Invited Review the Role of Dystroglycan, a Novel Receptor Of

Total Page:16

File Type:pdf, Size:1020Kb

Invited Review the Role of Dystroglycan, a Novel Receptor Of Hislol Hislopalhol (1997) 12: 195-203 Histology and 001: 10.14670/HH-12.195 Histopathology http://www.hh.um.es From Cell Biology to Tissue Engineering Invited Review The role of dystroglycan, a novel receptor of laminin and agrin, in cell differentiation K. Matsumura, H. Yamada, F. Saito, Y. Sunada and T. Shimizu Department of Neurology and Neuroscience, Teikyo University School of Medicine, Tokyo, Japan Summary. Dystroglycan was originally identified as the dystrophin-associated proteins (DAPs) (for overviews on extracellular and transmembrane constituents of a large the DGC and the DAPs see Tinsley et aI. , 1994; oligomeric complex of sarcolemmal proteins associated Campbell, 1995; Ozawa et aI., 1995; Worton, 1995). In with dystrophin , the protein product of the Duchenne DMD patients and mdx mice, the absence of dystrophin muscular dystrophy (DMD) gene. During the last few leads to a drastic reduction of all the DAPs in the years, dystroglycan has been demonstrated to be a novel sarcolemma. Extensive studies over the last several years receptor of not only laminin but also agrin, two major have indicated that the DAPs are classified into three proteins of the extracellular matrix having distinct groups: (1) the syntrophin complex; (2) the sarcoglycan biological effects. The fact that the drastic reduction of complex; and (3) the dystroglycan complex (Fig. I). The dystroglycan in the sarcolemma, caused by the absence syntrophin complex is comprised of the members of the of dystrophin, leads to muscle cell death in DMD syntrophin family, a-, 131- and 132-syntrophin, which are patients and mdx mice indicates that , as a laminin cytoplasmic proteins complexed with the carboxyl­ receptor, dys troglycan contributes to sarcolemmal terminal domain of dystrophin or its homologues. The stabilization during contraction and stretch of striated sarcoglycan complex is comprised of three trans­ muscle cells. Dystroglycan is also expressed in the membrane glycoproteins, a-, 13- and y-sarcoglycan. neuromuscular junction and non-muscle tissues such as Although the physiological functions of the syntrophin kidney, brain and peripheral nerve, and, as a receptor of and sarcoglycan complexes remain obscure at present, laminin/agrin , has been implicated in such diverse and recent studies have demonstrated that primary deficiency specific developmental processes as epithelial of a-, 13- and y-sarcoglycan causes three forms of morphogenesis, synaptogenesis and myelinogenesis. autosomal recessive muscular dystrophies, LGMD2D, These findings point to the fundamental role of LGMD2E and LGMD2C, respectively, suggesting that dystroglycan in the cellular differentiation process the sarcoglycan complex plays a crucial role in the shared by many different cell types. In this paper, we stabilization of the sarcolemma. review the recent publications on the biological In contrast to the syntrophin and sarcoglycan functions of dystroglycan and discuss its roles in cell complexes, the dystroglycan complex has been differentiation. characterized extensively during the last few years and this has led to the amazing discovery that it is a receptor Key words: Dystroglycan, Laminin, Agrin, Dystrophin, of the extracellular matrix (ECM) proteins laminin and Extracellular matrix agrin in various tissues. As a receptor of laminin/agrin, the dystroglycan complex is presumed to play roles in diverse and specific physiological processes such as Introduction epithelial morphogenesis, synaptogenesis and myelino­ genesis, as well as stabilization of the sarcolemma. In In skeletal muscle, dystrophin, a large membrane­ this paper, we review the recent publications on the associated