Genomic Insights Into Microbial Iron Oxidation and Iron Uptake Strategies in Extremely Acidic Environments

Total Page:16

File Type:pdf, Size:1020Kb

Genomic Insights Into Microbial Iron Oxidation and Iron Uptake Strategies in Extremely Acidic Environments Environmental Microbiology (2011) doi:10.1111/j.1462-2920.2011.02626.x Minireview Genomic insights into microbial iron oxidation and iron uptake strategies in extremely acidic environmentsemi_2626 1..15 Violaine Bonnefoy1,2* and David S. Holmes3 tiple iron uptake systems. This could be an adaption 1Laboratoire de Chimie Bactérienne, UPR-CNRS 9043, allowing them to respond to different iron con- Institut de Microbiologie de la Méditerranée, Marseille, centrations via the use of a multiplicity of different France. siderophores. Both Leptospirillum spp. and Acidithio- 2Aix-Marseille Université, Marseille, France. bacillus spp. are predicted to synthesize the acid 3Center for Bioinformatics and Genome Biology, stable citrate siderophore for Fe(III) uptake. In addi- Fundación Ciencia para la Vida and Depto. de Ciencias tion, both groups have predicted receptors for Biologicas, Facultad de Ciencias Biologicas, siderophores produced by other microorganisms, Universidad Andres Bello, Santiago, Chile. suggesting that competition for iron occurs influenc- ing the ecophysiology of acidic environments. Little is known about the genetic regulation of iron oxidation Summary and iron uptake in acidophiles, especially how the use This minireview presents recent advances in our of iron as an energy source is balanced with its need to understanding of iron oxidation and homeostasis in take up iron for metabolism. It is anticipated that inte- acidophilic Bacteria and Archaea. These processes grated and complex regulatory networks sensing dif- influence the flux of metals and nutrients in pristine ferent environmental signals, such as the energy and man-made acidic environments such as acid mine source and/or the redox state of the cell as well as the drainage and industrial bioleaching operations. Acido- oxygen availability, are involved. philes are also being studied to understand life in extreme conditions and their role in the generation of Introduction biomarkers used in the search for evidence of existing or past extra-terrestrial life. Iron oxidation in acido- Scope of this minireview philes is best understood in the model organism This minireview focuses on iron-oxidizing microorganisms Acidithiobacillus ferrooxidans. However, recent func- that inhabit acidophilic environments. There are a number tional genomic analysis of acidophiles is leading to a of other reviews and papers that discuss issues related to deeper appreciation of the diversity of acidophilic iron- life in extremely acidic conditions that will not be covered oxidizing pathways. Although it is too early to paint a here, including the occurrence and composition of acido- detailed picture of the role played by lateral gene philic communities (Gonzalez-Toril et al., 2003; Rawlings transfer in the evolution of iron oxidation, emerging and Johnson, 2007; Johnson, 2008; Demergasso et al., evidence tends to support the view that iron oxidation 2010), resistance to low pH and metal homeostasis arose independently more than once in evolution. (Baker-Austin and Dopson, 2007; Franke and Rensing, Acidic environments are generally rich in soluble iron 2007; Dopson, 2010), reduced inorganic sulfur com- and extreme acidophiles (e.g. the Leptospirillum pounds (RISCs) energetics (Holmes and Bonnefoy, 2007; genus) have considerably fewer iron uptake systems Quatrini et al., 2009; Bonnefoy, 2010) and genomics and compared with neutrophiles. However, some