Conceptual Foundations: Pro B Ab Ility Distrib Utio Ns
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Random Variable X with Pdf G(X) = Λα Γ(Α) X ≥ 0 Has Gamma
DISTRIBUTIONS DERIVED FROM THE NORMAL DISTRIBUTION Definition: A random variable X with pdf λα g(x) = xα−1e−λx x ≥ 0 Γ(α) has gamma distribution with parameters α > 0 and λ > 0. The gamma function Γ(x), is defined as Z ∞ Γ(x) = ux−1e−udu. 0 Properties of the Gamma Function: (i) Γ(x + 1) = xΓ(x) (ii) Γ(n + 1) = n! √ (iii) Γ(1/2) = π. Remarks: 1. Notice that an exponential rv with parameter 1/θ = λ is a special case of a gamma rv. with parameters α = 1 and λ. 2. The sum of n independent identically distributed (iid) exponential rv, with parameter λ has a gamma distribution, with parameters n and λ. 3. The sum of n iid gamma rv with parameters α and λ has gamma distribution with parameters nα and λ. Definition: If Z is a standard normal rv, the distribution of U = Z2 called the chi-square distribution with 1 degree of freedom. 2 The density function of U ∼ χ1 is −1/2 x −x/2 fU (x) = √ e , x > 0. 2π 2 Remark: A χ1 random variable has the same density as a random variable with gamma distribution, with parameters α = 1/2 and λ = 1/2. Definition: If U1,U2,...,Uk are independent chi-square rv-s with 1 degree of freedom, the distribution of V = U1 + U2 + ... + Uk is called the chi-square distribution with k degrees of freedom. 2 Using Remark 3. and the above remark, a χk rv. follows gamma distribution with parameters 2 α = k/2 and λ = 1/2. -
Stat 5101 Notes: Brand Name Distributions
Stat 5101 Notes: Brand Name Distributions Charles J. Geyer February 14, 2003 1 Discrete Uniform Distribution Symbol DiscreteUniform(n). Type Discrete. Rationale Equally likely outcomes. Sample Space The interval 1, 2, ..., n of the integers. Probability Function 1 f(x) = , x = 1, 2, . , n n Moments n + 1 E(X) = 2 n2 − 1 var(X) = 12 2 Uniform Distribution Symbol Uniform(a, b). Type Continuous. Rationale Continuous analog of the discrete uniform distribution. Parameters Real numbers a and b with a < b. Sample Space The interval (a, b) of the real numbers. 1 Probability Density Function 1 f(x) = , a < x < b b − a Moments a + b E(X) = 2 (b − a)2 var(X) = 12 Relation to Other Distributions Beta(1, 1) = Uniform(0, 1). 3 Bernoulli Distribution Symbol Bernoulli(p). Type Discrete. Rationale Any zero-or-one-valued random variable. Parameter Real number 0 ≤ p ≤ 1. Sample Space The two-element set {0, 1}. Probability Function ( p, x = 1 f(x) = 1 − p, x = 0 Moments E(X) = p var(X) = p(1 − p) Addition Rule If X1, ..., Xk are i. i. d. Bernoulli(p) random variables, then X1 + ··· + Xk is a Binomial(k, p) random variable. Relation to Other Distributions Bernoulli(p) = Binomial(1, p). 4 Binomial Distribution Symbol Binomial(n, p). 2 Type Discrete. Rationale Sum of i. i. d. Bernoulli random variables. Parameters Real number 0 ≤ p ≤ 1. Integer n ≥ 1. Sample Space The interval 0, 1, ..., n of the integers. Probability Function n f(x) = px(1 − p)n−x, x = 0, 1, . , n x Moments E(X) = np var(X) = np(1 − p) Addition Rule If X1, ..., Xk are independent random variables, Xi being Binomial(ni, p) distributed, then X1 + ··· + Xk is a Binomial(n1 + ··· + nk, p) random variable. -
Higher-Order Asymptotics
Higher-Order Asymptotics Todd Kuffner Washington University in St. Louis WHOA-PSI 2016 1 / 113 First- and Higher-Order Asymptotics Classical Asymptotics in Statistics: available sample size n ! 1 First-Order Asymptotic Theory: asymptotic statements that are correct to order O(n−1=2) Higher-Order Asymptotics: refinements to first-order results 1st order 2nd order 3rd order kth order error O(n−1=2) O(n−1) O(n−3=2) O(n−k=2) or or or or o(1) o(n−1=2) o(n−1) o(n−(k−1)=2) Why would anyone care? deeper understanding more accurate inference compare different approaches (which agree to first order) 2 / 113 Points of Emphasis Convergence pointwise or uniform? Error absolute or relative? Deviation region moderate or large? 