cytoskeletal protein encoded by the Duchenne biological functions of the dystroglycan complex and muscular dystrophy (DMD) gene, exists in a large discuss its roles in cell differentiation in various tissues. oligomeric complex (the dystrophin-glycoprotein complex or DGC) tightly associated with several The primary structure of dystroglycan sarcolemmal proteins, which are collectively called the Dystroglycan was originally identified as the 156 Offprint requests to: Dr. Kiichiro Matsumura, M.D. , Ph.D. , Department of kDa and 43 kDa constituents of the DGC in skeletal Neurology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi­ muscle (Ervasti et aI., 1990). Interestingly, cDNA ku. Tokyo 173. Japan cloning disclosed that both the 156 kDa and 43 kDa 196 Functions of dystrog/yean eomp/ex proteins are encoded by a single 5.8 kb mRNA and that between 120 kDa to 190 kDa among different tissues, post-translational processing of a 97 kDa precursor whereas the core protein has a molecular mass of only protein resulted in two mature proteins (lbraghimov­ about 70 kDa, suggesting that it may be a target of Be krovnzaya et aI. , 1992). The 156 kDa and 43 kDa extensive post-translational modification , such as proteins were found to correspond to the amino- and glycosylation. This is consistent with the facts that: (I) carboxyl-terminal halves of the dystroglycan precursor a-dystroglycan contains three potential N-glycosylation protein and were named a- and l3-dystroglycan, sites and numerous potential O-glycosylation sites respectively (Ibraghimov-Beskrovnaya et aI. , 1992). (Ibraghimov-Beskrovnaya et aI., 1992); and (2) a­ Dystroglycan has no significant homology with any dystroglycan i far more negatively charged than known proteins. There is a signal sequence in the amino­ predicted from the primary structure (Gee et aI., 1993; terminus and a single transmembrane domain of 24 Smalheiser and Kim, 1995). Indeed, the results of lectin amino acids near the carbox.yl-terminus. This suggests staining and digestion with deglycosylation enzymes or that a- and l3-dy s troglycan are extracellular and O-sialogJycoprotease indicate that a-dystroglycan is a transmembrane proteins, respectively (Ibraghimov­ mucin-type glycoprotein , which is defined as a Beskrovanaya et aI. , 1992). Tryptic peptide mapping of glycoprotein heavily glycosylated in the O-sites (Ervasti purified a- and l3-dystroglycan and amino-terminal and Campbell , 1991; Smalheiser and Kim , 1995; amino acid sequencing of purified l3-dystroglycan have Yamada et aI. , 1996a). The most prominent feature of identified serine 654 of the dystroglycan precursor as the mucin domains of glycoproteins is the high content of single cleavage site (Deyst et aI. , 1995; Smalheiser and proline residues in the vicinity of serine and threonine Kim, 1995). The complex comprised of a- and 13- O-glycosylation sites . Such a characteristic sequence can dystrogJycan is called the dystroglycan complex . be found in the middle portion of a-dystroglycan , However, the precise nature of the interaction between suggesting that this may be a mucin domain. This region these two proteins has not yet been characterized. The is expected to take the form of a rigid rod , since complex dystrogJycan gene, containing two exons, is localized on secondary and tertiary structures are hindered by heavy chromosome 3p21 and 9 in human and mouse , glycosylation (Fig. I). Consistent with this prediction, respectively (Ibraghimov-Beskrovnaya et aI., 1993; analysis by electron microscopy demonstrated that the G6recki et aI., 1994). Thus far, no disease-causing isoJated cardiac muscle a-dystroglycan consisted of two mutations have been identified in the dystroglycan gene. globular domains connected by a rod-like segment (Brancaccio et aI., 1995). At present, there is no Glycosylation of a-dystroglycan direct evidence which indicates that a-dystroglycan contains glycosaminoglycan chains as originally The molecular mass of a-dystroglycan ranges proposed. Glycocalyx Sarcolemma Cytoplasm Fig. 1. The molecular organization of the DGC in skeletal muscle. a-DG : a-dystroglycan; B-DG: B­ dystroglycan; a-SG : a-sarcoglycan ; B-SG: B­ sarcoglycan ; y-SG : y- sarcoglycan; 25: the 25 kDa DAP ; SYN: syntrophin; nNOS: neuronal nitric oxide synthase; DYS: dystrophin; UTR : utrophin. 