OASIS and XBP-1 ACTIVITY in OSTEOBLAST DIFFERENTIATION and OSTEOSARCOMA by AARON BRADFORD BRISTER Submitted in Partial Fulfillme

Total Page:16

File Type:pdf, Size:1020Kb

OASIS and XBP-1 ACTIVITY in OSTEOBLAST DIFFERENTIATION and OSTEOSARCOMA by AARON BRADFORD BRISTER Submitted in Partial Fulfillme OASIS AND XBP-1 ACTIVITY IN OSTEOBLAST DIFFERENTIATION AND OSTEOSARCOMA By AARON BRADFORD BRISTER Submitted in partial fulfillment of the requirements For the degree of Master of Science Department of Physiology and Biophysics CASE WESTERN RESERVE UNIVERSITY January, 2008 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the dissertation of Aaron Bradford Brister Candidate for the Master’s degree. (signed) Corey Smith (Chair of the Committee) Clark Distelhorst Edward Greenfield George Dubyak Stephen Jones Susanne Mohr (Date) 11/20/2007 2 TABLE OF CONTENTS TABLE OF FIGURES ...................................................................................................... 5 ACKNOWLEDGEMENT ................................................................................................ 6 Abstract ............................................................................................................................... 7 1. Introduction ..................................................................................................... 8 2. Osteoblast Role in Bone Matrix Production ................................................. 9 3. The Endoplasmic Reticulum ........................................................................ 11 3.1. The Unfolded Protein Response ........................................................................ 12 3.1.1. Protein Folding and ER Chaperones .................................................... 15 3.1.2. UPR Stress Sensor Activation and OASIS Relevance ......................... 16 3.1.3. UPR Transducers: ATF6, PERK, and IRE1 ........................................ 18 3.1.4. XBP-1: A UPR Stress Signaling Molecule ............................................ 19 3.1.5. OASIS: A UPR Stress Transducer ........................................................ 21 4. The Role of OASIS and XBP-1 in Osteoblast Bone Matrix Secretion ..... 24 5. Known Characteristics of Osteosarcoma ................................................... 29 6. Hyper OASIS and XBP-1 Activity: Enabling Osteosarcoma via Elevated GRP78? .......................................................................................................... 29 6.1. The Role of GRP78 in Cancer Progression and Metastasis ............................ 31 6.2. Mechanisms of GRP78 Cell Death Inhibition .................................................. 32 6.3 Mechansims of Upregulating GRP78 ................................................................ 33 6.4. The Link between Dedifferentiated Osteoblasts, OASIS, and XBP-1 .......... 34 6.4.1. The Genetic Links between OASIS and GRP78 Overexpression ...... 35 3 6.4.2. The Link between XBP-1 and GRP78 Overexpression ....................... 36 7. Conclusions ................................................................................................................ 38 8. Future Directions ...................................................................................................... 40 References ........................................................................................................................ 53 4 TABLE OF FIGURES Figure 1 | Osteoblast differentiation signaling: from mesenchymal stem cells (MSCs) to mature osteoblasts.. .................................................................................. 46 Figure 2 | The pathways within the endoplasmic reticulum (ER) that assist protein quality control.. ............................................................................................. 47 Figure 3 | Endoplasmic reticulum (ER) stress and Unfolded Protein Response signaling.. ....................................................................................................... 48 Figure 4 | Frame switch splicing of XBP-1 by activated IRE1.. .................................. 50 Figure 5 | A model of osteoblast differentiation signaling inducing OASIS and XBP- 1....................................................................................................................... 51 Figure 6 | A hypothetical mechanism of Retinoblastoma Protein (pRB) inactivation conferring increases in OASIS and XBP-1 expression. ............................. 