 with ZASP and Titin The Interaction of a-Actinin-2 with ZASP and Titin By Yunghan Au January 2004 Thesis for the degree of Doctor of Philosophy from University College London Supervisor: Dr. Annalisa Pastore Division of Molecular Structure National Institute for Medical Research The Ridgeway, Mill Hill London, NW7 1AA 1 UMI Number: U602696 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation Publishing UMI U602696 Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 To my parents Perhaps the most valuable result o f all education is the ability to make yourself do the thing you have to do, when it ought to be done, whether you like it or not; it is the first lesson that ought to be learned; and however early a man's training begins, it is probably the last lesson that he learns thoroughly. Thomas Henry Huxley (1825-1895) 3 Abstract Z-band Alternately Spliced PDZ-containing protein (ZASP) is a sarcomeric Z- disk protein expressed in human cardiac and skeletal muscle that is involved in a dominant familial dilated cardiomyopathy. ZASP interacts with the last 150 amino acids of a-actinin-2, the major component of the Z-disk, via an N-terminal PDZ domain. ZASP and a-actinin-2 are thought to play an important structural role, probably by forming a ternary complex with titin Z-repeats. We have determined the structure of ZASP PDZ and characterised its interaction with a-actinin-2. We show that ZASP PDZ is a classical class 1 PDZ domain that recognises with micromolar affinity the carboxy- terminal sequence of an a-actinin-2 calmodulin-like domain. We also characterised the ternary complex ZASP/a-actinin-2/titin and the role of each component, showing that the a-actinin-2/ZASP PDZ interaction involves a binding surface distinct from that involved in the recognition of the titin Z repeats. Finally, we used the ZASP PDZ structure to model other members of the enigma family by homology and to predict their abilities to bind a-actinin-2. 4 Table Of Contents A bstract..................................................................................................................................4 Table Of Contents ................................................................................................................ 5 List Of Figures .......................................................................................................................8 List Of Tables.......................................................................................................................16 Acknowledgements ............................................................................................................. 17 Abbreviations .......................................................................................................................18 Chapter 1 ..............................................................................................................................20 Introduction.........................................................................................................................20 1.1 Muscle........................................................................................................................ 20 1.2 a-Actinin-2................................................................................................................. 27 1.3 Titin.............................................................................................................................31 1.4 ZASP...........................................................................................................................33 1.5 Nuclear Magnetic Resonance ....................................................................................37 1.6 Aim s............................................................................................................................39 Chapter 2 ..............................................................................................................................40 Materials and Methods ......................................................................................................40 2.1 Bioinformatics ............................................................................................................40 2.2 Plasmid Production .................................................................................................... 40 2.3 Protein Expression ......................................................................................................41 2.3.1 Transformation of Competent Cells ..................................................................41 2.3.2 Fermentation ........................................................................................................41 2.4 Protein Purification .................................................................................................... 43 2.4.1 Cell Lysis .............................................................................................................43 2.4.2 Nickel NTA Agarose Protein Purification From Lysate .................................44 2.4.3 Tobacco-Etch Virus Cleavage ........................................................................... 44 2.4.4 Gel Filtration (FPLC) Protein Purification ....................................................... 