acido- metabolic reconstruction (Tyson et al., 2004; Valenzuela philes have been shown to grow as high as pH 6 and, in et al., 2006; Holmes and Bonnefoy, 2007; Jerez, 2007; the case of the Acidithiobacillus genus, to have mul- 2008; Quatrini et al., 2007a; 2009; Valdes et al., 2008; Siezen and Wilson, 2009; Bonnefoy, 2010; Denef et al., Received 17 June, 2011; accepted 16 September, 2011. *For corre- spondence. E-mail [email protected]; Tel. (+33)4911641 2010) including genomics of over 50 acidophiles (Carde- 46; Fax (+33)491718914. nas et al., 2010). © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd 2 V. Bonnefoy and D. S. Holmes Acidophiles and their environments hydroxides (as low as 10-18 M at pH 7.0), rendering it difficult to access by biological systems. In contrast, under We define ‘extreme acidophiles’ as those organisms acidic conditions Fe(II) is stable even in the presence of whose growth optimum is lower than pH 3. Most acido- atmospheric oxygen. This provides an opportunity for philes belong to the eubacterial or archaeal kingdoms microorganisms to use Fe(II) as an electron donor and as (prokaryotes) (Johnson, 1998; 2007; 2009; Hallberg and a source of energy that is not readily available to micro- Johnson, 2001; Johnson and Hallberg, 2003), although organisms living in circum-neutral environments. unicellular eukaryotes have also been detected in some However, extremely acidic environments can also chal- acidic environments (e.g. Lopez-Archilla et al., 2001; lenge microorganisms with the highest levels of soluble Amaral Zettler et al., 2002; Baker et al., 2009; Johnson, iron and the threat that this imposes on life via the reaction 2009; Cid et al., 2010). of Fe(II) with oxygen generating free radicals (Fenton Acidophilic microorganisms inhabit pristine environ- reaction) that damage macromolecules and cause cell ments such as volcanic, geothermal areas and acid rock death (Touati, 2000). drainage (ARD) (Lopez-Archilla et al., 2001; Gonzalez- Toril et al., 2003). They are also found in acidic environ- ments of anthropogenic origin such as bioleaching heaps Phylogeny of iron oxidizers and acid mine drainage (AMD) (Rawlings, 2002; 2007; Baker and Banfield, 2003; Johnson and Hallberg, 2003; The ability to oxidize iron is widely distributed in acido- Johnson, 2007; 2009; Norris, 2007; Schippers, 2007; philic Bacteria and Archaea (Fig. 1) (Weber et al., 2006; Schippers et al., 2010). Acidophiles are found over a wide Emerson et al., 2010; Hedrich et al., 2011). Until now, the range of temperatures and include psychrotolerants (but majority of known acidophilic iron oxidizers are found in not psychrophiles) that can grow down to 4°C (Harrison, the Nitrospira class as well as in Gram-positive (Firmicute 1982; Johnson et al., 2001; Dopson et al., 2007; Hallberg and Actinobacteria) and archaeal (Crenarchaeota et al., 2010), mesophiles (up to 40°C), moderate thermo- and Euryarchaeota) phyla. In Proteobacteria, only five philes (between 40°C and 55°C) and extreme thermo- acidophiles are encountered (‘Ferrovum myxofaciens’, philes (above 55°C) (Hallberg and Johnson, 2001; Norris, Acidiferrobacter thiooxydans,‘Thiobacillus prosperus’, 2007; Schippers, 2007; Johnson, 2009). Many acidophilic Acidithiobacillus ferrivorans and At. ferrooxidans) prokaryotes are obligate chemolithoautotrophs obtaining (Hedrich et al., 2011). It is not yet known whether this their energy and electrons from the oxidation of ferrous distribution reflects real evolutionary trends or merely iron [Fe(II)] and RISCs (Hallberg and Johnson, 2001; results from an incomplete analysis due to biases of Rawlings, 2005; 2007; Johnson and Hallberg, 2008; sampling that have relied