52 5 ACKNOWLEDGEMENT I would like to thank my parents Aubrey and Denise Brister, my brother Matthew, and my girlfriend Lauren Ebling for their love, unfailing support, and encouragement. 6 OASIS and XBP-1 Activity in Osteoblast Differentiation and Osteosarcoma Abstract By AARON BRADFORD BRISTER The Unfolded Protein Response (UPR) within the Endoplasmic Reticulum (ER) is a quality control mechanism ensuring properly folded proteins. OASIS and XBP-1 are two signal carriers of the UPR. The UPR is linked to tissue and cancer development. Elevated OASIS and XBP-1 activity are observed within developing osteoblasts. Additionally, heightened OASIS activity is present within osteosarcoma while sustained XBP-1 activity, unreported in osteosarcoma, is observed in other cancers. These signaling proteins may mediate development of mature osteoblasts and osteosarcomas. Therefore, evidence is presented with supporting mechanistic hypotheses indicating unique functions for OASIS and XBP-1 in osteoblast differentiation and osteosarcoma. These functions include, but are not limited to, enlarging the ER, buffering unfolded protein accumulation, mitigating UPR-induced cell death, and processing soluble ER proteins destined for secretion. 7 1. Introduction The intent of this document is to examine two signaling molecules associated with the Unfolded Protein Response (UPR), a quality control mechanism within a cell’s Endoplasmic Reticulum (ER). These are Old Astrocyte Specifically Induced Substance (OASIS) and X-box Binding Protein 1 (XBP-1). OASIS and XBP-1 activities will be discussed within two contexts: osteoblast differentiation and osteosarcoma. Each context will address one of the following questions. Are OASIS and XBP-1 activities directed by osteoblast differentiation programs and do their activities promote protein folding for osteoblast secretion? Could OASIS and XBP-1 hyperactivity enable osteosarcoma? The first question concerning osteoblast differentiation will be addressed in sections two through four and develop the following novel hypotheses. First, in differentiating osteoblasts, a sublethal UPR initiated by progressive increases of protein production upregulate OASIS and XBP-1 expression levels. Secondly, in maturing osteoblasts, the signaling pathways driving osteoblast differentiation also induce OASIS and XBP-1 expression so progressive increases of protein expression are matched with increases of OASIS and XBP-1 expression. Alternatively, both hypotheses may occur together. Regardless, either hypothesis prepares an osteoblast’s ER for elevated protein production and subsequent secretion, their primary functions. Further hypotheses will suggest specific functions of OASIS and XBP-1 in assisting protein processing through the ER. The second question concerning osteosarcoma will be addressed in sections five through six and develop the following hypotheses. First, in osteosarcoma, hyper OASIS and 8 XBP-1 activity maintains steady-state protein folding within the ER so an UPR once sufficient to induce cell death is now sublethal. Secondly, if differentiating osteoblasts do upregulate OASIS and XBP-1, then perhaps osteosarcomas may exploit this pathway to maintain steady-state protein folding within the ER and mitigate cell death. Additional hypotheses will examine how OASIS and XBP-1 hyperactivity reduces an UPR to a sublethal level. Also, an additional hypothetical mechanism of how OASIS is overexpressed in osteosarcoma will also be proposed. 2. Osteoblast Role in Bone Matrix Production Bone is composed of cell types derived from an embryonic germ layer. The mesoderm is an embryonic germ layer which produces Mesenchymal Stem Cells (MSCs). MSCs are self-renewing and multipotent in nature. Otherwise stated, MSCs regenerate through mitotic division or give rise to many cell types. MSCs develop into osteoblasts, bone forming cells that synthesize and secrete osteoid tissue (see figure 1). Osteoid tissue is created when proteins exuded by osteoblasts, together with minerals, form bone scaffolding. Bone proteins interact with calcium, magnesium, and phosphate ions forming hardened mineral matrix, i.e. hydroxyapatite. After an osteoblast finishes forming bone it becomes quiescent, also known as a lining cell [1, 2]. MSCs become mature osteoblasts which are “fully differentiated cells responsible for the production of the bone matrix” [3]. MSCs become osteoblasts through a complex differentiation program and many markers and signaling pathways of this program have been characterized. These markers are available for analysis and