44 2.4.5 Nickel NTA Protein Purification After TEV Cleavage ................................... 45 2.4.6 Buffer Exchange Using PD-10 Columns ......................................................... 45 2.4.7 Concentration Determination Using Absorption Spectroscopy ..................... 45 2.5 NMR............................................................................................................................47 2.5.1 Spectroscopy .......................................................................................................47 2.5.2 Spectral Processing ............................................................................................. 48 2.6 NMR Structure Determination ..................................................................................49 2.6.1 NOESY spectra ...................................................................................................50 2.6.2 Distance Calibration ........................................................................................... 50 2.6.3 Hydrogen Bonds, Dihedral Angles, and Residual Dipolar Couplings ........... 51 2.6.4 CYANA............................................................................................................... 52 2.6.5 CANDID............................................................................................................. 52 2.6.6 XPLOR................................................................. 52 2.6.7 CHARM22 Water Refinement...........................................................................53 2.7 15N-HSQC Titration ...................................................................................................54 2.8 Fluorometric Titration................................................................................................56 2.9 Peptide synthesis and purification of the Minimal Titin ZR7 peptide ...................57 5 Chapter 3 ............................................................................................................................ 58 Protein Expression and Purification ............................................................................. 58 3.1 Protein Purification of ZASP-PDZ ........................................................................... 58 3.2 Protein Purification of Act-EF34..............................................................................61 3.3 Purification of Act-EF1234 .......................................................................................64 3.4 Conclusion ................................................................................................................ 66 Chapter 4 ............................................................................................................................67 Resonance Assignment: ZASP-PDZ with and without Act-EF1234 ...................... 67 4.1 Assignment of ZASP-PDZ ........................................................................................67 4.2 Assignment of I5N-ZASP-PDZ bound to Act-EF1234 .......................................... 70 4.3 Assignment of Act-EF34. ..........................................................................................72 4.4 Assignment of Act-EF1234 .......................................................................................77 4.5 Conclusion ................................................................................................................ 79 Chapter 5 ............................................................................................................................80 NMR Structure of ZASP-PDZ .........................................................................................80 5.1 Secondary Structure Prediction of ZASP-PDZ ......................................................
Recommended publications
  • The Role of Z-Disc Proteins in Myopathy and Cardiomyopathy
    International Journal of Molecular Sciences Review The Role of Z-disc Proteins in Myopathy and Cardiomyopathy Kirsty Wadmore 1,†, Amar J. Azad 1,† and Katja Gehmlich 1,2,* 1 Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; [email protected] (K.W.); [email protected] (A.J.A.) 2 Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford OX3 9DU, UK * Correspondence: [email protected]; Tel.: +44-121-414-8259 † These authors contributed equally. Abstract: The Z-disc acts as a protein-rich structure to tether thin filament in the contractile units, the sarcomeres, of striated muscle cells. Proteins found in the Z-disc are integral for maintaining the architecture of the sarcomere. They also enable it to function as a (bio-mechanical) signalling hub. Numerous proteins interact in the Z-disc to facilitate force transduction and intracellular signalling in both cardiac and skeletal muscle. This review will focus on six key Z-disc proteins: α-actinin 2, filamin C, myopalladin, myotilin, telethonin and Z-disc alternatively spliced PDZ-motif (ZASP), which have all been linked to myopathies and cardiomyopathies. We will summarise pathogenic variants identified in the six genes coding for these proteins and look at their involvement in myopathy and cardiomyopathy. Listing the Minor Allele Frequency (MAF) of these variants in the Genome Aggregation Database (GnomAD) version 3.1 will help to critically re-evaluate pathogenicity based on variant frequency in normal population cohorts.
