Finite Element Method Validity on Biconic Cusp Magnetic Confinement

Total Page:16

File Type:pdf, Size:1020Kb

Finite Element Method Validity on Biconic Cusp Magnetic Confinement Finite Element Method Validity on Biconic Cusp Magnetic Confinement Jonathan Kelley June 3, 2017 1 Abstract Energy generation through nuclear fusion has been a focus of research for several decades. One such concept employs inertial electrostatic confinement of charged ions, accelerating fusion fuel with sufficient kinetic energy to satisfy the lawson criterion. This concept was analyzed using the finite element method using the EMWorks FEM pacakge for SOLIDWORKS, with a focus on magnetic and electrostatic field interactions in a biconic and quasipsherical cusp system. The SOLIDWORKS model was then used to construct a physical system with according characteristics. An analysis was performed measuring the magnetic field of the physical model with comparison to the finite element model. A single and dual coil biconic cusp system was constructed to match the SOLIDWORKS model specifications and tested with a hall effect magnetic field probe. The results proved that the β field behavior of the FEM model was indeed similar to the experimental devices. However, continual development of the FEM model and coil construction is required to numerically validate the FEM model for use in inertial electrostatic confinement fusion. 1 Final Paper EE442 1 2 Introduction Nuclear fusion with the aim of generating usable electric power has undergone significant research for several decades [20]. According to Ongena and Ogawa, nuclear fusion is appealing as a new source of power because of its desirable en- vironmental considerations and virtually inexhaustible fuel supply [15]. There are currently many different strategies for generating the fusion conditions re- quired for efficient atomic nuclei reactions. Some systems involve containing a heated plasma while others focus on bringing solid fuel to ignition conditions. This paper explores the design of the electromagnetic coils for fusion systems with the unique characteristic of a combination electrostatic and magnetostatic fuel acceleration. The β fields are studied in depth against a new finite ele- ment method that allows for rapid iteration and design in the SOLIDWORKS software package. Modern research in the development of nuclear fusion devices follows two main strategies. The first strategy involves the use of magnetic fields to contain a very energetic dense plasma of light atomic nuclei[14]. This approach is com- monly found in systems like stellerators and tokamaks such as the Wendelstein 7-X project in Germany and the ITER project in France. A second approach fol- lows inertial confinement of a solid fuel pellet that is heated to fusion conditions by a laser or ion beam [4]. This technique has been successfully demonstrated in the National Ignition Facility at the Lawrence Livermore National Laboratory. While these techniques have been moderately successful, there are several other methods of achieving fusion conditions with the intent to generate electrical energy. Of the other various nuclear fusion strategies, the formation of a potential well through the confinement of electrons has shown promising results. EMC2 has reported neutron emission of 1E9 fus/sec [19] with a quasi-spherical mag- netic trap and ionized deuterium injection. The potential well created by mag- netic cusp confinement of electrons generates substantial electric potential for the positively charged deuterium gas to reach sufficient kinetic energy for fusion. One such device that utilizes this strategy is the Polywell fusor. The Polywell system is an improvement on traditional electrostatic confinement as there are no electron losses due to conduction with physical cathode. The electrical po- tential as generated by the confined electrons serves as a "virtual cathode," accelerating the fuel ions. Despite being an adequate solution for conduction losses, the official Polywell design [8] continues to struggle from losses due to bremsstrahlung radiation [3], conduction losses to unshielded construction [16], and cusp losses [11] by elec- tron leakage [2]. In the 1991 paper on electron leakage, Bussard describes that cusp losses constitute the majority of losses in the simulated Polywell system. Conduction losses to joints and unshielded surfaces contributed the majority of loss for the early Polywell design, but this was identified and rounder solenoids and shielding was implemented to mitigate conduction effects [8]. It is estimated that no more than 3E-5 fractional surface area of the machine can be unshielded to fully mitigate conduction losses [19]. Electron leakage through point cusps Final Paper EE442 2 generated by the magnetic field serves as the current major loss mechanism for Polywell theory[19]. As electron leakage from the containment field is the major contribution to cusp loss, it is important to identify the factors that lead to poor confinement. There are several aspects to quasi-spherical magnetic trapping that impact effi- ciency and potential well depth. Efficiency when concerning this system relates the