indicate the progression 9 of MSC differentiation. Once a MSC becomes a differentiating osteoblast it actively synthesizes and simultaneously secretes osseous tissue or osteoid matrix proteins which construct the skeletal system. Osseous tissue proteins include, but are not limited to, collagen type 1 IA, Alkaline Phosphatase, Osteopontin, and Osteocalcin. Important signaling molecules within differentiating osteoblasts are Runt-Related Transcription Factor 2 (RUNX2), Retinoblastoma protein (pRB), and Osterix ([4, 5] and references therein). A MSC is committed to become an osteoblast when it expresses both the intracellular signaling proteins RUNX2 and Osterix. RUNX2 (or Cbfa1) is a member of the RUNT transcription factor family. RUNT proteins have a DNA-binding
Recommended publications
  • Functions of Osteocalcin in Bone, Pancreas, Testis, and Muscle
    International Journal of Molecular Sciences Review Functions of Osteocalcin in Bone, Pancreas, Testis, and Muscle Toshihisa Komori Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan; [email protected]; Tel.: +81-95-819-7637; Fax: +81-95-819-7638 Received: 17 September 2020; Accepted: 10 October 2020; Published: 12 October 2020 Abstract: Osteocalcin (Ocn), which is specifically produced by osteoblasts, and is the most abundant non-collagenous protein in bone, was demonstrated to inhibit bone formation and function as a hormone, which regulates glucose metabolism in the pancreas, testosterone synthesis in the testis, / / and muscle mass, based on the phenotype of Ocn− − mice by Karsenty’s group. Recently, Ocn− − mice were newly generated by two groups independently. Bone strength is determined by bone / quantity and quality. The new Ocn− − mice revealed that Ocn is not involved in the regulation of bone formation and bone quantity, but that Ocn regulates bone quality by aligning biological apatite (BAp) parallel to the collagen fibrils. Moreover, glucose metabolism, testosterone synthesis and / spermatogenesis, and muscle mass were normal in the new Ocn− − mice. Thus, the function of Ocn is the adjustment of growth orientation of BAp parallel to the collagen fibrils, which is important for bone strength to the loading direction of the long bone. However, Ocn does not play a role as a hormone in the pancreas, testis, and muscle. Clinically, serum Ocn is a marker for bone formation, and exercise increases bone formation and improves glucose metabolism, making a connection between Ocn and glucose metabolism.
    [Show full text]
  • Activated Peripheral-Blood-Derived Mononuclear Cells
    Transcription factor expression in lipopolysaccharide- activated peripheral-blood-derived mononuclear cells Jared C. Roach*†, Kelly D. Smith*‡, Katie L. Strobe*, Stephanie M. Nissen*, Christian D. Haudenschild§, Daixing Zhou§, Thomas J. Vasicek¶, G. A. Heldʈ, Gustavo A. Stolovitzkyʈ, Leroy E. Hood*†, and Alan Aderem* *Institute for Systems Biology, 1441 North 34th Street, Seattle, WA 98103; ‡Department of Pathology, University of Washington, Seattle, WA 98195; §Illumina, 25861 Industrial Boulevard, Hayward, CA 94545; ¶Medtronic, 710 Medtronic Parkway, Minneapolis, MN 55432; and ʈIBM Computational Biology Center, P.O. Box 218, Yorktown Heights, NY 10598 Contributed by Leroy E. Hood, August 21, 2007 (sent for review January 7, 2007) Transcription factors play a key role in integrating and modulating system. In this model system, we activated peripheral-blood-derived biological information. In this study, we comprehensively measured mononuclear cells, which can be loosely termed ‘‘macrophages,’’ the changing abundances of mRNAs over a time course of activation with lipopolysaccharide (LPS). We focused on the precise mea- of human peripheral-blood-derived mononuclear cells (‘‘macro- surement of mRNA concentrations. There is currently no high- phages’’) with lipopolysaccharide. Global and dynamic analysis of throughput technology that can precisely and sensitively measure all transcription factors in response to a physiological stimulus has yet to mRNAs in a system, although such technologies are likely to be be achieved in a human system, and our efforts significantly available in the near future. To demonstrate the potential utility of advanced this goal. We used multiple global high-throughput tech- such technologies, and to motivate their development and encour- nologies for measuring mRNA levels, including massively parallel age their use, we produced data from a combination of two distinct signature sequencing and GeneChip microarrays.