3 / 113 Common Goals Refinements for better small-sample performance Example Edgeworth expansion (absolute error) Example Barndorff-Nielsen’s R∗ Accurate Approximation Example saddlepoint methods (relative error) Example Laplace approximation Comparative Asymptotics Example probability matching priors Example conditional vs. unconditional frequentist inference Example comparing analytic and bootstrap procedures Deeper Understanding Example sources of inaccuracy in first-order theory Example nuisance parameter effects 4 / 113 Is this relevant for high-dimensional statistical models? The Classical asymptotic regime is when the parameter dimension p is fixed and the available sample size n ! 1. What if p < n or p is close to n? 1. Find a meaningful non-asymptotic analysis of the statistical procedure which works for any n or p (concentration inequalities) 2. Allow both n ! 1 and p ! 1. 5 / 113 Some First-Order Theory Univariate (classical) CLT: Assume X1;X2;::: are i.i.d. -
Effect of Probability Distribution of the Response Variable in Optimal Experimental Design with Applications in Medicine †
mathematics Article Effect of Probability Distribution of the Response Variable in Optimal Experimental Design with Applications in Medicine † Sergio Pozuelo-Campos *,‡ , Víctor Casero-Alonso ‡ and Mariano Amo-Salas ‡ Department of Mathematics, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; [email protected] (V.C.-A.); [email protected] (M.A.-S.) * Correspondence: [email protected] † This paper is an extended version of a published conference paper as a part of the proceedings of the 35th International Workshop on Statistical Modeling (IWSM), Bilbao, Spain, 19–24 July 2020. ‡ These authors contributed equally to this work. Abstract: In optimal experimental design theory it is usually assumed that the response variable follows a normal distribution with constant variance. However, some works assume other probability distributions based on additional information or practitioner’s prior experience. The main goal of this paper is to study the effect, in terms of efficiency, when misspecification in the probability distribution of the response variable occurs. The elemental information matrix, which includes information on the probability distribution of the response variable, provides a generalized Fisher information matrix. This study is performed from a practical perspective, comparing a normal distribution with the Poisson or gamma distribution. First, analytical results are obtained, including results for the linear quadratic model, and these are applied to some real illustrative examples. The nonlinear 4-parameter Hill model is next considered to study the influence of misspecification in a Citation: Pozuelo-Campos, S.; dose-response model. This analysis shows the behavior of the efficiency of the designs obtained in Casero-Alonso, V.; Amo-Salas, M. -
The Beta-Binomial Distribution Introduction Bayesian Derivation
In Danish: 2005-09-19 / SLB Translated: 2008-05-28 / SLB Bayesian Statistics, Simulation and Software The beta-binomial distribution I have translated this document, written for another course in Danish, almost as is. I have kept the references to Lee, the textbook used for that course. Introduction In Lee: Bayesian Statistics, the beta-binomial distribution is very shortly mentioned as the predictive distribution for the binomial distribution, given the conjugate prior distribution, the beta distribution. (In Lee, see pp. 78, 214, 156.) Here we shall treat it slightly more in depth, partly because it emerges in the WinBUGS example in Lee x 9.7, and partly because it possibly can be useful for your project work. Bayesian Derivation We make n independent Bernoulli trials (0-1 trials) with probability parameter π. It is well known that the number of successes x has the binomial distribution. Considering the probability parameter π unknown (but of course the sample-size parameter n is known), we have xjπ ∼ bin(n; π); where in generic1 notation n p(xjπ) = πx(1 − π)1−x; x = 0; 1; : : : ; n: x We assume as prior distribution for π a beta distribution, i.e. π ∼ beta(α; β); 1By this we mean that p is not a fixed function, but denotes the density function (in the discrete case also called the probability function) for the random variable the value of which is argument for p. 1 with density function 1 p(π) = πα−1(1 − π)β−1; 0 < π < 1: B(α; β) I remind you that the beta function can be expressed by the gamma function: Γ(α)Γ(β) B(α; β) = : (1) Γ(α + β) In Lee, x 3.1 is shown that the posterior distribution is a beta distribution as well, πjx ∼ beta(α + x; β + n − x): (Because of this result we say that the beta distribution is conjugate distribution to the binomial distribution.) We shall now derive the predictive distribution, that is finding p(x). -