    [Show full text]
  • Multiomic Approaches to Uncover the Complexities of Dystrophin-Associated Cardiomyopathy
    International Journal of Molecular Sciences Review Multiomic Approaches to Uncover the Complexities of Dystrophin-Associated Cardiomyopathy Aoife Gowran 1,*, Maura Brioschi 2, Davide Rovina 1 , Mattia Chiesa 3,4 , Luca Piacentini 3,* , Sara Mallia 1, Cristina Banfi 2,* , Giulio Pompilio 1,5,6,* and Rosaria Santoro 1,4 1 Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, 20138 Milan, Italy; [email protected] (D.R.); [email protected] (S.M.); [email protected] (R.S.) 2 Unit of Cardiovascular Proteomics, Centro Cardiologico Monzino-IRCCS, 20138 Milan, Italy; [email protected] 3 Bioinformatics and Artificial Intelligence Facility, Centro Cardiologico Monzino-IRCCS, 20138 Milan, Italy; [email protected] 4 Department of Electronics, Information and Biomedical Engineering, Politecnico di Milano, 20133 Milan, Italy 5 Department of Cardiac Surgery, Centro Cardiologico Monzino-IRCCS, 20138 Milan, Italy 6 Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy * Correspondence: [email protected] (A.G.); [email protected] (L.P.); cristina.banfi@cardiologicomonzino.it (C.B.); [email protected] (G.P.) Abstract: Despite major progress in treating skeletal muscle disease associated with dystrophinopathies, cardiomyopathy is emerging as a major cause of death in people carrying dystrophin gene mutations that remain without a targeted cure even with new treatment directions and advances in modelling Citation: Gowran, A.; Brioschi, M.; abilities. The reasons for the stunted progress in ameliorating dystrophin-associated cardiomyopathy Rovina, D.; Chiesa, M.; Piacentini, L.; (DAC) can be explained by the difficulties in detecting pathophysiological mechanisms which can also Mallia, S.; Banfi, C.; Pompilio, G.; Santoro, R.
    [Show full text]
  • Dystrophin Complex Functions As a Scaffold for Signalling Proteins☆
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1838 (2014) 635–642 Contents lists available at ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbamem Review Dystrophin complex functions as a scaffold for signalling proteins☆ Bruno Constantin IPBC, CNRS/Université de Poitiers, FRE 3511, 1 rue Georges Bonnet, PBS, 86022 Poitiers, France article info abstract Article history: Dystrophin is a 427 kDa sub-membrane cytoskeletal protein, associated with the inner surface membrane and Received 27 May 2013 incorporated in a large macromolecular complex of proteins, the dystrophin-associated protein complex Received in revised form 22 August 2013 (DAPC). In addition to dystrophin the DAPC is composed of dystroglycans, sarcoglycans, sarcospan, dystrobrevins Accepted 28 August 2013 and syntrophin. This complex is thought to play a structural role in ensuring membrane stability and force trans- Available online 7 September 2013 duction during muscle contraction. The multiple binding sites and domains present in the DAPC confer the scaf- fold of various signalling and channel proteins, which may implicate the DAPC in regulation of signalling Keywords: Dystrophin-associated protein complex (DAPC) processes. The DAPC is thought for instance to anchor a variety of signalling molecules near their sites of action. syntrophin The dystroglycan complex may participate in the transduction of extracellular-mediated signals to the muscle Sodium channel cytoskeleton, and β-dystroglycan was shown to be involved in MAPK and Rac1 small GTPase signalling. More TRPC channel generally, dystroglycan is view as a cell surface receptor for extracellular matrix proteins.
    [Show full text]
  • Hypertrophic Cardiomyopathy- Associated Mutations in Genes That Encode Calcium-Handling Proteins
    Current Molecular Medicine 2012, 12, 507-518 507 Beyond the Cardiac Myofilament: Hypertrophic Cardiomyopathy- Associated Mutations in Genes that Encode Calcium-Handling Proteins A.P. Landstrom and M.J. Ackerman* Departments of Medicine, Pediatrics, and Molecular Pharmacology & Experimental Therapeutics, Divisions of Cardiovascular Diseases and Pediatric Cardiology, and the Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota, USA Abstract: Traditionally regarded as a genetic disease of the cardiac sarcomere, hypertrophic cardiomyopathy (HCM) is the most common inherited cardiovascular disease and a significant cause of sudden cardiac death. While the most common etiologies of this phenotypically diverse disease lie in a handful of genes encoding critical contractile myofilament proteins, approximately 50% of patients diagnosed with HCM worldwide do not host sarcomeric gene mutations. Recently, mutations in genes encoding calcium-sensitive and calcium- handling proteins have been implicated in the pathogenesis of HCM. Among these are mutations in TNNC1- encoded cardiac troponin C, PLN-encoded phospholamban, and JPH2-encoded junctophilin 2 which have each been associated with HCM in multiple studies. In addition, mutations in RYR2-encoded ryanodine receptor 2, CASQ2-encoded calsequestrin 2, CALR3-encoded calreticulin 3, and SRI-encoded sorcin have been associated with HCM, although more studies are required to validate initial findings. While a relatively uncommon cause of HCM, mutations in genes that encode calcium-handling proteins represent an emerging genetic subset of HCM. Furthermore, these naturally occurring disease-associated mutations have provided useful molecular tools for uncovering novel mechanisms of disease pathogenesis, increasing our understanding of basic cardiac physiology, and dissecting important structure-function relationships within these proteins.