    [Show full text]
  • Profiling of Transcripts and Proteins Modulated by the E7 Oncogene in the Lung Tissue of E7-Tg Mice by the Omics Approach
    MOLECULAR MEDICINE REPORTS 2: 129-137, 2009 129 Profiling of transcripts and proteins modulated by the E7 oncogene in the lung tissue of E7-Tg mice by the omics approach EUNJIN KIM1*, JEONGWOO KANG1,3*, MINCHUL CHO1, SOJUNG LEE1, EUNHEE SEO1, HEESOOK CHOI1, YUMI KIM1, JUNGHEE KIM1, KUM YONG KANG2, KWANG PYO KIM2, JAEYONG HAN3, YHUNYHONG SHEEN4, YOUNG NA YUM5, SUE-NIE PARK5 and DO-YOUNG YOON1 Departments of 1Bioscience and Biotechnology, and 2Molecular Biotechnology, Konkuk University, Hwayang-dong 1, Gwangjin-gu, Seoul 143-701; 3Laboratory of Animal Genetic Engineering, Department of Food and Animal Biotechnology, Seoul National University, Seoul 151-742; 4School of Pharmacy, Ewha Womans University, Seoul 120-750; 5Korea Food and Drug Administration, #194 Tongil-ro, Eunpyung-gu, Seoul 122-704, Korea Received August 18, 2008; Accepted November 10, 2008 DOI: 10.3892/mmr_00000073 Abstract. The E6 and E7 oncoproteins of human papilloma suggest that the E7 oncogene modulates the expression levels virus (HPV) type 16 have been known to cooperatively induce of cell cycle-related (cyclin B1, cyclin E2) and cell adhesion- the immortalization and transformation of primary keratino- and migration-related (actinin ·1, CD166) factors, which may cytes. We established an E7 transgenic mouse model to play important roles in cellular transformation in cancer. In screen HPV-related biomakers using the omics approach. addition, the solubilization of the rigid intermediate filament The methods used to identify HPV-modulated factors were network by specific proteolysis mediated via up-regulating genomics analysis by microarray using the Affymetrix 430 gelsolin and down-regulating cofilin-1, as well as increased 2.0 array to screen E7-modulated genes, and proteomics levels of endoplasmic reticulum protein calnexin with chap- analysis using nano-LC-ESI-MS/MS to screen E7-modulated erone functions, might also be involved in E7-lung epithelial proteins with the lung tissue of E7 transgenic mice.
    [Show full text]
  • Calreticulin—Multifunctional Chaperone in Immunogenic Cell Death: Potential Significance As a Prognostic Biomarker in Ovarian
    cells Review Calreticulin—Multifunctional Chaperone in Immunogenic Cell Death: Potential Significance as a Prognostic Biomarker in Ovarian Cancer Patients Michal Kielbik *, Izabela Szulc-Kielbik and Magdalena Klink Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland; [email protected] (I.S.-K.); [email protected] (M.K.) * Correspondence: [email protected]; Tel.: +48-42-27-23-636 Abstract: Immunogenic cell death (ICD) is a type of death, which has the hallmarks of necroptosis and apoptosis, and is best characterized in malignant diseases. Chemotherapeutics, radiotherapy and photodynamic therapy induce intracellular stress response pathways in tumor cells, leading to a secretion of various factors belonging to a family of damage-associated molecular patterns molecules, capable of inducing the adaptive immune response. One of them is calreticulin (CRT), an endoplasmic reticulum-associated chaperone. Its presence on the surface of dying tumor cells serves as an “eat me” signal for antigen presenting cells (APC). Engulfment of tumor cells by APCs results in the presentation of tumor’s antigens to cytotoxic T-cells and production of cytokines/chemokines, which activate immune cells responsible for tumor cells killing. Thus, the development of ICD and the expression of CRT can help standard therapy to eradicate tumor cells. Here, we review the physiological functions of CRT and its involvement in the ICD appearance in malignant dis- ease. Moreover, we also focus on the ability of various anti-cancer drugs to induce expression of surface CRT on ovarian cancer cells. The second aim of this work is to discuss and summarize the prognostic/predictive value of CRT in ovarian cancer patients.