9. Binomial Distribution
J. K. SHAH CLASSES Binomial Distribution 9. Binomial Distribution THEORETICAL DISTRIBUTION (Exists only in theory) 1. Theoretical Distribution is a distribution where the variables are distributed according to some definite mathematical laws. 2. In other words, Theoretical Distributions are mathematical models; where the frequencies / probabilities are calculated by mathematical computation. 3. Theoretical Distribution are also called as Expected Variance Distribution or Frequency Distribution 4. THEORETICAL DISTRIBUTION DISCRETE CONTINUOUS BINOMIAL POISSON Distribution Distribution NORMAL OR Student’s ‘t’ Chi-square Snedecor’s GAUSSIAN Distribution Distribution F-Distribution Distribution A. Binomial Distribution (Bernoulli Distribution) 1. This distribution is a discrete probability Distribution where the variable ‘x’ can assume only discrete values i.e. x = 0, 1, 2, 3,....... n 2. This distribution is derived from a special type of random experiment known as Bernoulli Experiment or Bernoulli Trials , which has the following characteristics (i) Each trial must be associated with two mutually exclusive & exhaustive outcomes – SUCCESS and FAILURE . Usually the probability of success is denoted by ‘p’ and that of the failure by ‘q’ where q = 1-p and therefore p + q = 1. (ii) The trials must be independent under identical conditions. (iii) The number of trial must be finite (countably finite). (iv) Probability of success and failure remains unchanged throughout the process. : 442 : J. K. SHAH CLASSES Binomial Distribution Note 1 : A ‘trial’ is an attempt to produce outcomes which is neither sure nor impossible in nature. Note 2 : The conditions mentioned may also be treated as the conditions for Binomial Distributions. 3. Characteristics or Properties of Binomial Distribution (i) It is a bi parametric distribution i.e. -
Chapter 6 Continuous Random Variables and Probability
EF 507 QUANTITATIVE METHODS FOR ECONOMICS AND FINANCE FALL 2019 Chapter 6 Continuous Random Variables and Probability Distributions Chap 6-1 Probability Distributions Probability Distributions Ch. 5 Discrete Continuous Ch. 6 Probability Probability Distributions Distributions Binomial Uniform Hypergeometric Normal Poisson Exponential Chap 6-2/62 Continuous Probability Distributions § A continuous random variable is a variable that can assume any value in an interval § thickness of an item § time required to complete a task § temperature of a solution § height in inches § These can potentially take on any value, depending only on the ability to measure accurately. Chap 6-3/62 Cumulative Distribution Function § The cumulative distribution function, F(x), for a continuous random variable X expresses the probability that X does not exceed the value of x F(x) = P(X £ x) § Let a and b be two possible values of X, with a < b. The probability that X lies between a and b is P(a < X < b) = F(b) -F(a) Chap 6-4/62 Probability Density Function The probability density function, f(x), of random variable X has the following properties: 1. f(x) > 0 for all values of x 2. The area under the probability density function f(x) over all values of the random variable X is equal to 1.0 3. The probability that X lies between two values is the area under the density function graph between the two values 4. The cumulative density function F(x0) is the area under the probability density function f(x) from the minimum x value up to x0 x0 f(x ) = f(x)dx 0 ò xm where -
Programming in Stata