197 Functions of dystroglycan complex The dystroglycan complex and signal transduction and immunoelectron microscopy (Ervasti et aI., 1990; Ervasti and Campbell, 1991; Ibraghimov-Beskrovnaya et The intracellular signal transduction pathways aI., 1992; Cullen et aI., 1994; Wakayama et aI., 1995). In activated by adhesion of cells to other cells or the ECM cardiac muscle, it is localized in the transverse tubules in play crucial roles in cell differentiation, migration and addition to the sarcolemma (Klietsch et aI., 1993). The proliferation. The prototypical cell adhesion molecules molecular organization of the skeletal muscle are the cell sUiface receptors for the ECM glycoproteins. dystroglycan complex has been investigated extensively. As a receptor of the ECM glycoproteins laminin and The DGC was isolated from the detergent extracts of the agrin (discussed below), the dystroglycan complex skeletal muscle membrane fractions using wheat germ fulfills this criterion, raising a possibility that it may be agglutinin (WGA) and DEAE chromatography followed involved in the signaling pathways. This is supported by by sucrose density gradient centrifugation (Ervasti et aI. , the fact that the intracellular carboxyl-terminal tail of B­ 1990; Ervasti and Campbell, 1991). Both a- and B­ dystroglycan contains a phosphotyrosine consensus dystroglycan were identified as major constituents of the sequence and several proline-rich regions which could isolated DGC, together with dystrophin and the associate with SH2 and SH3 domains
Recommended publications
  • Multiomic Approaches to Uncover the Complexities of Dystrophin-Associated Cardiomyopathy
    International Journal of Molecular Sciences Review Multiomic Approaches to Uncover the Complexities of Dystrophin-Associated Cardiomyopathy Aoife Gowran 1,*, Maura Brioschi 2, Davide Rovina 1 , Mattia Chiesa 3,4 , Luca Piacentini 3,* , Sara Mallia 1, Cristina Banfi 2,* , Giulio Pompilio 1,5,6,* and Rosaria Santoro 1,4 1 Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, 20138 Milan, Italy; [email protected] (D.R.); [email protected] (S.M.); [email protected] (R.S.) 2 Unit of Cardiovascular Proteomics, Centro Cardiologico Monzino-IRCCS, 20138 Milan, Italy; [email protected] 3 Bioinformatics and Artificial Intelligence Facility, Centro Cardiologico Monzino-IRCCS, 20138 Milan, Italy; [email protected] 4 Department of Electronics, Information and Biomedical Engineering, Politecnico di Milano, 20133 Milan, Italy 5 Department of Cardiac Surgery, Centro Cardiologico Monzino-IRCCS, 20138 Milan, Italy 6 Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy * Correspondence: [email protected] (A.G.); [email protected] (L.P.); cristina.banfi@cardiologicomonzino.it (C.B.); [email protected] (G.P.) Abstract: Despite major progress in treating skeletal muscle disease associated with dystrophinopathies, cardiomyopathy is emerging as a major cause of death in people carrying dystrophin gene mutations that remain without a targeted cure even with new treatment directions and advances in modelling Citation: Gowran, A.; Brioschi, M.; abilities. The reasons for the stunted progress in ameliorating dystrophin-associated cardiomyopathy Rovina, D.; Chiesa, M.; Piacentini, L.; (DAC) can be explained by the difficulties in detecting pathophysiological mechanisms which can also Mallia, S.; Banfi, C.; Pompilio, G.; Santoro, R.
