Variation in Phenolic Constituents and Antioxidant Capacities of Plant Organs of Three Cuban Species of Pluchea Cass
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Suplemento Electrónico A1
REVISTA MEXICANA DE CIENCIAS GEOLÓGICAS Condiciones ambientales a finales del EI 6 env. Chalco,36, núm. 1,México p. 1-12 Suplemento Eletrónico al artículo Metodología polínica ambiental (MEPAM) para estudios hidrogeológicos en zonas cársticas. Caso Joya de Luna-Guaxcamá, S. L. P. por: Sonia Torres-Rivera, José Alfredo Ramos-Leal, Ulises Rodríguez-Robles, Simón Carranco-Lozada y José Ramón Torres-Hernández Publicado en la Revista Mexicana d Ciencias Geológicas, vol. 36, núm. 1, 2019 Torres-Rivera, S., Ramos-Leal, J.A., Rodríguez-Robles, U., Carranco-Lozada, S., Torres-Hernández, J.R., 2019, Metodología polínica ambiental (MEPAM) para estudios hidrogeológicos en zonas cársticas. Caso Joya de Luna-Guaxcamá, S. L. P.: Revista Mexicana de Ciencias Geológicas, v. 36, núm. 1, p. 1-12. DOI:RMCG http://dx.doi.org/10.22201/cgeo.20072902e.2019.1.565 | v. 35 | núm. 2 | www.rmcg.unam.mx | DOI: http://dx.doi.org/10.22201/cgeo.20072902e.2018.2.649 i Torres Rivera et al. Suplemento electrónico A1. Taxonomía de las plantas. Revista Mexicana de Ciencias Geológicas, 36(1), 2019 Lugar de colecta Coordenadas Vista en Z Familia Especie Fotografía Identificación y descripción taxonómica XY microscopio óptico 100x (m s.n.m.) Alcanza un tamaño de 1 a 5 metros de altura, con flores esféricas y de color blanco y amarillo, que se producen entre febrero y abril.Berlandieri contiene una amplia variedad de alcaloides (sustancias organicas nitrogenadas con acción Leguminosae o Socavon Joya de Luna 352397 2485844 1241 Acacia berlandieri fisiologica energetica medicinal o venenosa). Fabacea Al barreta alcanza hasta 8 m de altura; la corteza es lisa, con coloración café, pálido. -
Value Addition of Southern African Monkey Orange (Strychnos Spp.): Composition, Utilization and Quality Ruth Tambudzai Ngadze
Value addition of Southern African monkey orange ( Value addition of Southern African monkey orange (Strychnos spp.): composition, utilization and quality Strychnos spp.): composition, utilization and quality Ruth Tambudzai Ngadze 2018 Ruth Tambudzai Ngadze Propositions 1. Food nutrition security can be improved by making use of indigenous fruits that are presently wasted, such as monkey orange. (this thesis) 2. Bioaccessibility of micronutrients in maize-based staple foods increases by complementation with Strychnos cocculoides. (this thesis) 3. The conclusion from Baker and Oswald (2010) that social media improve connections, neglects the fact that it concomitantly promotes solitude. (Journal of Social and Personal Relationships 27:7, 873–889) 4. Sustainable agriculture in developed countries can be achieved by mimicking third world small-holder agrarian systems. 5. Like first time parenting, there is no real set of instructions to prepare for the PhD journey. 6. Undertaking a sandwich PhD is like participating in a survival reality show. Propositions belonging to the thesis, entitled: Value addition of Southern African monkey orange (Strychnos spp.): composition, utilization and quality Ruth T. Ngadze Wageningen, October 10, 2018 Value addition of Southern African monkey orange (Strychnos spp.): composition, utilization and quality Ruth Tambudzai Ngadze i Thesis committee Promotor Prof. Dr V. Fogliano Professor of Food Quality and Design Wageningen University & Research Co-promotors Dr A. R. Linnemann Assistant professor, Food Quality and Design Wageningen University & Research Dr R. Verkerk Associate professor, Food Quality and Design Wageningen University & Research Other members Prof. M. Arlorio, Università degli Studi del Piemonte Orientale A. Avogadro, Italy Dr A. Melse-Boonstra, Wageningen University & Research Prof. -
Shilin Yang Doctor of Philosophy
