Drospirenone for Oral Contraception and Hormone Replacement Therapy Are Its Cardiovascular Risks and Benefits the Same As Other Progestogens?

Total Page:16

File Type:pdf, Size:1020Kb

Drospirenone for Oral Contraception and Hormone Replacement Therapy Are Its Cardiovascular Risks and Benefits the Same As Other Progestogens? Drugs 2007; 67 (5): 647-655 CURRENT OPINION 0012-6667/07/0005-0647/$44.95/0 © 2007 Adis Data Information BV. All rights reserved. Drospirenone for Oral Contraception and Hormone Replacement Therapy Are its Cardiovascular Risks and Benefits the Same as Other Progestogens? Apurva Motivala and Bertram Pitt Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA Abstract The use of combined estrogen/progesterone has been shown to result in an increased cardiovascular risk in randomised double-blinded trials. However, these studies used oral progestogen (progestin) preparations, which lack anti-mineralo- corticoid activity and have suboptimal anti-androgenic activity compared with progesterone. Drospirenone is a unique progestogen that has clinically been shown to have anti-mineralocorticoid/anti-androgenic effects. Drospirenone in combination with estrogen is currently being used for oral contraception and hormone replacement therapy, and has been shown to have favourable effects on a number of cardiovascular risk factors. Our review of the literature suggests that because of its anti-mineralocorticoid effects, drospirenone in conjunction with estrogen may prevent the development of cardiovascular disease in both pre- and post-menopausal women. Most women become menopausal between the demonstrating a protective effect of estrogen on the ages of 45 and 55 years. Currently, estrogen is the heart and bone. However, the demonstration of in- most effective modality for the relief of post-meno- creased cardiovascular risk with unopposed es- pausal symptoms.[1] Estrogen is usually given short trogen or combined estrogen/progestogen therapy in term for peri-menopausal symptoms (6 months to the Women’s Health Initiative (WHI) has led to a 4–5 years), with the goal of eventually tapering and rapid change in clinical practice patterns. In the US, discontinuing the estrogen (unless there is a compel- annual hormone therapy prescriptions decreased by ling reason to continue it long term). 38% in the year after the first WHI publication in For the past 2–3 decades, long-term estrogen and July 2002.[2] combined estrogen/progestogen (progestin) thera- On the basis of the WHI trial results, and consis- pies have been routinely prescribed for the preven- tent with guidelines as well as updated recommen- tion of coronary heart disease (CHD) and osteo- dations issued by the American Heart Association porosis, based upon extensive observational data (AHA), combined estrogen/progestogen therapy is 648 Motivala & Pitt no longer recommended for primary or secondary and to cause sodium retention and potassium loss. It prevention of CHD in post-menopausal women.[3] is now recognised that MR are present not only in There is a suggestion, although not compelling evi- the distal renal tubule but in the heart, brain, salivary dence, that the adverse effects of combined es- glands and intestines. It was also thought that angi- trogen/progestogen therapy are due to the proges- otensin II was the principal stimulus for the produc- togen component. tion of aldosterone by the adrenal gland and that Younger women in their reproductive period tak- ACE inhibitors or angiotensin receptor antagonists ing oral estrogen/progestogen supplements for con- (or blockers [ARBs]) were effective in blocking the traception are also at an increased risk of cardiovas- production of aldosterone. However, studies in the cular disease. The use of these agents leads to a angiotensin knockout mouse by Okubo et al.[7] have small but significant blood pressure elevation, an shown that aldosterone can be released from the impaired fasting glucose, a small increase in is- adrenal gland independent of angiotensin II, since chaemic stroke risk, and may be associated with an other stimuli such as potassium may be of equal or increased risk of myocardial infarction. However, greater importance under certain circumstances. this risk has substantially reduced because of the Once released from the adrenal gland, aldosterone reduction in the estrogen dose in these supplements. has been shown to have a number of unfavourable Drospirenone differs from the other currently effects on the cardiovascular system in addition to available progestogens in that it has anti-miner- its effects on sodium and potassium.