    [Show full text]
  • A Selective ER-Phagy Exerts Procollagen Quality Control Via a Calnexin-FAM134B Complex
    Article A selective ER-phagy exerts procollagen quality control via a Calnexin-FAM134B complex Alison Forrester1,†, Chiara De Leonibus1,†, Paolo Grumati2,†, Elisa Fasana3,†, Marilina Piemontese1, Leopoldo Staiano1, Ilaria Fregno3,4, Andrea Raimondi5, Alessandro Marazza3,6, Gemma Bruno1, Maria Iavazzo1, Daniela Intartaglia1, Marta Seczynska2, Eelco van Anken7, Ivan Conte1, Maria Antonietta De Matteis1,8, Ivan Dikic2,9,* , Maurizio Molinari3,10,** & Carmine Settembre1,11,*** Abstract The EMBO Journal (2019) 38:e99847 Autophagy is a cytosolic quality control process that recognizes substrates through receptor-mediated mechanisms. Procollagens, Introduction the most abundant gene products in Metazoa, are synthesized in the endoplasmic reticulum (ER), and a fraction that fails to attain Macroautophagy (hereafter referred to as autophagy) is a homeostatic the native structure is cleared by autophagy. However, how auto- catabolic process devoted to the sequestration of cytoplasmic material phagy selectively recognizes misfolded procollagens in the ER in double-membrane vesicles (autophagic vesicles, AVs) that eventu- lumen is still unknown. We performed siRNA interference, CRISPR- ally fuse with lysosomes where cargo is degraded (Mizushima, 2011). Cas9 or knockout-mediated gene deletion of candidate autophagy Autophagy is essential to maintain tissue homeostasis and counter- and ER proteins in collagen producing cells. We found that the ER- acts both the onset and progression of many disease conditions, such resident lectin chaperone Calnexin (CANX) and the ER-phagy as ageing, neurodegeneration and cancer (Levine et al, 2015). receptor FAM134B are required for autophagy-mediated quality Substrates can be selectively delivered to AVs through receptor- control of endogenous procollagens. Mechanistically, CANX acts as mediated processes. Autophagy receptors harbour a LC3 or GABARAP co-receptor that recognizes ER luminal misfolded procollagens and interaction motif (LIR or GIM, respectively) that facilitate binding of interacts with the ER-phagy receptor FAM134B.