mainly on culture-based approaches. Johnson, 2009) and their carbon by fixing CO2 from the atmosphere (Rawlings, 2007; Johnson and Hallberg, Widespread distribution of iron oxidation capabilities has also been observed in microorganisms from circum- 2008). Some also fix atmospheric N2 (Johnson, 2007; Rawlings, 2007). Heterotrophs have also been detected neutral pH environments. However, as opposed to the that scavenge organic carbon compounds produced by acidophiles, there seems to be an enrichment of iron the autotrophs (Hallberg and Johnson, 2001; Rawlings, oxidizers in the Proteobacteria (Emerson et al., 2010). 2002; Johnson and Hallberg, 2003; Johnson, 2007; 2009; This minireview will focus mainly on iron oxidation in Norris, 2007; Schippers, 2007; Nancucheo and Johnson, acidic environments. Microbial iron oxidation in circum- 2010; Schippers et al., 2010). neutral environments has been reviewed recently (Emerson et al., 2010; Bird et al., 2011) and will not be discussed here, except for comparison with acidophilic Problems of high iron load in acidic conditions pathways. Acidic environments provide a special opportunity and at the same time an unusual challenge for life. Natural Fe(II) iron oxidation geomicrobiological processes and industrial operations, Bioenergetic problems of iron oxidation such as bioleaching, convert insoluble metal sulfides into water-soluble metal sulfates that include extraordinarily When growing on Fe(II), autotrophs are confronted with high concentrations of soluble iron that can reach values a crucial bioenergetic problem. The reduction potential of as high as 160 g l-1, a concentration about 1016 higher the Fe(II)/Fe(III) couple is +0.78 V which is just below than typically found in circum-neutral environments. In that of O2/H2O (1.12 V) at the pH of the external medium oxygen (O2)-saturated environments at neutral pH, Fe(II) (pH 2), consequently, there is little energy available from is rapidly oxidized to ferric iron [Fe(III)]. Thus, iron pre- the oxidation of Fe(II) (Ingledew, 1982; Bird et al., 2011). dominantly occurs in the ferric form as poorly soluble iron Also, since the reduction potential of NAD+ (-0.32 V at © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd, Environmental Microbiology Iron oxidation and iron homeostasis in acidophiles 3 Fig. 1. An inferred phylogenetic tree of acidophilic iron-oxidizing Bacteria
Recommended publications
  • Thermodynamics of DNA Binding by DNA Polymerase I and Reca
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2014 Thermodynamics of DNA Binding by DNA Polymerase I and RecA Recombinase from Deinococcus radiodurans Jaycob Dalton Warfel Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Warfel, Jaycob Dalton, "Thermodynamics of DNA Binding by DNA Polymerase I and RecA Recombinase from Deinococcus radiodurans" (2014). LSU Doctoral Dissertations. 2382. https://digitalcommons.lsu.edu/gradschool_dissertations/2382 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. THERMODYNAMICS OF DNA BINDING BY DNA POLYMERASE I AND RECA RECOMBINASE FROM DEINOCOCCUS RADIODURANS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Biological Sciences by Jaycob Dalton Warfel B.S. Louisiana State University, 2006 May 2015 ACKNOWLEDGEMENTS I would like to express my utmost gratitude to the myriad of individuals who have lent their support during the time it has taken to complete this dissertation. First and foremost is due glory to God, The Father, The Son and The Holy Spirit, through whom all is accomplished. It is with extreme thankfulness for the blessings bestowed upon me, and with vast appreciation for the beauty of God’s creation that I have pursued a scientific education.