[8] Patients with alocorticoid activity. Therefore, it has the potential primary aldosteronism have been shown to have an to prevent the development and consequences of increased risk of myocardial infarction, stroke, renal cardiovascular disease in pre- and post-menopausal dysfunction, left ventricular hypertrophy and atrial women, as suggested by recent trials of anti-miner- fibrillation compared with patients with essential alocorticoid agents in patients with severe heart hypertension at equivalent blood pressures. failure and left ventricular dysfunction post-myocar- Plasma aldosterone increases tissue ACE,[9] en- dial infarction.[4,5] dothelin[10] and noradrenaline (norepinephrine),[11] Thus, it is appropriate to review the recent litera- resulting in a number of vicious cycles with a further ture in regard to anti-mineralocorticoid therapy and increase in plasma aldosterone levels. Subsequent drospirenone in particular, to explore its potential to activation of the MR results in pro-inflammatory provide cardioprotection when used as an oral con- effects that are vasculotoxic. We now recognise that traceptive as well as for hormone replacement ther- aldosterone contributes to myocardial and vascular apy in post-menopausal women. stiffness, myocardial and vascular hypertrophy, apoptosis, an increase in myocardial calcium con- 1. Relevant Pathophysiology of tent, hypokalaemia, ventricular arrhythmias, renal Cardiovascular Disease dysfunction and endothelial dysfunction, as well as autonomic and central nervous dysfunction (table [8] 1.1 Role of Aldosterone I). [6] In 1964, Conn et al. observed a high incidence 1.2 Anti-Inflammatory Effects of of hypertension and cardiovascular pathological Mineralocorticoid Receptor (MR) Blockade changes in patients with hyperaldosteronism. Aldos- terone was originally thought to activate miner- Studies using MR blockade in the salt-fed spon- alocorticoid receptors (MR) in the distal renal tubule taneously hypertensive rat stroke-prone model have © 2007 Adis Data Information BV. All rights reserved. Drugs 2007; 67 (5) Cardiovascular Risks and Benefits of Drospirenone 649 Table I. Effects of mineralocorticoid receptor activation 1.3 Cardiovascular Benefits of Aldosterone Endothelial dysfunction Receptor Inhibition Increased free oxygen radicals Increased cytokine production In the 1970s and 1980s, it was assumed that ACE Inflammation inhibition was sufficient to decrease synthesis of Vascular remodelling and decreased vascular compliance Atherosclerosis serum aldosterone. However, ‘aldosterone escape’ Vasoconstriction (where long-term treatment with ACE inhibitors Thrombosis failed to reduce serum aldosterone levels) was found Essential hypertension to occur even when maximal doses of ACE inhibi- Albuminuria tors or combinations of ACE inhibitors and ARBs Increased perivascular and intersitial fibrosis [16-19] Diastolic dysfunction were used to treat patients with heart failure. Electrical inhomogeneity/prolonged QT dispersion/electrical The mechanism for this escape remains unclear, but remodelling potential mechanisms include (i) aldosterone pro- Left ventricular hypertrophy duction by the heart, brain and blood vessels, which Inhibition of baroreflex sensitivity/heart rate variability [20-22] Myocardial apoptosis are angiotensin independent; (ii) direct stimula- [23] Stroke tion by endothelin; and/or (iii) angiotensin II es- Heart failure cape from ACE inhibitor therapy due to production Sodium retention and potassium loss by chymase.[24] Sudden cardiac death Although direct blockade of the aldosterone re- ceptor (mineralocorticoid receptor) seemed like a demonstrated a reduction in proteinuria and renal logical proposition for the problem of aldosterone microvascular lesions, independent of alterations in escape, only recently have clinical trial data from systemic haemodynamics, leading to a reduced inci- RALES (Randomized Aldactone Evaluation Study) dence of stroke and renal injury.[12,13] Similarly, in and EPHESUS (Epleronone Post-Acute Myocardial double transgenic rats harbouring both the human Infarction Heart Failure Efficacy and Survival renin and angiotensinogen genes (dTGR), a model Study) supported the use of aldosterone inhibitors in associated with angiotensin II excess, and vascular the management of patients with advanced (class and myocardial injury, MR blockade reduced colla- III–IV) heart failure and heart failure post-myocar- gen deposition and inflammation in the myocardi- dial infarction. In RALES, patients treated with low- um, concomitant with the downregulation of the dose spironolactone (mean dose 26mg) had a 30% transcription factors: nuclear factor-kappa β and ac- reduction in all-cause mortality.[4] In EPHESUS, tivator protein-1.[14] The benefits of aldosterone eplerenone (mean dose 42.6mg) reduced all-cause blockade have also been demonstrated in animal mortality by 15% and cardiovascular mortality by models of dietary hyperlipidaemia, in which there 17% (table II).[5] are no elevations of serum aldosterone. In this 1.3.1 Potential Mechanisms for the Cardiovascular model, aldosterone blockade resulted in a significant Benefits of MR Blockade decrease