    [Show full text]
  • An Unbiased Reconstruction of the T Helper Cell Type 2 Differentiation Network
    bioRxiv preprint doi: https://doi.org/10.1101/196022; this version posted October 4, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. An unbiased reconstruction of the T ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ helper cell type 2 differentiation network ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 1,3 1 1 1 1 Authors: Johan Henriksson ,​ Xi Chen ,​ Tomás Gomes ,​ Kerstin Meyer ,​ Ricardo Miragaia ,​ ​ ​​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 4 1 4 1 1,2,* Ubaid Ullah ,​ Jhuma Pramanik ,​ Riita Lahesmaa ,​ Kosuke Yusa ,​ Sarah A Teichmann ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Affiliations: 1 Wellcome​ Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ CB10 1SA, United Kingdom ​ ​ ​ ​ ​ ​ 2 EMBL-European​ Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Cambridge, CB10 1SD, United Kingdom ​ ​ ​ ​ ​ ​ ​ ​ 3 Karolinska​ Institutet, Department. of Biosciences and Nutrition, Hälsovägen 7, Novum, SE-141 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 83, Huddinge, Sweden ​ ​ ​ ​ 4 Turku​ Centre for Biotechnology, Tykistokatu 6 FI-20520, Turku, Finland ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ *To whom correspondence should be addressed: [email protected] ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​​ Tomas: [email protected] ​ ​​ Ricardo: [email protected] ​ ​​ Ubaid Ullah: [email protected] ​ ​ ​ ​​ Jhuma: [email protected]
    [Show full text]
  • The Ire1a-XBP1 Pathway Promotes T Helper Cell Differentiation by Resolving Secretory Stress and Accelerating Proliferation
    bioRxiv preprint doi: https://doi.org/10.1101/235010; this version posted December 15, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The IRE1a-XBP1 pathway promotes T helper cell differentiation by resolving secretory stress and accelerating proliferation Jhuma Pramanik1, Xi Chen1, Gozde Kar1,2, Tomás Gomes1, Johan Henriksson1, Zhichao Miao1,2, Kedar Natarajan1, Andrew N. J. McKenzie3, Bidesh Mahata1,2*, Sarah A. Teichmann1,2,4* 1. Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom 2. EMBL-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom 3. MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 OQH, United Kingdom 4. Theory of Condensed Matter, Cavendish Laboratory, 19 JJ Thomson Ave, Cambridge CB3 0HE, United Kingdom. *To whom correspondence should be addressed: [email protected] and [email protected] Keywords: Th2 lymphocyte, XBP1, Genome wide XBP1 occupancy, Th2 lymphocyte proliferation, ChIP-seq, RNA-seq, Th2 transcriptome Summary The IRE1a-XBP1 pathway, a conserved adaptive mediator of the unfolded protein response, is indispensable for the development of secretory cells. It maintains endoplasmic reticulum homeostasis by facilitating protein folding and enhancing secretory capacity of the cells. Its role in immune cells is emerging. It is involved in dendritic cell, plasma cell and eosinophil development and differentiation. Using genome-wide approaches, integrating ChIPmentation and mRNA-sequencing data, we have elucidated the regulatory circuitry governed by the IRE1a-XBP1 pathway in type-2 T helper cells (Th2).
    [Show full text]
  • Detection of Pro Angiogenic and Inflammatory Biomarkers in Patients With
    www.nature.com/scientificreports OPEN Detection of pro angiogenic and infammatory biomarkers in patients with CKD Diana Jalal1,2,3*, Bridget Sanford4, Brandon Renner5, Patrick Ten Eyck6, Jennifer Laskowski5, James Cooper5, Mingyao Sun1, Yousef Zakharia7, Douglas Spitz7,9, Ayotunde Dokun8, Massimo Attanasio1, Kenneth Jones10 & Joshua M. Thurman5 Cardiovascular disease (CVD) is the most common cause of death in patients with native and post-transplant chronic kidney disease (CKD). To identify new biomarkers of vascular injury and infammation, we analyzed the proteome of plasma and circulating extracellular vesicles (EVs) in native and post-transplant CKD patients utilizing an aptamer-based assay. Proteins of angiogenesis were signifcantly higher in native and post-transplant CKD patients versus healthy controls. Ingenuity pathway analysis (IPA) indicated Ephrin receptor signaling, serine biosynthesis, and transforming growth factor-β as the top pathways activated in both CKD groups. Pro-infammatory proteins were signifcantly higher only in the EVs of native CKD patients. IPA indicated acute phase response signaling, insulin-like growth factor-1, tumor necrosis factor-α, and interleukin-6 pathway activation. These data indicate that pathways of angiogenesis and infammation are activated in CKD patients’ plasma and EVs, respectively. The pathways common in both native and post-transplant CKD may signal similar mechanisms of CVD. Approximately one in 10 individuals has chronic kidney disease (CKD) rendering CKD one of the most common diseases worldwide1. CKD is associated with a high burden of morbidity in the form of end stage kidney disease (ESKD) requiring dialysis or transplantation 2. Furthermore, patients with CKD are at signifcantly increased risk of death from cardiovascular disease (CVD)3,4.