    [Show full text]
  • Proteome Cold-Shock Response in the Extremely Acidophilic Archaeon, Cuniculiplasma Divulgatum
    microorganisms Article Proteome Cold-Shock Response in the Extremely Acidophilic Archaeon, Cuniculiplasma divulgatum Rafael Bargiela 1 , Karin Lanthaler 1,2, Colin M. Potter 1,2 , Manuel Ferrer 3 , Alexander F. Yakunin 1,2, Bela Paizs 1,2, Peter N. Golyshin 1,2 and Olga V. Golyshina 1,2,* 1 School of Natural Sciences, Bangor University, Deiniol Rd, Bangor LL57 2UW, UK; [email protected] (R.B.); [email protected] (K.L.); [email protected] (C.M.P.); [email protected] (A.F.Y.); [email protected] (B.P.); [email protected] (P.N.G.) 2 Centre for Environmental Biotechnology, Bangor University, Deiniol Rd, Bangor LL57 2UW, UK 3 Systems Biotechnology Group, Department of Applied Biocatalysis, CSIC—Institute of Catalysis, Marie Curie 2, 28049 Madrid, Spain; [email protected] * Correspondence: [email protected]; Tel.: +44-1248-388607; Fax: +44-1248-382569 Received: 27 April 2020; Accepted: 15 May 2020; Published: 19 May 2020 Abstract: The archaeon Cuniculiplasma divulgatum is ubiquitous in acidic environments with low-to-moderate temperatures. However, molecular mechanisms underlying its ability to thrive at lower temperatures remain unexplored. Using mass spectrometry (MS)-based proteomics, we analysed the effect of short-term (3 h) exposure to cold. The C. divulgatum genome encodes 2016 protein-coding genes, from which 819 proteins were identified in the cells grown under optimal conditions. In line with the peptidolytic lifestyle of C. divulgatum, its intracellular proteome revealed the abundance of proteases, ABC transporters and cytochrome C oxidase. From 747 quantifiable polypeptides, the levels of 582 proteins showed no change after the cold shock, whereas 104 proteins were upregulated suggesting that they might be contributing to cold adaptation.
    [Show full text]
  • UQ111450 OA.Pdf
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Apr. 2004, p. 2079–2088 Vol. 70, No. 4 0099-2240/04/$08.00ϩ0 DOI: 10.1128/AEM.70.4.2079–2088.2004 Copyright © 2004, American Society for Microbiology. All Rights Reserved. Characterization of Ferroplasma Isolates and Ferroplasma acidarmanus sp. nov., Extreme Acidophiles from Acid Mine Drainage and Industrial Bioleaching Environments Mark Dopson,1† Craig Baker-Austin,1 Andrew Hind,1 John P. Bowman,2 and Philip L. Bond1,3* Downloaded from School of Biological Sciences1 and Centre for Ecology, Evolution and Conservation,3 University of East Anglia, Norwich NR4 7TJ, United Kingdom, and School of Agricultural Science, University of Tasmania, Hobart 7001, Tasmania, Australia2 Received 23 September 2003/Accepted 6 January 2004 Three recently isolated extremely acidophilic archaeal strains have been shown to be phylogenetically similar to Ferroplasma acidiphilum YT by 16S rRNA gene sequencing. All four Ferroplasma isolates were capable of growing chemoorganotrophically on yeast extract or a range of sugars and chemomixotrophically on ferrous http://aem.asm.org/ iron and yeast extract or sugars, and isolate “Ferroplasma acidarmanus” Fer1T required much higher levels of organic carbon. All four isolates were facultative anaerobes, coupling chemoorganotrophic growth on yeast extract to the reduction of ferric iron. The temperature optima for the four isolates were between 35 and 42°C and the pH optima were 1.0 to 1.7, and “F. acidarmanus” Fer1T was capable of growing at pH 0. The optimum yeast extract concentration for “F. acidarmanus” Fer1T was higher than that for the other three isolates. Phenotypic results suggested that isolate “F. acidarmanus” Fer1T is of a different species than the other three strains, and 16S rRNA sequence data, DNA-DNA similarity values, and two-dimensional polyacrylamide gel electrophoresis protein profiles clearly showed that strains DR1, MT17, and YT group as a single species.