PHYTOCHEMICAL STUDIES OF ARTEMISIA ANNUA L. THESIS Presented by SHILIN YANG For the Degree of DOCTOR OF PHILOSOPHY of the UNIVERSITY OF LONDON DEPARTMENT OF PHARMACOGNOSY THE SCHOOL OF PHARMACY THE UNIVERSITY OF LONDON BRUNSWICK SQUARE, LONDON WC1N 1AX ProQuest Number: U063742 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest U063742 Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 ACKNOWLEDGEMENT I wish to express my sincere gratitude to Professor J.D. Phillipson and Dr. M.J.O’Neill for their supervision throughout the course of studies. I would especially like to thank Dr. M.F.Roberts for her great help. I like to thank Dr. K.C.S.C.Liu and B.C.Homeyer for their great help. My sincere thanks to Mrs.J.B.Hallsworth for her help. I am very grateful to the staff of the MS Spectroscopy Unit and NMR Unit of the School of Pharmacy, and the staff of the NMR Unit, King’s College, University of London, for running the MS and NMR spectra. -
Isolation and Functional Characterization of a Cdna Coding A
Isolation and functional characterization of a cDNA coding a hydroxycinnamoyltransferase involved in phenylpropanoid biosynthesis in Cynara cardunculus L Cinzia Comino, Sergio Lanteri, Ezio Portis, Alberto Acquadro, Annalisa Romani, Alain Hehn, Romain Larbat, Frédéric Bourgaud To cite this version: Cinzia Comino, Sergio Lanteri, Ezio Portis, Alberto Acquadro, Annalisa Romani, et al.. Isolation and functional characterization of a cDNA coding a hydroxycinnamoyltransferase involved in phenyl- propanoid biosynthesis in Cynara cardunculus L. BMC Plant Biology, BioMed Central, 2007, 7 (1), pp.14. 10.1186/1471-2229-7-14. hal-01738035 HAL Id: hal-01738035 https://hal.archives-ouvertes.fr/hal-01738035 Submitted on 20 Mar 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License BMC Plant Biology BioMed Central Research article Open Access Isolation and functional characterization of a cDNA coding a hydroxycinnamoyltransferase involved in phenylpropanoid biosynthesis in Cynara cardunculus -
Polypodium Vulgare L.: Polyphenolic Profile, Cytotoxicity and Cytoprotective Properties in Different Cell Lines
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 May 2021 doi:10.20944/preprints202105.0351.v1 Article Polypodium vulgare L.: polyphenolic profile, cytotoxicity and cytoprotective properties in different cell lines Adrià Farràs1,2, Víctor López2,4, Filippo Maggi3, Giovani Caprioli3, M.P. Vinardell1, Montserrat Mitjans1* 1Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, 08028 Barcelona, Spain; [email protected] (A.F.); [email protected] (P.V.); [email protected] (M.M.) 2Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Villanueva de Gállego, Zaragoza, 50830 Spain; [email protected] (A.F.); [email protected] (V.L.) 3School of Pharmacy, Università di Camerino, 62032 Camerino, Italy; [email protected] (F.M.); [email protected] (G.C.) 4Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, 50013 Zaragoza, Spain *Correspondence: [email protected] Abstract: Pteridophytes, represented by ferns and allies, are an important phytogenetic bridge between lower and higher plants (gymnosperms and angiosperms). Ferns have evolved independently of any other species in the plant kingdom being its secondary metabolism a reservoir of phytoconstituents characteristic of this taxon. The study of the possible medicinal uses of Polypodium vulgare L. (Polypodiaceae), PV, has increased particularly when in 2008 the European Medicines Agency published a monograph about the rhizome of this species. Thus, our objective is to provide scientific knowledge on the methanolic extract from the fronds of P. vulgare L., one of the main ferns described in the Prades Mountains, to contribute to the validation of certain traditional uses. Specifically, we have characterized the methanolic extract of PV fronds (PVM) by HPLC-DAD and investigated its potential cytotoxicity, phototoxicity, ROS production and protective effects against oxidative stress by using in vitro methods. -