    [Show full text]
  • Muscle Disorders
    Brain Pathology 7: 1289-1291 (1997) KEYNOTE LECTURE KL5.1 - Muscle Disorders KL5.1 Molecular diagnosis of muscular dystrophies various tissues and identified as the 156kDaa-dystro- glycan and 43kDap-dystroglycan in skeletal muscle. Dr. Hideo Sugita a-dystroglycan , an extracellular protein, binds to one National Center of Neurology and Psychiatry, Kodaira Tokyo of the main components of the extracellular matrix, 187, Japan laminin probably through its sugar chains. a-dystroglycan binds to P-dystroglycan, a trans- The muscular dystrophies comprise clinically and membraneous pro1 ein. genetically heterogeneous group of disorders. Inside the mussle cell, a-dystroglycan binds to the Since the discovery of the gene and gene product of cysteine-rich domain and fxst half of the C-terminal Duchenne (DMD)/Becker muscular dystrophy (BMD), domain of dystrorhin. At the N--terminal regions, dys- dystrophin by Louis Kunkel's group in late 1980, enor- trophin molecule binds to actin-filament. mous progress has been achieved in understanding the There is a connecting axis anchored by laminin pathomechanism, as well as the diagnosis of between the subsarcolemmal cytoskeletons and extra- DMDBMD and related muscular dystrophies at the cellular matrix, which is called the "dystrophin-axis" ( molecular level. actin-dystrophin-dystroglycan complex). In addition to interest in dystrophin, defects of which This axis may play an important role to construct a give rise to DMDBMD, much interest of researchers in cell-matrix adhesion junction to fix the sarcolemma to muscular dystrophies has been concentrated to plasma the mechanically tough basal lamina, forming a protec- membrane and its associated architectures of muscle tion system to the sarcolemma during contraction and fibers.
    [Show full text]
  • Investigating the Role of Uncoupling of Troponin I Phosphorylation from Changes in Myofibrillar Ca2+-Sensitivity in the Pathogenesis of Cardiomyopathy
    REVIEW ARTICLE published: 25 August 2014 doi: 10.3389/fphys.2014.00315 Investigating the role of uncoupling of troponin I phosphorylation from changes in myofibrillar Ca2+-sensitivity in the pathogenesis of cardiomyopathy Andrew E. Messer* and Steven B. Marston National Heart & Lung Institute, Imperial College London, London, UK 2+ Edited by: Contraction in the mammalian heart is controlled by the intracellular Ca concentration Julien Ochala, KIng’s College as it is in all striated muscle, but the heart has an additional signaling system that London, UK comes into play to increase heart rate and cardiac output during exercise or stress. Reviewed by: β-adrenergic stimulation of heart muscle cells leads to release of cyclic-AMP and the Jose Renato Pinto, Florida State University, USA activation of protein kinase A which phosphorylates key proteins in the sarcolemma, Ranganath Mamidi, Case Western sarcoplasmic reticulum and contractile apparatus. Troponin I (TnI) and Myosin Binding Reserve University, USA Protein C (MyBP-C) are the prime targets in the myofilaments. TnI phosphorylation *Correspondence: lowers myofibrillar Ca2+-sensitivity and increases the speed of Ca2+-dissociation and Andrew E. Messer, Imperial Centre relaxation (lusitropic effect). Recent studies have shown that this relationship between for Translational and Experimental 2+ Medicine, Hammersmith Campus, Ca -sensitivity and TnI phosphorylation may be unstable. In familial cardiomyopathies, Du Cane Road, London, UK both dilated and hypertrophic (DCM and HCM), a mutation in one of the proteins of the e-mail: [email protected] thin filament often results in the loss of the relationship (uncoupling) and blunting of the lusitropic response.