amount of electrons injected into the well and the depth of the well itself. Systems that do not trap the electrons for a substantial amount of time will be much more inefficient as more electrons are required to maintain the well. The electrons lost in this system are predicted and verified to escape through point cusps generated by parallel magnetic fields located in near the vertexes and face centers of the quasi-spherical system. In a complete cubic Polywell system, this corresponds to 27 point cusps [5] and 10 linear cusps when spaced far apart. The classic biconic cusp system has only two point cusps and a very large ring cusp along the mid plane of the two electromagnets. It has been found that linear and ring cusps contribute to the majority of loss for a Polywell system [17], however attempts to reduce such cusps in favor of more point cusps has only demonstrated a very small improvement. This is because electron loss is proportional to the total amount of point cusps in the system. Despite the similar loss rates, confinement time of electrons was increased by 2.5 times that of the standard 27 point cusp system [18]. While the losses and transit times associated with the point cusps are easier to calculate, the cusps created by coils spaced less than their critical distance are much more complicated and thusly named "funny cusps." It is key when designing a magnetic trapping system to minimize spacing between coils as the complex cusps are eliminated. In addi- tion to minimzing loss, recent simulations have also demonstrated an increased transit time for electrons entering the null point [13]. This is valuable as per the Lawson Criteria [12] where greater confinement time increases the likelihood of fusion. Despite the realization that high beta confinement increases the potential well in a Polywell system, the plasma must first enter low beta and experience similar loss mechanisms. There have been several studies that successfully model electron trajectory in a low beta systems because electrostatic effects between the electrons is ignored; the plasma pressure is low enough to assume indepen- dent particle motion[13, 5, 6]. Ultimately, a Polywell system with reduced loss will consist of high beta plasma confinement and the reduction of point cusps. This will increase electron density and minimize loss due to poor cusp confine- ment [8]. A major point of interest is reducing losses due to point and line cusps generated by coil arrangement. There are several ideas that involve electrostatic repulsion as a virtual barrier to electrons escaping through point and line cusps. In a traditional magnetic mirror system, plasma is confined axially symmetric through two sets of electromagnetic coils. However, the charged particles of the plasma follow the magnetic field lines and expand in the space between the coils [1]. Early researchers implemented Joeffe bars as a way to stabilize plasma in this region, but it was determined that Joeffe bars do not completely close ring cusps, but rather form sets of linear cusps [17]. In addition, the geometry of the Final Paper EE442 3 Joeffe bars does not integrate with the quasi-spherical polyhedron arrangement of the confinement coils. The second theory of eliminating point cusp loss is through the use of elec- trostatic repeller plates that generate an electric field barrier. In a low beta environment, point cusp loss can be modeled by the Child-Langmuir law and the amount of power lost can be estimated. While repeller plates demonstrate loss in theory, they have not yet been proven to adequately reduce electron loss [5]. Dolan explored the concept of penning traps and electrostatic plugging in a magnetic confinement system with traditional plasma behavior. However, it is noted that the Polywell and penning trap systems would benefit from elec- trostatic plugging despite inadequate performance on spindle cusp systems[7]. However, it is noted that repeller plates would suffer from conduction losses if placed within an effective range for the point cusps. Despite this, the concept of electrostatic plugging remains a valid solution to reducing point cusp losses. A simulation by an Australian research team includes both magnetic and electro- static fields contained within the device with the electric field source centered about the coil geometry [10]. The resulting structure is a combination of classic insulating magnetic coils and an external electric field that generates a mirror electric point cusp within the coil face to prevent electron loss. In a hybrid system that combines electric and magnetic fields as described in the Sydney experiment, the confinement time of electrons is increased. Due to the addition of the electric field, the strength of the virtual anode is significantly increased and more energy is transferred to the ion fuel, raising the rate of fusion. The virtual cathode generated by electrons in the magnetic confinement system works in tandem with a new virtual anode generated by the electric field. Currently, this is the only study that investigates the combination of electric fields and magnetic fields in a biconic cusp configuration with high fidelity.