Antioxidant Evaluation-Guided Chemical Profiling and Structure
www.nature.com/scientificreports OPEN Antioxidant evaluation-guided chemical profling and structure- activity analysis of leaf extracts from fve trees in Broussonetia and Morus (Moraceae) Xinxin Cao1, Lingguang Yang1, Qiang Xue1, Fan Yao1, Jing Sun1, Fuyu Yang2 & Yujun Liu 1* Morus and Broussonetia trees are widely used as food and/or feed. Among 23 phenolics identifed from leaves of fve Moraceae species using UPLC–QTOF–MS/MS, 15 were screened using DPPH/ABTS- guided HPLCs, including seven weak (favonoids with one hydroxyl on B-ring) and eight strong (four cafeoylquinic acids and four favonoids, each with a double hydroxyl on B-ring) antioxidants. We then determined the activity and synergistic efects of individual antioxidants and a mixture of the eight strongest antioxidants using DPPH-guided HPLC. Our fndings revealed that (1) favonoid glucuronide may have a more negative efect on antioxidant activity than glucoside, and (2) other compounds in the mixture may exert a negative synergistic efect on antioxidant activity of the four favonoids with B-ring double hydroxyls but not the four cafeoylquinic acids. In conclusion, the eight phenolics with the strongest antioxidant ability reliably represented the bioactivity of the fve extracts examined in this study. Moreover, the Morus alba hybrid had more phenolic biosynthesis machinery than its cross-parent M. alba, whereas the Broussonetia papyrifera hybrid had signifcantly less phenolic machinery than B. papyrifera. This diference is probably the main reason for livestock preference for the hybrid of B. papyrifera over B. papyrifera in feed. Morus and Broussonetia tree species (family: Moraceae) have high economic value; among other uses, their leaves are widely used as feed to improve meat quality. -
TAXON:Pluchea Carolinensis SCORE:16.0 RATING:High Risk
TAXON: Pluchea carolinensis SCORE: 16.0 RATING: High Risk Taxon: Pluchea carolinensis Family: Asteraceae Common Name(s): cattletongue Synonym(s): Conyza carolinensis Jacq. (basionym) cure-for-all Pluchea odorata auct. nonn. shrubby fleabane Pluchea symphytifolia auct. sourbush stinking fleabane sweet-scent tabat-diable wild tobacco Assessor: Chuck Chimera Status: Assessor Approved End Date: 11 May 2015 WRA Score: 16.0 Designation: H(Hawai'i) Rating: High Risk Keywords: Weedy Shrub, Aromatic, Hybridizes, Thicket-forming, Wind-dispersed Qsn # Question Answer Option Answer 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? 103 Does the species have weedy races? Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet (0-low; 1-intermediate; 2-high) (See Appendix 2) High tropical" for "tropical or subtropical" 202 Quality of climate match data (0-low; 1-intermediate; 2-high) (See Appendix 2) High 203 Broad climate suitability (environmental versatility) y=1, n=0 n Native or naturalized in regions with tropical or 204 y=1, n=0 y subtropical climates Does the species have a history of repeated introductions 205 y=-2, ?=-1, n=0 y outside its natural range? 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 y 302 Garden/amenity/disturbance weed 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see Appendix 2) y 304 Environmental weed n=0, y = 2*multiplier (see Appendix 2) y 305 Congeneric -
Biological Studies of the Plants from Genus Pluchea