    [Show full text]
  • Dystrophin Complex Functions As a Scaffold for Signalling Proteins☆
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1838 (2014) 635–642 Contents lists available at ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbamem Review Dystrophin complex functions as a scaffold for signalling proteins☆ Bruno Constantin IPBC, CNRS/Université de Poitiers, FRE 3511, 1 rue Georges Bonnet, PBS, 86022 Poitiers, France article info abstract Article history: Dystrophin is a 427 kDa sub-membrane cytoskeletal protein, associated with the inner surface membrane and Received 27 May 2013 incorporated in a large macromolecular complex of proteins, the dystrophin-associated protein complex Received in revised form 22 August 2013 (DAPC). In addition to dystrophin the DAPC is composed of dystroglycans, sarcoglycans, sarcospan, dystrobrevins Accepted 28 August 2013 and syntrophin. This complex is thought to play a structural role in ensuring membrane stability and force trans- Available online 7 September 2013 duction during muscle contraction. The multiple binding sites and domains present in the DAPC confer the scaf- fold of various signalling and channel proteins, which may implicate the DAPC in regulation of signalling Keywords: Dystrophin-associated protein complex (DAPC) processes. The DAPC is thought for instance to anchor a variety of signalling molecules near their sites of action. syntrophin The dystroglycan complex may participate in the transduction of extracellular-mediated signals to the muscle Sodium channel cytoskeleton, and β-dystroglycan was shown to be involved in MAPK and Rac1 small GTPase signalling. More TRPC channel generally, dystroglycan is view as a cell surface receptor for extracellular matrix proteins.
    [Show full text]
  • Muscle Disorders
    Brain Pathology 7: 1289-1291 (1997) KEYNOTE LECTURE KL5.1 - Muscle Disorders KL5.1 Molecular diagnosis of muscular dystrophies various tissues and identified as the 156kDaa-dystro- glycan and 43kDap-dystroglycan in skeletal muscle. Dr. Hideo Sugita a-dystroglycan , an extracellular protein, binds to one National Center of Neurology and Psychiatry, Kodaira Tokyo of the main components of the extracellular matrix, 187, Japan laminin probably through its sugar chains. a-dystroglycan binds to P-dystroglycan, a trans- The muscular dystrophies comprise clinically and membraneous pro1 ein. genetically heterogeneous group of disorders. Inside the mussle cell, a-dystroglycan binds to the Since the discovery of the gene and gene product of cysteine-rich domain and fxst half of the C-terminal Duchenne (DMD)/Becker muscular dystrophy (BMD), domain of dystrorhin. At the N--terminal regions, dys- dystrophin by Louis Kunkel's group in late 1980, enor- trophin molecule binds to actin-filament. mous progress has been achieved in understanding the There is a connecting axis anchored by laminin pathomechanism, as well as the diagnosis of between the subsarcolemmal cytoskeletons and extra- DMDBMD and related muscular dystrophies at the cellular matrix, which is called the "dystrophin-axis" ( molecular level. actin-dystrophin-dystroglycan complex). In addition to interest in dystrophin, defects of which This axis may play an important role to construct a give rise to DMDBMD, much interest of researchers in cell-matrix adhesion junction to fix the sarcolemma to muscular dystrophies has been concentrated to plasma the mechanically tough basal lamina, forming a protec- membrane and its associated architectures of muscle tion system to the sarcolemma during contraction and fibers.
    [Show full text]
  • Analysis of the Dystrophin Interactome
    Analysis of the dystrophin interactome Dissertation In fulfillment of the requirements for the degree “Doctor rerum naturalium (Dr. rer. nat.)” integrated in the International Graduate School for Myology MyoGrad in the Department for Biology, Chemistry and Pharmacy at the Freie Universität Berlin in Cotutelle Agreement with the Ecole Doctorale 515 “Complexité du Vivant” at the Université Pierre et Marie Curie Paris Submitted by Matthew Thorley born in Scunthorpe, United Kingdom Berlin, 2016 Supervisor: Simone Spuler Second examiner: Sigmar Stricker Date of defense: 7th December 2016 Dedicated to My mother, Joy Thorley My father, David Thorley My sister, Alexandra Thorley My fiancée, Vera Sakhno-Cortesi Acknowledgements First and foremost, I would like to thank my supervisors William Duddy and Stephanie Duguez who gave me this research opportunity. Through their combined knowledge of computational and practical expertise within the field and constant availability for any and all assistance I required, have made the research possible. Their overarching support, approachability and upbeat nature throughout, while granting me freedom have made this year project very enjoyable. The additional guidance and supported offered by Matthias Selbach and his team whenever required along with a constant welcoming invitation within their lab has been greatly appreciated. I thank MyoGrad for the collaboration established between UPMC and Freie University, creating the collaboration within this research project possible, and offering research experience in both the Institute of Myology in Paris and the Max Delbruck Centre in Berlin. Vital to this process have been Gisele Bonne, Heike Pascal, Lidia Dolle and Susanne Wissler who have aided in the often complex processes that I am still not sure I fully understand.