Recommended publications
  • Thermonuclear AB-Reactors for Aerospace
    1 Article Micro Thermonuclear Reactor after Ct 9 18 06 AIAA-2006-8104 Micro -Thermonuclear AB-Reactors for Aerospace* Alexander Bolonkin C&R, 1310 Avenue R, #F-6, Brooklyn, NY 11229, USA T/F 718-339-4563, [email protected], [email protected], http://Bolonkin.narod.ru Abstract About fifty years ago, scientists conducted R&D of a thermonuclear reactor that promises a true revolution in the energy industry and, especially, in aerospace. Using such a reactor, aircraft could undertake flights of very long distance and for extended periods and that, of course, decreases a significant cost of aerial transportation, allowing the saving of ever-more expensive imported oil-based fuels. (As of mid-2006, the USA’s DoD has a program to make aircraft fuel from domestic natural gas sources.) The temperature and pressure required for any particular fuel to fuse is known as the Lawson criterion L. Lawson criterion relates to plasma production temperature, plasma density and time. The thermonuclear reaction is realised when L > 1014. There are two main methods of nuclear fusion: inertial confinement fusion (ICF) and magnetic confinement fusion (MCF). Existing thermonuclear reactors are very complex, expensive, large, and heavy. They cannot achieve the Lawson criterion. The author offers several innovations that he first suggested publicly early in 1983 for the AB multi- reflex engine, space propulsion, getting energy from plasma, etc. (see: A. Bolonkin, Non-Rocket Space Launch and Flight, Elsevier, London, 2006, Chapters 12, 3A). It is the micro-thermonuclear AB- Reactors. That is new micro-thermonuclear reactor with very small fuel pellet that uses plasma confinement generated by multi-reflection of laser beam or its own magnetic field.
    [Show full text]
  • Article Thermonuclear Bomb 5 7 12
    1 Inexpensive Mini Thermonuclear Reactor By Alexander Bolonkin [email protected] New York, April 2012 2 Article Thermonuclear Reactor 1 26 13 Inexpensive Mini Thermonuclear Reactor By Alexander Bolonkin C&R Co., [email protected] Abstract This proposed design for a mini thermonuclear reactor uses a method based upon a series of important innovations. A cumulative explosion presses a capsule with nuclear fuel up to 100 thousands of atmospheres, the explosive electric generator heats the capsule/pellet up to 100 million degrees and a special capsule and a special cover which keeps these pressure and temperature in capsule up to 0.001 sec. which is sufficient for Lawson criteria for ignition of thermonuclear fuel. Major advantages of these reactors/bombs is its very low cost, dimension, weight and easy production, which does not require a complex industry. The mini thermonuclear bomb can be delivered as a shell by conventional gun (from 155 mm), small civil aircraft, boat or even by an individual. The same method may be used for thermonuclear engine for electric energy plants, ships, aircrafts, tracks and rockets. ----------------------------------------------------------------------- Key words: Thermonuclear mini bomb, thermonuclear reactor, nuclear energy, nuclear engine, nuclear space propulsion. Introduction It is common knowledge that thermonuclear bombs are extremely powerful but very expensive and difficult to produce as it requires a conventional nuclear bomb for ignition. In stark contrast, the Mini Thermonuclear Bomb is very inexpensive. Moreover, in contrast to conventional dangerous radioactive or neutron bombs which generates enormous power, the Mini Thermonuclear Bomb does not have gamma or neutron radiation which, in effect, makes it a ―clean‖ bomb having only the flash and shock wave of a conventional explosive but much more powerful (from 1 ton of TNT and more, for example 100 tons).