Programming and Post-Estimation • Bootstrapping • Monte Carlo • Post-Estimation Simulation (Clarify) • Extending Clarify to Other Models – Censored Probit Example What is Bootstrapping? • A computer-simulated nonparametric technique for making inferences about a population parameter based on sample statistics. • If the sample is a good approximation of the population, the sampling distribution of interest can be estimated by generating a large number of new samples from the original. • Useful when no analytic formula for the sampling distribution is available. B 2 ˆ B B b How do I do it? SE B = s(x )- s(x )/ B /(B -1) å[ åb =1 ] b=1 1. Obtain a Sample from the population of interest. Call this x = (x1, x2, … , xn). 2. Re-sample based on x by randomly sampling with replacement from it. 3. Generate many such samples, x1, x2, …, xB – each of length n. 4. Estimate the desired parameter in each sample, s(x1), s(x2), …, s(xB). 5. For instance the bootstrap estimate of the standard error is the standard deviation of the bootstrap replications. Example: Standard Error of a Sample Mean Canned in Stata use "I:\general\PRISM Programming\auto.dta", clear Type: sum mpg Example: Standard Error of a Sample Mean Canned in Stata Type: bootstrap "summarize mpg" r(mean), reps(1000) » 21.2973±1.96*.6790806 x B - x Example: Difference of Medians Test Type: sum length, detail Type: return list Example: Difference of Medians Test Example: Difference of Medians Test Example: Difference of Medians Test Type: bootstrap "mymedian" r(diff), reps(1000) The medians are not very different. -
Lecture.7 Poisson Distributions - Properties, Normal Distributions- Properties
Lecture.7 Poisson Distributions - properties, Normal Distributions- properties Theoretical Distributions Theoretical distributions are 1. Binomial distribution Discrete distribution 2. Poisson distribution 3. Normal distribution Continuous distribution Discrete Probability distribution Bernoulli distribution A random variable x takes two values 0 and 1, with probabilities q and p ie., p(x=1) = p and p(x=0)=q, q-1-p is called a Bernoulli variate and is said to be Bernoulli distribution where p and q are probability of success and failure. It was given by Swiss mathematician James Bernoulli (1654-1705) Example • Tossing a coin(head or tail) • Germination of seed(germinate or not) Binomial distribution Binomial distribution was discovered by James Bernoulli (1654-1705). Let a random experiment be performed repeatedly and the occurrence of an event in a trial be called as success and its non-occurrence is failure. Consider a set of n independent trails (n being finite), in which the probability p of success in any trail is constant for each trial. Then q=1-p is the probability of failure in any trail. 1 The probability of x success and consequently n-x failures in n independent trails. But x successes in n trails can occur in ncx ways. Probability for each of these ways is pxqn-x. P(sss…ff…fsf…f)=p(s)p(s)….p(f)p(f)…. = p,p…q,q… = (p,p…p)(q,q…q) (x times) (n-x times) Hence the probability of x success in n trials is given by x n-x ncx p q Definition A random variable x is said to follow binomial distribution if it assumes non- negative values and its probability mass function is given by P(X=x) =p(x) = x n-x ncx p q , x=0,1,2…n q=1-p 0, otherwise The two independent constants n and p in the distribution are known as the parameters of the distribution. -
On a Problem Connected with Beta and Gamma Distributions by R
ON A PROBLEM CONNECTED WITH BETA AND GAMMA DISTRIBUTIONS BY R. G. LAHA(i) 1. Introduction. The random variable X is said to have a Gamma distribution G(x;0,a)if du for x > 0, (1.1) P(X = x) = G(x;0,a) = JoT(a)" 0 for x ^ 0, where 0 > 0, a > 0. Let X and Y be two independently and identically distributed random variables each having a Gamma distribution of the form (1.1). Then it is well known [1, pp. 243-244], that the random variable W = X¡iX + Y) has a Beta distribution Biw ; a, a) given by 0 for w = 0, (1.2) PiW^w) = Biw;x,x)=\ ) u"-1il-u)'-1du for0<w<l, Ío T(a)r(a) 1 for w > 1. Now we can state the converse problem as follows : Let X and Y be two independently and identically distributed random variables having a common distribution function Fix). Suppose that W = Xj{X + Y) has a Beta distribution of the form (1.2). Then the question is whether £(x) is necessarily a Gamma distribution of the form (1.1). This problem was posed by Mauldon in [9]. He also showed that the converse problem is not true in general and constructed an example of a non-Gamma distribution with this property using the solution of an integral equation which was studied by Goodspeed in [2]. In the present paper we carry out a systematic investigation of this problem. In §2, we derive some general properties possessed by this class of distribution laws Fix). -