    [Show full text]
  • Review Increasing Complexity of the Dystrophin-Associated Protein Complex Jonathon M
    Proc. Nadl. Acad. Sci. USA Vol. 91, pp. 8307-8313, August 1994 Review Increasing complexity of the dystrophin-associated protein complex Jonathon M. Tinsley, Derek J. Blake, Richard A. Zuellig, and Kay E. Davies Molecular Genetics Group, Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom ABSTRACT Duchenne muscular dys- Purkinje neurons. Alternatively spliced dystrophin-1 (Dp7l) and apo-dystro- trophy is a severe X chromosome-linked, isoforms originating from the carboxyl- phin-3 are regulated by a promoter situ- muscle-wasting disease caused by lack of terminal coding region ofdystrophin have ated between exons 62 and 63 of the the protein dystrophin. The exact function also been described. The significance of dystrophin gene and are expressed in of dystrophin rem to be determined. these isoforms at the RNA and protein nonmuscle tissues, including brain, lung, However, analysis of its interaction with a level has not been elucidated. liver, and kidney. Apo-dystrophin-1 tran- large oligomeric protein complex at the Dystrophin is a 427-kDa protein local- scripts are only detectable in fetal and sarcolemma and the identicaton of a ized to the cytoplasmic face of the sar- newborn muscle. Muscle samples taken structurally related protein, utrophin, is colemma, enriched at myotendinous after 15 days postnatally have no apo- leading to the characterization ofcandidate junctions and the postsynaptic mem- dystrophin-1 transcript as determined by genes for other neuromusular disorders. brane of the neuromuscular junction reverse transcription-PCR. In rat brain, (NMJ). Dystrophin colocalizes with apo-dystrophin-1 transcripts continue in- Duchenne muscular dystrophy (DMD) is f3-spectrin and vinculin in three distinct creasing until they reach a maximum the most common muscular dystrophy, domains at the sarcolemma (overlaying after -1 mo.
    [Show full text]
  • Α-Dystrobrevin-1 Recruits Α-Catulin to the Α1d- Adrenergic Receptor/Dystrophin-Associated Protein Complex Signalosome
    α-Dystrobrevin-1 recruits α-catulin to the α1D- adrenergic receptor/dystrophin-associated protein complex signalosome John S. Lyssanda, Jennifer L. Whitingb, Kyung-Soon Leea, Ryan Kastla, Jennifer L. Wackera, Michael R. Bruchasa, Mayumi Miyatakea, Lorene K. Langebergb, Charles Chavkina, John D. Scottb, Richard G. Gardnera, Marvin E. Adamsc, and Chris Haguea,1 Departments of aPharmacology and cPhysiology and Biophysics, University of Washington, Seattle, WA 98195; and bDepartment of Pharmacology, Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195 Edited by Robert J. Lefkowitz, Duke University Medical Center/Howard Hughes Medical Institute, Durham, NC, and approved October 29, 2010 (received for review July 22, 2010) α1D-Adrenergic receptors (ARs) are key regulators of cardiovascu- pression increases in patients with benign prostatic hypertrophy lar system function that increase blood pressure and promote vas- (12). Through proteomic screening, we discovered that α1D-ARs cular remodeling. Unfortunately, little information exists about are scaffolded to the dystrophin-associated protein complex the signaling pathways used by this important G protein-coupled (DAPC) via the anchoring protein syntrophin (10). Coexpression α “ α receptor (GPCR). We recently discovered that 1D-ARs form a sig- with syntrophins increases 1D-AR plasma membrane expression, nalosome” with multiple members of the dystrophin-associated drug binding, and activation of Gαq/11 signaling after agonist protein complex (DAPC) to become functionally expressed at the activation. Moreover, syntrophin knockout mice lose α1D-AR– plasma membrane and bind ligands. However, the molecular stimulated increases in blood pressure, demonstrating the im- α α mechanism by which the DAPC imparts functionality to the 1D- portance of these essential GIPs for 1D-AR function in vivo (10).