    [Show full text]
  • Cumulative List of INFUSE Awards
    Cumulative List of INFUSE Awards INFUSE 2021a, June 14, 2021 Company: Air Squared, Inc., DUNS: 824841027 Title: Design, test, and evaluation of a scroll roughing vacuum pump with filter and Vespel tip seals for tritium handling Abstract: Development of a novel scroll pump that meets the strict containment levels of D/T experimental campaigns aiming to replace both the scroll and metal bellows pumps with a single scroll pump utilizing Vespel tip seals to demonstrate improved reliability, discharge pressure, and reduced costs. Co. PI: Mr. John Wilson Co. e-mail: [email protected] Laboratory: ORNL Lab PI: Mr. Charles Smith III, [email protected] Cumulative List of INFUSE Awards INFUSE 2021a, June 14, 2021 Company: Commonwealth Fusion Systems, DUNS: 117005109 Title: Informing Layout and Performance Requirements for SPARC Massive Gas Injection Abstract: Commonwealth Fusion Systems (CFS) is designing a compact tokamak called SPARC and is evaluating massive gas injection (MGI) as its primary means of plasma disruption mitigation technique. Present conservative scoping has enabled a preliminary design of the MGI system. However, physics-based modeling can help CFS inform an optimized layout, which can either reduce the cost of MGI system by reducing the number of gas injectors or provide supporting evidence that present scoping estimates are correct. This program leverages the 3D magneto-hydrodynamic modeling expertise at Princeton Plasma Physics Laboratory (PPPL), which is maintained through the development and use of the M3D-C1 code. CFS and PPPL will develop a gas source model representative of SPARC MGI’s system. PPPL would then use M3D- C1 to simulate unmitigated SPARC disruptions, to develop a baseline response, and then simulate mitigated disruptions representing a variety of MGI system configurations.
    [Show full text]
  • Arxiv:2105.10954V1 [Physics.Plasm-Ph] 23 May 2021
    manuscript No. (will be inserted by the editor) Progress toward Fusion Energy Breakeven and Gain as Measured against the Lawson Criterion Samuel E. Wurzel · Scott C. Hsu the date of receipt and acceptance should be inserted later Abstract The Lawson criterion is a key concept in the products exceeds the sum of the energy required to heat pursuit of fusion energy, relating the fuel density n, (en- the fusion fuel and the energy lost from the fusion fuel ergy) confinement time τ, and fuel temperature T to due to radiation, Lawson concluded that the product the energy gain Q of a fusion plasma. The purpose of of fuel density n and pulse duration τ (Lawson used this paper is to explain and review the Lawson crite- t) must exceed a certain threshold value. When ther- rion and to provide a compilation of achieved parame- mal conduction losses are included (extending Lawson's ters for a broad range of historical and contemporary analysis), the product of n and energy confinement time fusion experiments. Although this paper focuses on the τE must exceed a certain threshold value. We call this Lawson criterion, it is only one of many equally impor- product nτE (also nτ) the Lawson parameter. A suffi- tant factors in assessing the progress and ultimate like- ciently high T is implied such that the energy of charged lihood of any fusion concept becoming a commercially fusion products overcomes radiation losses. These con- viable fusion energy system. Only experimentally mea- ditions are now known as the Lawson criterion. A fusion sured or inferred values of n, τ, and T that have been plasma that has reached these conditions is said to have published in the peer-reviewed literature are included achieved ignition.
