RESEARCH ARTICLE LRRC8A is essential for hypotonicity-, but not for DAMP-induced NLRP3 inflammasome activation Jack P Green1,2†*, Tessa Swanton1,2†, Lucy V Morris1,2, Lina Y El-Sharkawy3, James Cook1,2, Shi Yu1,2, James Beswick3, Antony D Adamson4, Neil E Humphreys4,5, Richard Bryce3, Sally Freeman3, Catherine Lawrence1,2, David Brough1,2* 1Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom; 2Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom; 3Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom; 4Genome Editing Unit Core Facility, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; 5EMBL-ROME, Epigenetics and Neurobiology Unit, Adriano Buzzati-Traverso Campus, Monterotondo, Italy Abstract The NLRP3 inflammasome is a multi-molecular protein complex that converts inactive *For correspondence: cytokine precursors into active forms of IL-1b and IL-18. The NLRP3 inflammasome is frequently
[email protected] associated with the damaging inflammation of non-communicable disease states and is considered (JPG); an attractive therapeutic target. However, there is much regarding the mechanism of NLRP3
[email protected] (DB) activation that remains unknown. Chloride efflux is suggested as an important step in NLRP3 activation, but which chloride channels are involved is still unknown. We used chemical, † These authors contributed biochemical, and genetic approaches to establish the importance of chloride channels in the equally to this work regulation of NLRP3 in murine macrophages.