    [Show full text]
  • Genetic, Cytogenetic and Physical Refinement of the Autosomal Recessive CMT Linked to 5Q31ð Q33: Exclusion of Candidate Genes I
    European Journal of Human Genetics (1999) 7, 849–859 © 1999 Stockton Press All rights reserved 1018–4813/99 $15.00 t http://www.stockton-press.co.uk/ejhg ARTICLE Genetic, cytogenetic and physical refinement of the autosomal recessive CMT linked to 5q31–q33: exclusion of candidate genes including EGR1 Ang`ele Guilbot1, Nicole Ravis´e1, Ahmed Bouhouche6, Philippe Coullin4, Nazha Birouk6, Thierry Maisonobe3, Thierry Kuntzer7, Christophe Vial8, Djamel Grid5, Alexis Brice1,2 and Eric LeGuern1,2 1INSERM U289, 2F´ed´eration de Neurologie and 3Laboratoire de Neuropathologie R Escourolle, Hˆopital de la Salpˆetri`ere, Paris 4Laboratoire de cytog´en´etique, Villejuif 5G´en´ethon, Evry, France 6Service de Neurologie, Hˆopital des Sp´ecialit´es, Rabat, Morocco 7Service de Neurologie, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland 8Service D’EMG et de pathologie neuromusculaire, Hˆopital neurologique Pierre Wertheimer, Lyon, France Charcot-Marie-Tooth disease is an heterogeneous group of inherited peripheral motor and sensory neuropathies with several modes of inheritance: autosomal dominant, X-linked and autosomal recessive. By homozygosity mapping, we have identified, in the 5q23–q33 region, a third locus responsible for an autosomal recessive form of demyelinating CMT. Haplotype reconstruction and determination of the minimal region of homozygosity restricted the candidate region to a 4 cM interval. A physical map of the candidate region was established by screening YACs for microsatellites used for genetic analysis. Combined genetic, cytogenetic and physical mapping restricted the locus to a less than 2 Mb interval on chromosome 5q32. Seventeen consanguineous families with demyelinating ARCMT of various origins were screened for linkage to 5q31–q33.
    [Show full text]
  • Anoctamin 1 (Tmem16a) Ca -Activated Chloride Channel Stoichiometrically Interacts with an Ezrin–Radixin–Moesin Network
    Anoctamin 1 (Tmem16A) Ca2+-activated chloride channel stoichiometrically interacts with an ezrin–radixin–moesin network Patricia Perez-Cornejoa,1, Avanti Gokhaleb,1, Charity Duranb,1, Yuanyuan Cuib, Qinghuan Xiaob, H. Criss Hartzellb,2, and Victor Faundezb,2 aPhysiology Department, School of Medicine, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP 78210, Mexico; and bDepartment of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322 Edited by David E. Clapham, Howard Hughes Medical Institute, Children’s Hospital Boston, Boston, MA, and approved May 9, 2012 (received for review January 4, 2012) The newly discovered Ca2+-activated Cl− channel (CaCC), Anocta- approach to identify Ano1-interacting proteins. We find that min 1 (Ano1 or TMEM16A), has been implicated in vital physiolog- Ano1 forms a complex with two high stochiometry interactomes. ical functions including epithelial fluid secretion, gut motility, and One protein network is centered on the signaling/scaffolding smooth muscle tone. Overexpression of Ano1 in HEK cells or Xen- actin-binding regulatory proteins ezrin, radixin, moesin, and opus oocytes is sufficient to generate Ca2+-activated Cl− currents, RhoA. The ezrin–radixin–moesin (ERM) proteins organize the but the details of channel composition and the regulatory factors cortical cytoskeleton by linking actin to the plasma membrane that control channel biology are incompletely understood. We and coordinate cell signaling events by scaffolding signaling used a highly sensitive quantitative SILAC proteomics approach molecules (19). The other major interactome is centered on the to obtain insights into stoichiometric protein networks associated SNARE and SM proteins VAMP3, syntaxins 2 and -4, and the with the Ano1 channel.