    [Show full text]
  • ICF Ignition, the Lawson Criterion and Comparison with MCF FSC Deuterium–Tritium Plasmas 100 Ignition
    ICF Ignition, the Lawson Criterion and Comparison with MCF FSC Deuterium–Tritium Plasmas 100 Ignition E Q ~ 10 x i OMEGA (2009) T i 10 Q ~ 1 n Q = Tokamaks 1993–1999 W /W ) Fusion Input Q ~ 0.1 1 W = energy Laser direct kev s kev Q ~ 0.01 3 drive (1996) – 0.1 m Q ~ 0.001 Laser direct 20 0.01 drive (1986) 10 ( Q ~ 0.0001 Laser indirect 0.001 drive (1986) Q ~ 0.00001 Lawson fusion parameter, Lawson fusion parameter, 0.0001 0.1 1 10 100 “Review of Burning Plasma Physics,” Central ion temperature (keV) FESAC Report (September 2001). 51st Annual Meeting of the R. Betti American Physical Society University of Rochester Division of Plasma Physics Fusion Science Center and Atlanta, GA Laboratory for Laser Energetics 2–6 November 2009 Collaborators FSC K. S. Anderson (UO5.00004) P. Chang (TO5.00004) R. Nora C. D. Zhou University of Rochester Laboratory for Laser Energetics B. Spears (UO5.00013) J. Edwards S. Haan J. Lindl Lawrence Livermore National Laboratory Summary The measurable Lawson criterion and hydro-equivalent curves determine the requirements for an early hydro-equivalent demonstration of ignition on OMEGA and on the NIF (THD) FSC • Cryogenic implosions on OMEGA have achieved a Lawson parameter PxE á 1 atm-s comparable to large tokamaks • Performance requirements for hydroequivalent ignition on OMEGA and NIF (THD)* GtRH GT H YOC Px Hydro-equivalent ignition n i n E g/cm2 keV (atm s) 15% OMEGA (25 kJ) ~0.30 ~3.4 (~3 × 1013 2.6 neutrons) NIF (THD) ~1.8 ~4.7 ~40% 20 * NIF will begin the cryogenic implosion campaign using a surrogate Tritium– Hydrogen–Deuterium (THD) target.
    [Show full text]
  • Computer Simulations of the ITER Fusion Reactor Federico D
    Computer simulations of the ITER fusion reactor Federico D. Halpern*, Glenn Bateman, Christopher M. Wolfe, Alexei Pankin, and A. H. Kritz Department of Physics, Lehigh University ITER [1], the thermonuclear experimental device currently under construction in France, is the first fusion reactor that is expected to produce large amounts of power. In ITER, energy will be produced from the fusion of hydrogen isotopes (deuterium and tritium) into helium. In order to overcome the electrostatic repulsion between atomic nuclei, the mixture of deuterium and tritium gas must be heated to extremely high temperatures. The resulting gas forms a plasma in which atomic nuclei and electrons are no longer bound together. Fusion reactors such as ITER confine plasmas using strong magnetic fields. Plasmas must be confined for a long enough period of time at sufficiently high temperature and density to produce more fusion power than input power. This energy confinement prerequisite for fusion, usually expressed using the Lawson criterion [2], cannot be achieved in present day reactors. ITER is expected to confine plasma discharges for 500 seconds, at a density of 1020 m-3, and a temperature of 20 KeV, which is about 15 times the temperature of the center of the sun. It is anticipated that ITER will produce about ten times more fusion power than input power. The first plasma operation is projected to be in 2017. In the research described here, the performance of ITER is predicted with computer modeling simulations that are carried Figure 1: Rendition of the ITER design. To illustrate out using leading theory-based models for the colossal scale of the device, a person is shown whole-device simulations.
    [Show full text]
  • Introduction to Magnetic Fusion
    MIT Plasma Science & Fusion Center Introduction to Magnetic Fusion Dennis Whyte MIT Plasma Science and Fusion Center Nuclear Science and Engineering SULI, PPPL June 2015 Whyte, MFE, SULI 2015 1 Overview: Fusion Energy • Why? ! To meet growing world energy demands using a safe, clean method of producing electricity. • What? ! Extract net energy from controlled thermonuclear fusion of light elements • Who? ! International research teams of engineers and physicists. • Where? ! Research is worldwide ….eventual energy source has few geographical restrictions. • When? ! Many feasibility issues resolved….demonstration in next decades • How? ! This lecture Whyte, MFE, SULI 2015 2 Fusion & fission: binding energy, E = Δm c2 Whyte, MFE, SULI 2015 3 Thermonuclear fusion of hydrogen powers the universe: stars Whyte, MFE, SULI 2015 4 As a terrestrial energy source we are primarily interested in the exothermic fusion reactions of heavier hydrogenic isotopes and 3He • Hydrogenic species definitions: ! Hydrogen or p (M=1), Deuterium (M=2), Tritium (M=3) Whyte, MFE, SULI 2015 5 Exothermic fusion reactions of interest Net energy gain is distributed in the Kinetic energy of the fusion products Whyte, MFE, SULI 2015 6 D-T fusion facts d + t → α + n Q = 17.6 MeV 2 3 4 1 H + 1 H → 2 He + n Q = 17.6 MeV Conservation of energy & linear momentum when Ed,t<<Q mn 1 mα 4 Eα ! Q = QDT = 3.5 MeV En ! Q = QDT = 14.1 MeV mα + mn 5 mα + mn 5 Whyte, MFE, SULI 2015 7 A note about units • In nuclear engineering, nuclear science and plasmas we use the unit of electron-volt “eV” for both energy and temperature ! N.B.