    [Show full text]
  • Archaeal Viruses and Bacteriophages: Comparisons and Contrasts
    Review Archaeal viruses and bacteriophages: comparisons and contrasts Maija K. Pietila¨ , Tatiana A. Demina, Nina S. Atanasova, Hanna M. Oksanen, and Dennis H. Bamford Institute of Biotechnology and Department of Biosciences, P.O. Box 56, Viikinkaari 5, 00014 University of Helsinki, Helsinki, Finland Isolated archaeal viruses comprise only a few percent of Euryarchaeaota [9,10]. Archaea have also been cultivated all known prokaryotic viruses. Thus, the study of viruses from moderate environments such as seawater and soil. infecting archaea is still in its early stages. Here we Consequently, an additional phylum, Thaumarchaeota, summarize the most recent discoveries of archaeal vi- has been formed to contain mesophilic and thermophilic ruses utilizing a virion-centered view. We describe the ammonia-oxidizing archaea [11]. However, all known ar- known archaeal virion morphotypes and compare them chaeal viruses infect extremophiles – mainly hyperther- to the bacterial counterparts, if such exist. Viruses infect- mophiles belonging to the crenarchaeal genera Sulfolobus ing archaea are morphologically diverse and present and Acidianus or halophiles of the euryarchaeal genera some unique morphotypes. Although limited in isolate Haloarcula, Halorubrum, and Halobacterium [6,7]. Even number, archaeal viruses reveal new insights into the though bacteria are also found in diverse extreme habitats viral world, such as deep evolutionary relationships such as hypersaline lakes, archaea typically dominate at between viruses that infect hosts from all three domains extreme salinities, based on both cultivation-dependent of life. and -independent studies [6,12–15]. Consequently, archae- al viruses do the same in hypersaline environments. About Discovery of archaeal viruses 50 prokaryotic haloviruses were recently isolated from All cellular organisms are susceptible to viral infections, nine globally distant locations, and only four of them which makes viruses a major evolutionary force shaping infected bacteria [6,16].
    [Show full text]
  • Isolation and Characterization of Ferroplasma Thermophilum Sp. Nov
    http://www.paper.edu.cn Journal of Applied Microbiology ISSN 1364-5072 ORIGINAL ARTICLE Isolation and characterization of Ferroplasma thermophilum sp. nov., a novel extremely acidophilic, moderately thermophilic archaeon and its role in bioleaching of chalcopyrite H. Zhou1,2, R. Zhang1,P.Hu1, W. Zeng1, Y. Xie1,C.Wu1,3 and G. Qiu1,2 1 School of Minerals Processing and Bioengineering, Central South University, Changsha, P.R. China 2 Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha, P.R. China 3 China Ocean Mineral Resources R&D Association, Beijing, P.R. China Keywords Abstract 16S rRNA gene, archaeon, chalcopyrite, T Ferroplasma sp., ferrous iron-oxidizing. Aims: To isolate Ferroplasma thermophilum L1 from a low pH environment and to understand its role in bioleaching of chalcopyrite. Correspondence Methods and Results: Using serial dilution method, a moderately thermophilic Guanzhou Qiu, School of Minerals Processing and acidophilic ferrous iron-oxidizing archaeon, named L1T, was isolated from and Bioengineering, Central South University, a chalcopyrite-leaching bioreactor. The morphological, biochemical and physio- Changsha, 410083, P.R. China. logical characteristics of strain L1T and its role in bioleaching of chalcopyrite E-mail: [email protected] were studied. Strain L1T was a nonmotile coccus that lacked cell wall. Strain T 2007 ⁄ 1566: received 26 September 2007, L1 had a temperature optimum of 45°C and the optimum pH for growth was T revised and accepted 24 January 2008 1Æ0. Strain L1 was capable of chemomixotrophic growth on ferrous iron and yeast extract. Results of fatty acid analysis, DNA–DNA hybridization, G+C con- doi:10.1111/j.1365-2672.2008.03807.x tent, and analysis based on 16S rRNA gene sequence indicated that strain L1T should be grouped in the genus Ferroplasma, and represented a new species, Ferroplasma thermophilum.