    [Show full text]
  • B1-Syntrophin Modulation by Mir-222 in Mdx Mice
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central b1-Syntrophin Modulation by miR-222 in mdx Mice Valeria De Arcangelis1, Filippo Serra1, Carlo Cogoni3, Elisabetta Vivarelli1, Lucia Monaco2*, Fabio Naro1,4 1 Department of Histology and Medical Embryology, University Sapienza, Rome, Italy, 2 Department of Physiology and Pharmacology, University Sapienza, Rome, Italy, 3 Department of Cellular Biotechnology and Ematology, University Sapienza, Rome, Italy, 4 IIM, Pavia, Italy Abstract Background: In mdx mice, the absence of dystrophin leads to the deficiency of other components of the dystrophin- glycoprotein complex (DAPC), making skeletal muscle fibers more susceptible to necrosis. The mechanisms involved in the disappearance of the DAPC are not completely understood. The muscles of mdx mice express normal amounts of mRNA for the DAPC components, thus suggesting post-transcriptional regulation. Methodology/Principal Findings: We investigated the hypothesis that DAPC reduction could be associated with the microRNA system. Among the possible microRNAs (miRs) found to be upregulated in the skeletal muscle tissue of mdx compared to wt mice, we demonstrated that miR-222 specifically binds to the 39-UTR of b1-syntrophin and participates in the downregulation of b1-syntrophin. In addition, we documented an altered regulation of the 39-UTR of b1-syntrophin in muscle tissue from dystrophic mice. Conclusion/Significance: These results show the importance of the microRNA system in the regulation of DAPC components in dystrophic muscle, and suggest a potential role of miRs in the pathophysiology of dystrophy. Citation: De Arcangelis V, Serra F, Cogoni C, Vivarelli E, Monaco L, et al.
    [Show full text]
  • Muscle Diseases: the Muscular Dystrophies
    ANRV295-PM02-04 ARI 13 December 2006 2:57 Muscle Diseases: The Muscular Dystrophies Elizabeth M. McNally and Peter Pytel Department of Medicine, Section of Cardiology, University of Chicago, Chicago, Illinois 60637; email: [email protected] Department of Pathology, University of Chicago, Chicago, Illinois 60637; email: [email protected] Annu. Rev. Pathol. Mech. Dis. 2007. Key Words 2:87–109 myotonia, sarcopenia, muscle regeneration, dystrophin, lamin A/C, The Annual Review of Pathology: Mechanisms of Disease is online at nucleotide repeat expansion pathmechdis.annualreviews.org Abstract by Drexel University on 01/13/13. For personal use only. This article’s doi: 10.1146/annurev.pathol.2.010506.091936 Dystrophic muscle disease can occur at any age. Early- or childhood- onset muscular dystrophies may be associated with profound loss Copyright c 2007 by Annual Reviews. All rights reserved of muscle function, affecting ambulation, posture, and cardiac and respiratory function. Late-onset muscular dystrophies or myopathies 1553-4006/07/0228-0087$20.00 Annu. Rev. Pathol. Mech. Dis. 2007.2:87-109. Downloaded from www.annualreviews.org may be mild and associated with slight weakness and an inability to increase muscle mass. The phenotype of muscular dystrophy is an endpoint that arises from a diverse set of genetic pathways. Genes associated with muscular dystrophies encode proteins of the plasma membrane and extracellular matrix, and the sarcomere and Z band, as well as nuclear membrane components. Because muscle has such distinctive structural and regenerative properties, many of the genes implicated in these disorders target pathways unique to muscle or more highly expressed in muscle.