    [Show full text]
  • The Fairy Tale of Nuclear Fusion L
    The Fairy Tale of Nuclear Fusion L. J. Reinders The Fairy Tale of Nuclear Fusion 123 L. J. Reinders Panningen, The Netherlands ISBN 978-3-030-64343-0 ISBN 978-3-030-64344-7 (eBook) https://doi.org/10.1007/978-3-030-64344-7 © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland When you are studying any matter or considering any philosophy, ask yourself only what are the facts and what is the truth that the facts bear out.
    [Show full text]
  • Toroidal Plasma Conditions Where the P-11B Fusion Lawson Criterion Could Be Eased
    Toroidal plasma conditions where the p-11B fusion Lawson criterion could be eased Yueng-Kay Peng ( [email protected] ) ENN Science and Technology Development Co., Ltd. https://orcid.org/0000-0003-2948-1058 Yuejiang Shi ENN Science and Technology Development Co., Ltd. Mingyuan Wang ENN Science and Technology Development Co., Ltd. Bing Liu ENN Science and Technology Development Co., Ltd. Xueqing Yan Peking University Article Keywords: Posted Date: October 26th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-93644/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/11 Abstract We examine the theoretical conditions in which the Lawson ignition criterion for p-11B fusion in a magnetized toroidal plasma can be reduced substantially. It is determined that a velocity differential between the protons and the boron ions of the order of the plasma sound speed (Mach number of 1 or 2 at a plasma temperature of ~102 keV) could raise the p-11B fusion reaction rate to ~2x10-22 m3/s or ~6x10-22 m^3/s, respectively, from the ~1x10-22 m3/s level in a static plasma. The Lawson triple product 23 -3 (ni τE Ti) required for ignition can thereby be reduced to as low as ~10 m s keV, which is one order of magnitude above the ITER requirement for D-T burn. Since order-unity Mach numbers in velocity differentials between deuterons and impurity carbon ions have been maintained in tokamak plasmas under excellent connement conditions, similar levels of velocity differentials between protons and minority boron-11 ions could in principle be maintained also.
    [Show full text]
  • Nuclear Fusion Benjamin Harack
    Nuclear Fusion Benjamin Harack 2 Overview Introduction to Nuclear Fusion Analysis Tools Fusion Processes (Fuel Cycles) Considerations for Implementations Implementation Types Fusion's Status and Future 3 Fusion Nuclear fusion refers to any process of interaction of two nuclei in which they combine to form a heavier nucleus. For light elements, this process typically emits extra particles such as electrons and neutrinos along with a relatively large amount of energy. 4 Fusion as a Power Source The goal of fusion power production is to harness reactions of this nature to produce electrical power. Thermal power plants convert heat into electricity via a heat engine. Direct conversion involves capturing charged particles to create a current. 5 Net Energy We want net energy output from our fusion power plant. Later on we look at the details of the fusion energy gain factor Q, a useful quantity for describing the energy balance of a reactor. 6 Steady State Power In order to be producing useful electrical power, the reaction must be either in dynamic equilibrium or pulsed quickly. – JET (1982-present) (Joint European Torus) – ITER (~2018) (originally International Thermonuclear Experimental Reactor) – DEMO (~2033) (DEMOnstration Power Plant) 7 Energy Capture • Emitted energy from fusion reactions is primarily in the form of high energy neutrons and various charged particles. • Charged particles skid to a halt mainly through electromagnetic interactions • Neutrons deposit energy primarily through nuclear interactions. • Stopping neutrons generally requires different shielding than charged particles. 8 Safety Concerns The most popular fusion reactions produce a lot of neutron radiation. This fact has associated safety concerns: – Direct Neutron Flux – Activated Materials 9 Our Focus Most of the scientific work in fusion has been focused on achieving net energy gain.