    [Show full text]
  • (Antarctica) Glacial, Basal, and Accretion Ice
    CHARACTERIZATION OF ORGANISMS IN VOSTOK (ANTARCTICA) GLACIAL, BASAL, AND ACCRETION ICE Colby J. Gura A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2019 Committee: Scott O. Rogers, Advisor Helen Michaels Paul Morris © 2019 Colby Gura All Rights Reserved iii ABSTRACT Scott O. Rogers, Advisor Chapter 1: Lake Vostok is named for the nearby Vostok Station located at 78°28’S, 106°48’E and at an elevation of 3,488 m. The lake is covered by a glacier that is approximately 4 km thick and comprised of 4 different types of ice: meteoric, basal, type 1 accretion ice, and type 2 accretion ice. Six samples were derived from the glacial, basal, and accretion ice of the 5G ice core (depths of 2,149 m; 3,501 m; 3,520 m; 3,540 m; 3,569 m; and 3,585 m) and prepared through several processes. The RNA and DNA were extracted from ultracentrifugally concentrated meltwater samples. From the extracted RNA, cDNA was synthesized so the samples could be further manipulated. Both the cDNA and the DNA were amplified through polymerase chain reaction. Ion Torrent primers were attached to the DNA and cDNA and then prepared to be sequenced. Following sequencing the sequences were analyzed using BLAST. Python and Biopython were then used to collect more data and organize the data for manual curation and analysis. Chapter 2: As a result of the glacier and its geographic location, Lake Vostok is an extreme and unique environment that is often compared to Jupiter’s ice-covered moon, Europa.
    [Show full text]
  • The Genome of Hyperthermus Butylicus: a Sulfur-Reducing, Peptide Fermenting, Neutrophilic Crenarchaeote Growing up to 108 °C
    Archaea 2, 127–135 © 2007 Heron Publishing—Victoria, Canada The genome of Hyperthermus butylicus: a sulfur-reducing, peptide fermenting, neutrophilic Crenarchaeote growing up to 108 °C KIM BRÜGGER,1,2 LANMING CHEN,1,2 MARKUS STARK,3,4 ARNE ZIBAT,4 PETER REDDER,1 ANDREAS RUEPP,4,5 MARIANA AWAYEZ,1 QUNXIN SHE,1 ROGER A. GARRETT1,6 and HANS-PETER KLENK3,4,7 1 Danish Archaea Centre, Institute of Molecular Biology, Copenhagen University, Sølvgade 83H, 1307 Copenhagen K, Denmark 2 These authors contributed equally to the project 3 e.gene Biotechnologie GmbH, Poeckinger Fussweg 7a, 82340 Feldafing, Germany 4 Formerly EPIDAUROS Biotechnologie AG, Genes and Genome Analysis Team 5 Present address: Institut für Bioinformatik, GSF-Forschungszentrum für Umwelt und Gesundheit, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany 6 Editing author 7 Corresponding author ([email protected]) Received October 26, 2006; accepted January 2, 2007; published online January 19, 2007 Summary Hyperthermus butylicus, a hyperthermophilic 1990). It grows between 80 and 108 oC with a broad tempera- neutrophile and anaerobe, is a member of the archaeal kingdom ture optimum. The organism utilizes peptide mixtures as car- Crenarchaeota. Its genome consists of a single circular chro- bon and energy sources but not amino acid mixtures, various mosome of 1,667,163 bp with a 53.7% G+C content. A total of synthetic peptides or undigested protein. It can also generate 1672 genes were annotated, of which 1602 are protein-coding, energy by reduction of elemental sulfur to yield H2S. Fermen- and up to a third are specific to H.
    [Show full text]
  • Extremophiles in My Backyard? Enhancing Analytical and Math Skills with a Simple Enquiry Based Lab
    Tested Studies for Laboratory Teaching Proceedings of the Association for Biology Laboratory Education Vol. 35, 56-88, 2014 Extremophiles in My Backyard? Enhancing Analytical and Math Skills with a Simple Enquiry Based Lab Lakshmi Chilukuri and Lorlina Almazan University of California San Diego, Division of Biological Sciences, 9500 Gilman Dr., La Jolla CA 92093 USA ([email protected]; [email protected]) What lives in compost? What survives extreme conditions such as hydrothermal vents? We harness that curiosity in a guided inquiry-based laboratory exercise that promotes critical analysis and reinforces math skills. In this au- thentic research, students explore the relationship between physico-chemical characteristics and diverse microbial community of a natural environment. Using selective and differential media, dilution, viable counts, and the scien- tific method, they enrich thermophiles from compost. In collaborative exercises, they collect, evaluate, and analyze numerical data, and present their findings in scientific format. This flexible, easily adaptable model has proven to be invaluable in contextualizing science in our classrooms Firstpage Keywords: Extremophiles, thermophiles, authentic research, critical thinking, math skills, compost, Enrichment of thermophiles from compost, authentic research Introduction Enrichment of Thermophilic Microorganisms from a to execute. Students with a basic knowledge of sterile tech- Compost Sample nique, plating methods, serial dilutions, and simple math, can complete the actions involved. The concepts of enrich- Most microbiology labs teach the concepts of selective ment and the mathematical calculations involved are more and differential media, enumeration of microorganisms, mi- complex and require higher level thinking on the part of the crobial diversity, and complexity of metabolic pathways. students and greater clarity in teaching by the instructors.