Available online a t www.scholarsresearchlibrary.com Scholars Research Library Annals of Biological Research, 2011, 2 (3) : 25-34 (http://scholarsresearchlibrary.com/archive.html) ISSN 0976-1233 CODEN (USA): ABRNBW Biological Studies of the Plants from Genus Pluchea Surendra Kr Sharma *and Naveen Goyal Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, India ______________________________________________________________________________ ABSTRACT Pluchea is a genus of flowering plant in the Asteraceae family. The genus Pluchea (Asteraceae) comprises 80 species distributed mainly in North and South America, Africa, Asia and Australia. These are native to tropical and warm temperate areas. The plants of Pluchea genus have been used traditionally used as astringent, antipyretic, anti-inflammatory, hepatoprotective, diaphoretic in fevers, smooth muscle relaxant, nerve tonics, laxatives and for the treatment of dysentery, lumbago, leucorrhoea, dysuria, haemorrhoids, gangrenous ulcer and disorders causing cachexia. The chemical investigations on the genus have shown the presence of eudesmane-type sesquiterpenoids, monoterpenes, lignan glycosides, triterpenoids and flavonoids. The present review summarizes the various biological studies done on the extracts and bioactive phytoconstituents from the plants of the genus Pluchea over the past few decades. Key-words: Pluchea , Biological activity, Pharmacological activities, Asteraceae. ______________________________________________________________________________ -
Identification of Dietary Phytochemicals Capable Of
antioxidants Article Identification of Dietary Phytochemicals Capable of Enhancing the Autophagy Flux in HeLa and Caco-2 Human Cell Lines 1, 2, 1, 1 1 Kohta Ohnishi *, Satoshi Yano y, Moe Fujimoto y, Maiko Sakai , Erika Harumoto , Airi Furuichi 1, Masashi Masuda 1 , Hirokazu Ohminami 1, Hisami Yamanaka-Okumura 1 , Taichi Hara 2,* and Yutaka Taketani 1,* 1 Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan; [email protected] (M.F.); [email protected] (M.S.); [email protected] (E.H.); [email protected] (A.F.); [email protected] (M.M.); [email protected] (H.O.); [email protected] (H.Y.-O.) 2 Laboratory of Food and Life Science, Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa 359-1192, Japan; [email protected] * Correspondence: [email protected] (K.O.); [email protected] (T.H.); [email protected] (Y.T.); Tel.: +81-88-633-9595 (K.O. & Y.T.); +81-4-2947-6763 (T.H.) These authors contributed equally to this work. y Received: 19 October 2020; Accepted: 25 November 2020; Published: 27 November 2020 Abstract: Autophagy is a major degradation system for intracellular macromolecules. Its decline with age or obesity is related to the onset and development of various intractable diseases. Although dietary phytochemicals are expected to enhance autophagy for preventive medicine, few studies have addressed their effects on the autophagy flux, which is the focus of the current study. -
CLXX VIIL- the Methylation of Quercetin
View Article Online / Journal Homepage / Table of Contents for this issue 1632 PEREIN : THE METHYLATION OF QUERCETIN. CLXX VIIL- The Methylation of Quercetin. Published on 01 January 1913. Downloaded by Nanyang Technological University 25/08/2015 11:37:09. By ARTHURGEORGE PERKIN. WHEREASin 1884 Herzig (Monntsh., 5, 72) observed that quercetin could not be completely methylated by means of methyl iodide and alkali, v. Kostanecki and Dreher, as the result of their experiments with the monohydroxyxanthones (Rer., 1893, 26, 76), showed that although the methyl ethers of the 2-, 3-, and 4-compounds could be readily prepared by this method, the 1-hydroxyxanthone in which the hydroxyl is adjacent to the carbonyl group was thus not affected. In relation also to the dihydroxyxanthone, chrysin, Kostanecki states (Bey., 1893, 26, 2901), “Dass im Chrysin beim methyliren ein Hydroxyl unangeriffen bleibt . das Hydroxyl welches im Orthostellung steht, sich nicht methyliren lasst.” Alizarin (Schunck and Marchlewski, T., 1894, 65, 185) behaves similarly, and, indeed, this property has been so generally observed in the case of aromatic hydroxy-ketones and acids that the resist- View Article Online PERKIN : TEE METHY LATION OF QUERCETIN. 1633 ance of an hydroxyl group to methylation by this process has in many cases been considered to serve for the detection of a carbonyl group. Although ethyl iodide resembles methyl iodide in this respect, and it appears to have been generally considered that the complete ethylation of such hydroxy-compounds could not be effected by means of this reagent, certain exceptions in this case are to be found in the literature, notably as regards resaceto- phenone (Gregor, Mo?~nfsh.,1894, 15, 437, and Wechsler, ibid., p. -