    [Show full text]
  • Structural and Functional Differences Between Cardiomyocytes from Right and Left Ventricles in Health and Disease
    DEPARTMENT OF _SURGERY, DENTISTRY, PAEDIATRICS AND GYNAECOLOGY_ PHD SCHOOL ___LIFE AND HEALTH SCIENCES___ PHD IN ____________CARDIOVASCULAR SCIENCE_________ With funding by ____________UNIVERSITY OF VERONA___________ CYCLE / YEAR of initial enrolment ____XXXII (2016)_______ PHD THESIS TITLE Structural and functional differences between cardiomyocytes from right and left ventricles in health and disease S.S.D. (Disciplinary Sector) ___ MED/11__ Coordinator: Prof. GIOVANNI BATTISTA LUCIANI Signature ___________________________ Tutor: Prof. GIUSEPPE FAGGIAN Signature __________________________ Tutor: Prof. JULIA GORELIK Signature __________________________ Tutor: Prof. MICHELE MIRAGOLI Signature __________________________ PhD candidate: ROMAN MEDVEDEV Signature_____________________________ This work is licensed under a Creative Commons Attribution-Non Commercial- NoDerivs 3.0 Unported License, Italy. To read a copy of the licence, visit the web page: http://creativecommons.org/licenses/by-nc-nd/3.0/ Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. NonCommercial — You may not use the material for commercial purposes. NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material. STRUCTURAL AND FUNCTIONAL DIFFERENCES BETWEEN CARDIOMYOCYTES FROM RIGHT AND LEFT VENTRICLES IN HEALTH AND DISEASE Roman Medvedev PhD thesis Verona, ISBN 12324-5678-910 Abstract Several disorders including pulmonary hypertension (PH) and heart failure (HF) could lead to right ventricle (RV) hypertrophy and failure. RV failure is one of the most important prognostic factors for morbidity and mortality in these disorders. However, there is still no therapy to prevent the RV hypertrophy in PH.
    [Show full text]
  • Analysis of the Dystrophin Interactome
    Analysis of the dystrophin interactome Dissertation In fulfillment of the requirements for the degree “Doctor rerum naturalium (Dr. rer. nat.)” integrated in the International Graduate School for Myology MyoGrad in the Department for Biology, Chemistry and Pharmacy at the Freie Universität Berlin in Cotutelle Agreement with the Ecole Doctorale 515 “Complexité du Vivant” at the Université Pierre et Marie Curie Paris Submitted by Matthew Thorley born in Scunthorpe, United Kingdom Berlin, 2016 Supervisor: Simone Spuler Second examiner: Sigmar Stricker Date of defense: 7th December 2016 Dedicated to My mother, Joy Thorley My father, David Thorley My sister, Alexandra Thorley My fiancée, Vera Sakhno-Cortesi Acknowledgements First and foremost, I would like to thank my supervisors William Duddy and Stephanie Duguez who gave me this research opportunity. Through their combined knowledge of computational and practical expertise within the field and constant availability for any and all assistance I required, have made the research possible. Their overarching support, approachability and upbeat nature throughout, while granting me freedom have made this year project very enjoyable. The additional guidance and supported offered by Matthias Selbach and his team whenever required along with a constant welcoming invitation within their lab has been greatly appreciated. I thank MyoGrad for the collaboration established between UPMC and Freie University, creating the collaboration within this research project possible, and offering research experience in both the Institute of Myology in Paris and the Max Delbruck Centre in Berlin. Vital to this process have been Gisele Bonne, Heike Pascal, Lidia Dolle and Susanne Wissler who have aided in the often complex processes that I am still not sure I fully understand.