    [Show full text]
  • Validación Y Estudio De La Implicación De Los Genes Adrbk2, Adrb1, Adra2b, Axin 2, Atp6v1c1 Y Atp6v0e En El Carcinoma Oral De
    FACULTADE DE MEDICINA E ODONTOLOXÍA Departamento de Estomatoloxía VALIDACIÓN Y ESTUDIO DE LA IMPLICACIÓN DE LOS GENES ADRBK2, ADRB1, ADRA2B, AXIN 2, ATP6V1C1 Y ATP6V0E EN EL CARCINOMA ORAL DE CÉLULAS ESCAMOSAS MEDIANTE PCR CUANTITATIVA EN TIEMPO REAL TESIS DOCTORAL EVA MARÍA OTERO REY Santiago de Compostela, enero de 2006 FACULTAD DE MEDICINA Y ODONTOLOGÍA DEPARTAMENTO DE ESTOMATOLOGÍA VALIDACIÓN Y ESTUDIO DE LA IMPLICACIÓN DE LOS GENES ADRBK2, ADRB1, ADRA2B, AXIN 2, ATP6V1C1 Y ATP6V0E EN EL CARCINOMA ORAL DE CÉLULAS ESCAMOSAS MEDIANTE PCR CUANTITATIVA EN TIEMPO REAL Autora: EVA MARÍA OTERO REY Santiago de Compostela, 20 de Enero de 2006. D. ABEL GARCÍA GARCÍA, Profesor Titular de Cirugía Oral y Maxilofacial de la Facultad de Medicina y Odontología de la Universidad de Santiago de Compostela; D. FRANCISCO BARROS ANGUEIRA, Doctor en Biología y Jefe de Laboratorio de la Fundación Pública Galega de Medicina Xenómica del Sergas; y D. JOSÉ MANUEL SOMOZA MARTÍN, Doctor en Odontología de la Universidad de Santiago de Compostela, CERTIFICAN: Que la presente Tesis Doctoral titulada “VALIDACIÓN Y ESTUDIO DE LA IMPLICACIÓN DE LOS GENES ADRBK2, ADRB1, ADRA2B, AXIN 2, ATP6V1C1 Y ATP6V0E EN EL CARCINOMA ORAL DE CÉLULAS ESCAMOSAS MEDIANTE PCR CUANTITATIVA EN TIEMPO REAL”, ha sido elaborada por Dña. EVA MARÍA OTERO REY bajo nuestra dirección, y hallándose concluida, autorizamos su presentación a fin de que pueda ser defendida ante el Tribunal correspondiente. Y para que así conste, se expide la presente certificación en Santiago de Compostela, a 20 de Enero de 2006. Prof. Dr. D. Abel García García Dr. D. Francisco Barros Angueira Dr.
    [Show full text]
  • Skeletal Muscle Syntrophin Interactors Revealed by Yeast Two-Hybrid Assay
    ORIGINAL PAPER Nagoya J. Med. Sci. 70. 117 ~ 126, 2008 SKELETAL MUSCLE SYNTROPHIN INTERACTORS REVEALED BY YEAST TWO-HYBRID ASSAY MASAHIKO INOUE1, YOSHIHIRO WAKAYAMA1, TAKAHIRO JIMI1, SEIJI SHIBUYA1, HAJIME HARA1, AKIHIKO UNAKI1 and KIYOKAZU KENMOCHI2 1Department of Neurology, Showa University Fujigaoka Hospital 2Invitrogen Japan K.K. ABSTRACT Syntrophins are the cytoplasmic peripheral proteins of dystrophin glycoprotein complex, of which five (α1, β1, β2, γ1 and γ2) isoforms have been identified so far. Respective syntrophin isoforms are encoded by different genes but have similar domain structures. At the sarcolemma of skeletal muscle, the most abundant α1-syntrophin was shown to interact at its PDZ domain with many membrane proteins. Among them, the AQP4 interaction with α1-syntrophin PDZ domain was demonstrated by a Tg mouse study, prompting us to investigate the interaction between mouse α1-syntrophin (BC018546: nt.267–492, PDZ domain) pEXP-AD502 as prey vector and mouse AQP4 (NM009700: nt.805–969) pDBLeu as bait vector by the yeast two-hybrid assay, resulting in a negative study. We further studied the binding partner of another sarcolemma located β1-syntrophin, and performed a yeast two-hybrid experiment. With human β1-syntrophin as bait and human skeletal muscle cDNA library as prey, we obtained one positive clone which turned out to be α-dystrobrevin. Although the interaction of human β1-syntrophin with α-dystrobrevin has already been shown by immunoprecipitation assay, we have here confirmed this interaction by a yeast two-hybrid
    [Show full text]
  • Differential Association of Syntrophin Pairs with the Dystrophin Complex Matthew F