A Preliminary List of the Vascular Plants and Wildlife at the Village Of
A Floristic Evaluation of the Natural Plant Communities and Grounds Occurring at The Key West Botanical Garden, Stock Island, Monroe County, Florida Steven W. Woodmansee [email protected] January 20, 2006 Submitted by The Institute for Regional Conservation 22601 S.W. 152 Avenue, Miami, Florida 33170 George D. Gann, Executive Director Submitted to CarolAnn Sharkey Key West Botanical Garden 5210 College Road Key West, Florida 33040 and Kate Marks Heritage Preservation 1012 14th Street, NW, Suite 1200 Washington DC 20005 Introduction The Key West Botanical Garden (KWBG) is located at 5210 College Road on Stock Island, Monroe County, Florida. It is a 7.5 acre conservation area, owned by the City of Key West. The KWBG requested that The Institute for Regional Conservation (IRC) conduct a floristic evaluation of its natural areas and grounds and to provide recommendations. Study Design On August 9-10, 2005 an inventory of all vascular plants was conducted at the KWBG. All areas of the KWBG were visited, including the newly acquired property to the south. Special attention was paid toward the remnant natural habitats. A preliminary plant list was established. Plant taxonomy generally follows Wunderlin (1998) and Bailey et al. (1976). Results Five distinct habitats were recorded for the KWBG. Two of which are human altered and are artificial being classified as developed upland and modified wetland. In addition, three natural habitats are found at the KWBG. They are coastal berm (here termed buttonwood hammock), rockland hammock, and tidal swamp habitats. Developed and Modified Habitats Garden and Developed Upland Areas The developed upland portions include the maintained garden areas as well as the cleared parking areas, building edges, and paths. -
Genetic Diversity and Evolution in Lactuca L. (Asteraceae)
Genetic diversity and evolution in Lactuca L. (Asteraceae) from phylogeny to molecular breeding Zhen Wei Thesis committee Promotor Prof. Dr M.E. Schranz Professor of Biosystematics Wageningen University Other members Prof. Dr P.C. Struik, Wageningen University Dr N. Kilian, Free University of Berlin, Germany Dr R. van Treuren, Wageningen University Dr M.J.W. Jeuken, Wageningen University This research was conducted under the auspices of the Graduate School of Experimental Plant Sciences. Genetic diversity and evolution in Lactuca L. (Asteraceae) from phylogeny to molecular breeding Zhen Wei Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr A.P.J. Mol, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Monday 25 January 2016 at 1.30 p.m. in the Aula. Zhen Wei Genetic diversity and evolution in Lactuca L. (Asteraceae) - from phylogeny to molecular breeding, 210 pages. PhD thesis, Wageningen University, Wageningen, NL (2016) With references, with summary in Dutch and English ISBN 978-94-6257-614-8 Contents Chapter 1 General introduction 7 Chapter 2 Phylogenetic relationships within Lactuca L. (Asteraceae), including African species, based on chloroplast DNA sequence comparisons* 31 Chapter 3 Phylogenetic analysis of Lactuca L. and closely related genera (Asteraceae), using complete chloroplast genomes and nuclear rDNA sequences 99 Chapter 4 A mixed model QTL analysis for salt tolerance in