    [Show full text]
  • Derivation of Lawson Criterion for D-T
    Benjamin Harack 1 Derivation of Lawson Criterion for D-T We are interested in how long the plasma contains energy. We use the quantity τE, called the ‘confinement time'. This is a measure of the rate at which the system loses energy to the environment. It can be defined as the energy content of the plasma divided by the power loss. W τE = (1) Ploss Where W is the energy content of the plasma, and Ploss is the power loss. The thermal energy of a plasma can be defined as: Z 3 W = k(n − T − + (n + n )T )dV (2) 2 e e D T ions Where k is Boltzmann's constant, ne− is the electron density, Te− is the electron temperature, nD and nT are the ion densities of deuterium and tritium respectively and Tions is their temperature. The integral is over the volume. If we assume that all temperatures are the same, and that the densities of tritium and deuterium are equal, we get: W = 3n k T (3) V e B Where in this equation, ne is the electron density and V is the volume. The number of fusions per volume per time is given by: 1 f = n n hσvi = n2hσvi (4) D T 4 e Where f is the number of fusions per volume per time, nD and nT are the ion densities of deuterium and tritium respectively, σ is the fusion cross-section, v is the relative velocity. The angle brackets mean an average over the Maxwellian velocity distribution. We are also assuming that the densities of the ions are equal, and that their total density is equal to the total electron density ne.
    [Show full text]
  • What Is Fusion? Two Fusion Types
    October 2016 October 2016 WHAT IS FUSION? TWO FUSION TYPES NEUTRONIC ANEUTRONIC TWO FUSION TYPES NEUTRONIC ANEUTRONIC TWO FUSION TYPES NEUTRONIC ANEUTRONIC produces neutrons produces NO neutrons NEUTRONIC FUSION • D+T -> He3 + n Deuterium + Tritium -> Helium-3 + neutron • Some radioactive waste, heat converted to electricity • Government funded, mainly • Far more expensive to build and maintain safely ANEUTRONIC FUSION • p+ B11 -> 3 He4 Hydrogen + Boron11 -> 3Helium-4, no neutrons • NO radioactive waste • direct conversion to electricity, no turbines needed • potentially far cheaper • Privately funded, mainly TWO FUSION TYPES NEUTRONIC ANEUTRONIC • D+T -> He3 + n • p+ B11 -> 3 He4 Deuterium + Tritium -> Hydrogen + Boron11 -> 3Helium-4, no neutrons Helium-3 + neutron • Some radioactive waste, • NO radioactive waste heat converted to • direct conversion to electricity electricity, no turbines • Government funded, needed mainly • potentially far cheaper • Far more expensive to build and maintain safely • Privately funded, mainly ANEUTRONIC FUSION Aneutronic → No neutrons → No Radioactive waste THE INGREDIENTS OF NET FUSION ENERGY TEMPERATURE T CONFINEMENT TIME DENSITY n EFFICIENCY THE INGREDIENTS OF NET FUSION ENERGY TEMPERATURE T CONFINEMENT TIME DENSITY n EFFICIENCY THE INGREDIENTS OF NET FUSION ENERGY TEMPERATURE T CONFINEMENT TIME DENSITY n EFFICIENCY THE INGREDIENTS OF NET FUSION ENERGY TEMPERATURE T CONFINEMENT TIME DENSITY n EFFICIENCY THE INGREDIENTS OF NET FUSION ENERGY TEMPERATURE T CONFINEMENT TIME DENSITY n EFFICIENCY FUSION
    [Show full text]