    [Show full text]
  • Methylome and Transcriptome Maps of Human Visceral and Subcutaneous
    www.nature.com/scientificreports OPEN Methylome and transcriptome maps of human visceral and subcutaneous adipocytes reveal Received: 9 April 2019 Accepted: 11 June 2019 key epigenetic diferences at Published: xx xx xxxx developmental genes Stephen T. Bradford1,2,3, Shalima S. Nair1,3, Aaron L. Statham1, Susan J. van Dijk2, Timothy J. Peters 1,3,4, Firoz Anwar 2, Hugh J. French 1, Julius Z. H. von Martels1, Brodie Sutclife2, Madhavi P. Maddugoda1, Michelle Peranec1, Hilal Varinli1,2,5, Rosanna Arnoldy1, Michael Buckley1,4, Jason P. Ross2, Elena Zotenko1,3, Jenny Z. Song1, Clare Stirzaker1,3, Denis C. Bauer2, Wenjia Qu1, Michael M. Swarbrick6, Helen L. Lutgers1,7, Reginald V. Lord8, Katherine Samaras9,10, Peter L. Molloy 2 & Susan J. Clark 1,3 Adipocytes support key metabolic and endocrine functions of adipose tissue. Lipid is stored in two major classes of depots, namely visceral adipose (VA) and subcutaneous adipose (SA) depots. Increased visceral adiposity is associated with adverse health outcomes, whereas the impact of SA tissue is relatively metabolically benign. The precise molecular features associated with the functional diferences between the adipose depots are still not well understood. Here, we characterised transcriptomes and methylomes of isolated adipocytes from matched SA and VA tissues of individuals with normal BMI to identify epigenetic diferences and their contribution to cell type and depot-specifc function. We found that DNA methylomes were notably distinct between diferent adipocyte depots and were associated with diferential gene expression within pathways fundamental to adipocyte function. Most striking diferential methylation was found at transcription factor and developmental genes. Our fndings highlight the importance of developmental origins in the function of diferent fat depots.
    [Show full text]
  • 2812 Matrix Vesicles: Structure, Composition, Formation and Function in Ca
    [Frontiers in Bioscience 16, 2812-2902, June 1, 2011] Matrix vesicles: structure, composition, formation and function in calcification Roy E. Wuthier Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208 TABLE OF CONTENTS 1. Abstract 2. Introduction 3. Morphology of matrix vesicles (MVs) 3.1. Conventional transmission electron microscopy 3.2. Cryofixation, freeze-substitution electron microscopy 3.3. Freeze-fracture studies 4. Isolation of MVs 4.1. Crude collagenase digestion methods 4.2. Non-collagenase dependent methods 4.3. Cell culture methods 4.4. Modified collagenase digestion methods 4.5. Other isolation methods 5. MV proteins 5.1. Early SDS-PAGE studies 5.2. Isolation and identification of major MV proteins 5.3. Sequential extraction, separation and characterization of major MV proteins 5.4. Proteomic characterization of MV proteins 6. MV-associated extracellular matrix proteins 6.1. Type VI collagen 6.2. Type X collagen 6.3. Proteoglycan link protein and aggrecan core protein 6.4. Fibrillin-1 and fibrillin-2 7. MV annexins – acidic phospholipid-dependent ca2+-binding proteins 7.1. Annexin A5 7.2. Annexin A6 7.3. Annexin A2 7.4. Annexin A1 7.5. Annexin A11 and Annexin A4 8. MV enzymes 8.1. Tissue-nonspecific alkaline phosphatase(TNAP) 8.1.1. Molecular structure 8.1.2. Amino acid sequence 8.1.3. 3-D structure 8.1.4. Disposition in the MV membrane 8.1.5. Catalytic properties 8.1.6. Collagen-binding properties 8.2. Nucleotide pyrophosphate phosphodiesterase (NPP1, PC1) 8.3. PHOSPHO-1 (Phosphoethanolamine/Phosphocholine phosphatase 8.4. Acid phosphatase 8.5.
    [Show full text]