    [Show full text]
  • Review Increasing Complexity of the Dystrophin-Associated Protein Complex Jonathon M
    Proc. Nadl. Acad. Sci. USA Vol. 91, pp. 8307-8313, August 1994 Review Increasing complexity of the dystrophin-associated protein complex Jonathon M. Tinsley, Derek J. Blake, Richard A. Zuellig, and Kay E. Davies Molecular Genetics Group, Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom ABSTRACT Duchenne muscular dys- Purkinje neurons. Alternatively spliced dystrophin-1 (Dp7l) and apo-dystro- trophy is a severe X chromosome-linked, isoforms originating from the carboxyl- phin-3 are regulated by a promoter situ- muscle-wasting disease caused by lack of terminal coding region ofdystrophin have ated between exons 62 and 63 of the the protein dystrophin. The exact function also been described. The significance of dystrophin gene and are expressed in of dystrophin rem to be determined. these isoforms at the RNA and protein nonmuscle tissues, including brain, lung, However, analysis of its interaction with a level has not been elucidated. liver, and kidney. Apo-dystrophin-1 tran- large oligomeric protein complex at the Dystrophin is a 427-kDa protein local- scripts are only detectable in fetal and sarcolemma and the identicaton of a ized to the cytoplasmic face of the sar- newborn muscle. Muscle samples taken structurally related protein, utrophin, is colemma, enriched at myotendinous after 15 days postnatally have no apo- leading to the characterization ofcandidate junctions and the postsynaptic mem- dystrophin-1 transcript as determined by genes for other neuromusular disorders. brane of the neuromuscular junction reverse transcription-PCR. In rat brain, (NMJ). Dystrophin colocalizes with apo-dystrophin-1 transcripts continue in- Duchenne muscular dystrophy (DMD) is f3-spectrin and vinculin in three distinct creasing until they reach a maximum the most common muscular dystrophy, domains at the sarcolemma (overlaying after -1 mo.
    [Show full text]
  • Α-Actinin/Titin Interaction: a Dynamic and Mechanically Stable Cluster of Bonds in the Muscle Z-Disk
    α-Actinin/titin interaction: A dynamic and mechanically stable cluster of bonds in the muscle Z-disk Marco Grisona, Ulrich Merkela, Julius Kostanb, Kristina Djinovic-Carugob,c, and Matthias Riefa,d,1 aPhysik Department E22, Technische Universität München, 85748 Garching, Germany; bDepartment of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria; cDepartment of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia; and dMunich Center for Integrated Protein Science, 81377 Munich, Germany Edited by James A. Spudich, Stanford University School of Medicine, Stanford, CA, and approved December 16, 2016 (received for review August 2, 2016) Stable anchoring of titin within the muscle Z-disk is essential for In humans, the isoforms of titin exhibit four to seven Z-repeats preserving muscle integrity during passive stretching. One of the (15, 16, 20). The structure of the EF3-4 hands complex with titin main candidates for anchoring titin in the Z-disk is the actin cross- Z-repeat 7 shows the bound Z-repeat in an α-helical confor- linker α-actinin. The calmodulin-like domain of α-actinin binds to mation (21). In solution assays, binding affinities of various the Z-repeats of titin. However, the mechanical and kinetic prop- Z-repeats to EF3-4 were determined to lie in the micromolar erties of this important interaction are still unknown. Here, we use range (22). Micromolar affinity points only to a moderately a dual-beam optical tweezers assay to study the mechanics of this stable interaction, the kinetics of which are unknown.