    [Show full text]
  • Microbiology)
    Goa University P.O. Goa University, Taleigao Plateau, Goa 403 206, India Syllabus for entrance to Ph.D./M.Phil. (Microbiology) MICROBIAL BIOCHEMISTRY 1. Biological Molecules 1.1 Proteins Amino acids: features and properties. Protein: structure, principles of separation and purification, molecular weight determination; sequencing and synthesis. Enzymes: activity, inhibition, mechanism of action; regulatory – allosteric and covalently modulated enzymes and their significance in metabolism. 1.2 Carbohydrates Monosaccharides: types, characteristics and properties. Disaccharides, oligosaccharides, polysaccharides – biological significance. 1.3 Lipids Fatty acids: saturated and unsaturated, structure and properties. Lipids: biological significance; lipid composition of microorganisms. 2. Bioenergetics and Carbohydrate Metabolism 2.1 Bioenergetics Thermodynamics, exergonic and endergonic reactions, redox potential, high energy compounds, ATP structure and significance. 2.2 Oxidative Phosphorylation Redox enzymes, aerobic electron transport and oxidative phosphorylation. 2.3 Carbohydrate metabolism A. Carbohydrates: Central pathways of metabolism – regulatory mechanisms, bioenergetics and significance – EMP, TCA cycle (glucose aerobic and anaerobic metabolism, malate metabolism), Glyoxylate cycle. B. Gluconeogenesis from TCA intermediates / amino acids / acetyl-CoA; biosynthesis of polysaccharides and sugar interconversions. 3. Lipids, Amino Acids, Nucleotides and other Metabolic Paths 3.1 Lipid Metabolism A. Anabolism: Biosynthesis of fatty
    [Show full text]
  • Planktonic Euryarchaeota Are a Significant Source of Archaeal Tetraether Lipids in the Ocean
    Planktonic Euryarchaeota are a significant source of archaeal tetraether lipids in the ocean Sara A. Lincolna,b,1,2, Brenner Waib,c, John M. Eppleyb,d, Matthew J. Churchb,c, Roger E. Summonsa, and Edward F. DeLongb,c,d,2 aDepartment of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139; bCenter for Microbial Oceanography: Research and Education, University of Hawaii at Manoa, Honolulu, HI 96822; cDepartment of Oceanography, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI 96822; and dDepartment of Civil and Environmental Engineering and Division of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 Contributed by Edward F. DeLong, May 23, 2014 (sent for review October 6, 2013) Archaea are ubiquitous in marine plankton, and fossil forms of Thaumarchaeota (1, 2, 12)—have been isolated in pure culture. archaeal tetraether membrane lipids in sedimentary rocks docu- All MG-I strains isolated to date are chemolithoautotrophic, ment their participation in marine biogeochemical cycles for >100 fixing inorganic carbon via energy obtained from the oxidation of million years. Ribosomal RNA surveys have identified four major ammonia to nitrite (13). Recent evidence suggests that MG-I clades of planktonic archaea but, to date, tetraether lipids have also contribute to the flux of potent greenhouse gases nitrous been characterized in only one, the Marine Group I Thaumarch- oxide (14) and methane (15) from the water column to the at- aeota. The membrane lipid composition of the other planktonic mosphere. The membrane lipid assemblage of MG-I includes — — archaeal groups all uncultured Euryarchaeota is currently un- GDGTs with zero through four cyclopentyl moieties and cren- known.