The Cascade Bayesian Approach: Prior Transformation for a Controlled Integration of Internal Data, External Data and Scenarios
risks Article The Cascade Bayesian Approach: Prior Transformation for a Controlled Integration of Internal Data, External Data and Scenarios Bertrand K. Hassani 1,2,3,* and Alexis Renaudin 4 1 University College London Computer Science, 66-72 Gower Street, London WC1E 6EA, UK 2 LabEx ReFi, Université Paris 1 Panthéon-Sorbonne, CESCES, 106 bd de l’Hôpital, 75013 Paris, France 3 Capegemini Consulting, Tour Europlaza, 92400 Paris-La Défense, France 4 Aon Benfield, The Aon Centre, 122 Leadenhall Street, London EC3V 4AN, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-(0)753-016-7299 Received: 14 March 2018; Accepted: 23 April 2018; Published: 27 April 2018 Abstract: According to the last proposals of the Basel Committee on Banking Supervision, banks or insurance companies under the advanced measurement approach (AMA) must use four different sources of information to assess their operational risk capital requirement. The fourth includes ’business environment and internal control factors’, i.e., qualitative criteria, whereas the three main quantitative sources available to banks for building the loss distribution are internal loss data, external loss data and scenario analysis. This paper proposes an innovative methodology to bring together these three different sources in the loss distribution approach (LDA) framework through a Bayesian strategy. The integration of the different elements is performed in two different steps to ensure an internal data-driven model is obtained. In the first step, scenarios are used to inform the prior distributions and external data inform the likelihood component of the posterior function. In the second step, the initial posterior function is used as the prior distribution and the internal loss data inform the likelihood component of the second posterior function. -
1 One Parameter Exponential Families
1 One parameter exponential families The world of exponential families bridges the gap between the Gaussian family and general dis- tributions. Many properties of Gaussians carry through to exponential families in a fairly precise sense. • In the Gaussian world, there exact small sample distributional results (i.e. t, F , χ2). • In the exponential family world, there are approximate distributional results (i.e. deviance tests). • In the general setting, we can only appeal to asymptotics. A one-parameter exponential family, F is a one-parameter family of distributions of the form Pη(dx) = exp (η · t(x) − Λ(η)) P0(dx) for some probability measure P0. The parameter η is called the natural or canonical parameter and the function Λ is called the cumulant generating function, and is simply the normalization needed to make dPη fη(x) = (x) = exp (η · t(x) − Λ(η)) dP0 a proper probability density. The random variable t(X) is the sufficient statistic of the exponential family. Note that P0 does not have to be a distribution on R, but these are of course the simplest examples. 1.0.1 A first example: Gaussian with linear sufficient statistic Consider the standard normal distribution Z e−z2=2 P0(A) = p dz A 2π and let t(x) = x. Then, the exponential family is eη·x−x2=2 Pη(dx) / p 2π and we see that Λ(η) = η2=2: eta= np.linspace(-2,2,101) CGF= eta**2/2. plt.plot(eta, CGF) A= plt.gca() A.set_xlabel(r'$\eta$', size=20) A.set_ylabel(r'$\Lambda(\eta)$', size=20) f= plt.gcf() 1 Thus, the exponential family in this setting is the collection F = fN(η; 1) : η 2 Rg : d 1.0.2 Normal with quadratic sufficient statistic on R d As a second example, take P0 = N(0;Id×d), i.e.