    [Show full text]
  • A New Form of Autosomal Dominant Limb-Girdle Muscular Dystrophy (LGMD1G) with Progressive Fingers and Toes Flexion Limitation Maps to Chromosome 4P21
    European Journal of Human Genetics (2004) 12, 1033–1040 & 2004 Nature Publishing Group All rights reserved 1018-4813/04 $30.00 www.nature.com/ejhg ARTICLE A new form of autosomal dominant limb-girdle muscular dystrophy (LGMD1G) with progressive fingers and toes flexion limitation maps to chromosome 4p21 Alessandra Starling1, Fernando Kok2, Maria Rita Passos-Bueno1, Mariz Vainzof1 and Mayana Zatz*,1 1Human Genome Research Center, Department of Biology, University of Sa˜o Paulo, Sa˜o Paulo, Brazil; 2Department of Neurology, University of Sa˜o Paulo School of Medicine, Sa˜o Paulo, Brazil Limb-girdle muscular dystrophy (LGMD) is a genetic disorder characterized by progressive weakness of pelvic and scapular girdles and great clinical variability. It is a highly heterogeneous disease with 16 identified loci: six of them autosomal dominant (AD) (LGMD1) and 10 autosomal recessive (AR) (LGMD2). The responsible genes are known for three of the AD-LGMD and for all 10 AR-LGMD. Linkage analysis excluded these 16 loci in a Brazilian-Caucasian family with 12 patients affected by AD late-onset LGMD associated with progressive fingers and toes flexion limitation. Biceps muscle biopsy from one of the patients showed a predominantly myopathic histopathological pattern, associated with rimmed vacuoles. A genomewide scan was performed which mapped a new locus for this disorder at 4p21 with a maximum two-point lod score of 6.62 for marker D4S2964. Flanking markers place this locus between D4S2947 and D4S2409, within an interval of 9 cM. We propose to classify this AD form of LGMD as LGMD1G. European Journal of Human Genetics (2004) 12, 1033–1040.
    [Show full text]
  • Α-Dystrobrevin-1 Recruits Α-Catulin to the Α1d- Adrenergic Receptor/Dystrophin-Associated Protein Complex Signalosome
    α-Dystrobrevin-1 recruits α-catulin to the α1D- adrenergic receptor/dystrophin-associated protein complex signalosome John S. Lyssanda, Jennifer L. Whitingb, Kyung-Soon Leea, Ryan Kastla, Jennifer L. Wackera, Michael R. Bruchasa, Mayumi Miyatakea, Lorene K. Langebergb, Charles Chavkina, John D. Scottb, Richard G. Gardnera, Marvin E. Adamsc, and Chris Haguea,1 Departments of aPharmacology and cPhysiology and Biophysics, University of Washington, Seattle, WA 98195; and bDepartment of Pharmacology, Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195 Edited by Robert J. Lefkowitz, Duke University Medical Center/Howard Hughes Medical Institute, Durham, NC, and approved October 29, 2010 (received for review July 22, 2010) α1D-Adrenergic receptors (ARs) are key regulators of cardiovascu- pression increases in patients with benign prostatic hypertrophy lar system function that increase blood pressure and promote vas- (12). Through proteomic screening, we discovered that α1D-ARs cular remodeling. Unfortunately, little information exists about are scaffolded to the dystrophin-associated protein complex the signaling pathways used by this important G protein-coupled (DAPC) via the anchoring protein syntrophin (10). Coexpression α “ α receptor (GPCR). We recently discovered that 1D-ARs form a sig- with syntrophins increases 1D-AR plasma membrane expression, nalosome” with multiple members of the dystrophin-associated drug binding, and activation of Gαq/11 signaling after agonist protein complex (DAPC) to become functionally expressed at the activation. Moreover, syntrophin knockout mice lose α1D-AR– plasma membrane and bind ligands. However, the molecular stimulated increases in blood pressure, demonstrating the im- α α mechanism by which the DAPC imparts functionality to the 1D- portance of these essential GIPs for 1D-AR function in vivo (10).
    [Show full text]