    [Show full text]
  • Metagenome-Scale Analysis Yields Insights Into the Structure And
    Zhang et al. BMC Genetics (2016) 17:21 DOI 10.1186/s12863-016-0330-4 RESEARCH ARTICLE Open Access Metagenome-scale analysis yields insights into the structure and function of microbial communities in a copper bioleaching heap Xian Zhang1,2, Jiaojiao Niu1,2, Yili Liang1,2, Xueduan Liu1,2 and Huaqun Yin1,2* Abstract Background: Metagenomics allows us to acquire the potential resources from both cultivatable and uncultivable microorganisms in the environment. Here, shotgun metagenome sequencing was used to investigate microbial communities from the surface layer of low grade copper tailings that were industrially bioleached at the Dexing Copper Mine, China. A bioinformatics analysis was further performed to elucidate structural and functional properties of the microbial communities in a copper bioleaching heap. Results: Taxonomic analysis revealed unexpectedly high microbial biodiversity of this extremely acidic environment, as most sequences were phylogenetically assigned to Proteobacteria,whileEuryarchaeota-related sequences occupied little proportion in this system, assuming that Archaea probably played little role in the bioleaching systems. At the genus level, the microbial community in mineral surface-layer was dominated by the sulfur- and iron-oxidizing acidophiles such as Acidithiobacillus-like populations, most of which were A. ferrivorans-like and A. ferrooxidans-like groups. In addition, Caudovirales were the dominant viral type observed in this extremely environment. Functional analysis illustrated that the principal participants related to the key metabolic pathways (carbon fixation, nitrogen metabolism, Fe(II) oxidation and sulfur metabolism) were mainly identified to be Acidithiobacillus-like, Thiobacillus-like and Leptospirillum-like microorganisms, indicating their vital roles. Also, microbial community harbored certain adaptive mechanisms (heavy metal resistance, low pH adaption, organic solvents tolerance and detoxification of hydroxyl radicals) as they performed their functions in the bioleaching system.
    [Show full text]
  • Life in Extreme Environments
    insight review articles Life in extreme environments Lynn J. Rothschild & Rocco L. Mancinelli NASA Ames Research Center, Moffett Field, California 94035-1000, USA (e-mail: [email protected]; [email protected]) Each recent report of liquid water existing elsewhere in the Solar System has reverberated through the international press and excited the imagination of humankind. Why? Because in the past few decades we have come to realize that where there is liquid water on Earth, virtually no matter what the physical conditions, there is life. What we previously thought of as insurmountable physical and chemical barriers to life, we now see as yet another niche harbouring ‘extremophiles’. This realization, coupled with new data on the survival of microbes in the space environment and modelling of the potential for transfer of life between celestial bodies, suggests that life could be more common than previously thought. Here we examine critically what it means to be an extremophile, and the implications of this for evolution, biotechnology and especially the search for life in the Universe. ormal is passé; extreme is chic. While thriving in biological extremes (for example, nutritional Aristotle cautioned “everything in extremes, and extremes of population density, parasites, moderation”, the Romans, known for their prey, and so on). excesses, coined the word ‘extremus’, the ‘Extremophile’ conjures up images of prokaryotes, yet the superlative of exter (‘being on the outside’). taxonomic range spans all three domains. Although all NBy the fifteenth century ‘extreme’ had arrived, via Middle hyperthermophiles are members of the Archaea and French, to English. At the dawning of the twenty-first Bacteria, eukaryotes are common among the psychrophiles, century we know that the Solar System, and even Earth, acidophiles, alkaliphiles, piezophiles, xerophiles and contain environmental extremes unimaginable to the halophiles (which respectively thrive at low temperatures, low ‘ancients’ of the nineteenth century.
    [Show full text]