    Differential Association of Syntrophin Pairs with the Dystrophin Complex Matthew F. Peters, Marvin E. Adams, and Stanley C. Froehner Department of Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7545 Downloaded from http://rupress.org/jcb/article-pdf/138/1/81/1271286/29199.pdf by University Of North Carolina Chapel Hill user on 14 July 2021 Abstract. The syntrophins are a multigene family of in- dystrophy. b2-syntrophin is largely restricted to the tracellular dystrophin-associated proteins comprising neuromuscular junction. three isoforms, a1, b1, and b2. Based on their domain The sarcolemmal distribution of a1- and b1-syntro- organization and association with neuronal nitric oxide phins suggests association with dystrophin and dystro- synthase, syntrophins are thought to function as modu- brevin, whereas all three syntrophins could potentially lar adapters that recruit signaling proteins to the mem- associate with utrophin at the neuromuscular junction. brane via association with the dystrophin complex. Us- Utrophin complexes immunoisolated from skeletal ing sequences derived from a new mouse b1-syntrophin muscle are highly enriched in b1- and b2-syntrophins, cDNA, and previously isolated cDNAs for a1- and b2- while dystrophin complexes contain mostly a1- and b1- syntrophins, we prepared isoform-specific antibodies to syntrophins. Dystrobrevin complexes contain dystro- study the expression, skeletal muscle localization, and phin and a1- and b1-syntrophins. From these results, dystrophin family association of all three syntrophins. we propose a model in which a dystrophin–dystrobre- Most tissues express multiple syntrophin isoforms. In vin complex is associated with two syntrophins. Since mouse gastrocnemius skeletal muscle, a1- and b1-syn- individual syntrophins do not have intrinsic binding trophin are concentrated at the neuromuscular junction specificity for dystrophin, dystrobrevin, or utrophin, the but are also present on the extrasynaptic sarcolemma.
    [Show full text]
  • 1-Syntrophin–Deficient Skeletal Muscle Exhibits Hypertrophy And
    JCBArticle ␣1-Syntrophin–deficient skeletal muscle exhibits hypertrophy and aberrant formation of neuromuscular junctions during regeneration Yukio Hosaka,1,2 Toshifumi Yokota,1,3 Yuko Miyagoe-Suzuki,1 Katsutoshi Yuasa,1 Michihiro Imamura,1 Ryoichi Matsuda,4 Takaaki Ikemoto,5 Shuhei Kameya,6 and Shin’ichi Takeda1 1Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8502, Tokyo, Japan 2Department of Neurology, Nakadori General Hospital, Akita 010-8577, Japan 3Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-8654, Japan 4Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan 5Department of Pharmacology, Saitama Medical School, Moroyama-machi, Saitama 350-0495, Japan 6Department of Ophthalmology, Akita University, Akita 010-8543, Japan ␣ 1-Syntrophin is a member of the family of dystrophin- muscles of the mutant mice, the level of insulin-like associated proteins; it has been shown to recruit growth factor-1 transcripts was highly elevated. Interestingly, neuronal nitric oxide synthase and the water channel in an early stage of the regeneration process, ␣1synϪ/Ϫ aquaporin-4 to the sarcolemma by its PSD-95/SAP-90, mice showed remarkably deranged neuromuscular junctions Discs-large, ZO-1 homologous domain. To examine the role (NMJs), accompanied by impaired ability to exercise. of ␣1-syntrophin in muscle regeneration, we injected car- The contractile forces were reduced in ␣1synϪ/Ϫ regenerating diotoxin into the tibialis anterior muscles of ␣1-syntrophin– muscles. Our results suggest that the lack of ␣1-syntrophin null (␣1synϪ/Ϫ) mice.
    [Show full text]