Recommended publications
  • COVID-19—The Potential Beneficial Therapeutic Effects of Spironolactone During SARS-Cov-2 Infection
    pharmaceuticals Review COVID-19—The Potential Beneficial Therapeutic Effects of Spironolactone during SARS-CoV-2 Infection Katarzyna Kotfis 1,* , Kacper Lechowicz 1 , Sylwester Drozd˙ zal˙ 2 , Paulina Nied´zwiedzka-Rystwej 3 , Tomasz K. Wojdacz 4, Ewelina Grywalska 5 , Jowita Biernawska 6, Magda Wi´sniewska 7 and Miłosz Parczewski 8 1 Department of Anesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland; [email protected] 2 Department of Pharmacokinetics and Monitored Therapy, Pomeranian Medical University, 70-111 Szczecin, Poland; [email protected] 3 Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland; [email protected] 4 Independent Clinical Epigenetics Laboratory, Pomeranian Medical University, 71-252 Szczecin, Poland; [email protected] 5 Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, 20-093 Lublin, Poland; [email protected] 6 Department of Anesthesiology and Intensive Therapy, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland; [email protected] 7 Clinical Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University, 70-111 Szczecin, Poland; [email protected] 8 Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, 71-455 Szczecin, Poland; [email protected] * Correspondence: katarzyna.kotfi[email protected]; Tel.: +48-91-466-11-44 Abstract: In March 2020, coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 was declared Citation: Kotfis, K.; Lechowicz, K.; a global pandemic by the World Health Organization (WHO). The clinical course of the disease is Drozd˙ zal,˙ S.; Nied´zwiedzka-Rystwej, unpredictable but may lead to severe acute respiratory infection (SARI) and pneumonia leading to P.; Wojdacz, T.K.; Grywalska, E.; acute respiratory distress syndrome (ARDS).
    [Show full text]
  • Oregon Medicaid PA Criteria for Fee-For-Service Prescriptions
    Oregon Medicaid Pharmaceutical Services Prior Authorization Criteria HEALTH SYSTEMS DIVISION Prior authorization (PA) criteria for fee-for-service prescriptions for Oregon Health Plan clients March 29, 2017 Contents Contents ................................................................................................................................................................ 2 Introduction........................................................................................................................................................... 6 About this guide ......................................................................................................................................... 6 How to use this guide ................................................................................................................................. 6 Administrative rules and supplemental information .................................................................................. 6 Update information .............................................................................................................................................. 7 Effective March 29, 2017 .......................................................................................................................... 7 Substantive updates and new criteria ............................................................................................. 7 Clerical changes ............................................................................................................................
    [Show full text]
  • Eplerenone Prevented Obesity- Induced Inflammasome Activation and Glucose Intolerance
    235 3 T WADA and others Eplerenone attenuates 235:3 179–191 Research chronic inflammation Eplerenone prevented obesity- induced inflammasome activation and glucose intolerance Tsutomu Wada1, Akari Ishikawa1, Eri Watanabe1, Yuto Nakamura1, Yusuke Aruga1, Hayate Hasegawa1, Yasuhiro Onogi1, Hiroe Honda2,3, Yoshinori Nagai2,4, Kiyoshi Takatsu2,3, Yoko Ishii5, Masakiyo Sasahara5, Daisuke Koya6, Hiroshi Tsuneki1 and Toshiyasu Sasaoka1 1Department of Clinical Pharmacology, University of Toyama, Toyama, Japan 2Department of Immunobiology and Pharmacological Genetics, University of Toyama, Toyama, Japan Correspondence 3Toyama Prefectural Institute for Pharmaceutical Research, Toyama, Japan should be addressed 4JST, PRESTO, Saitama, Japan T Sasaoka or T Wada 5Department of Pathology, University of Toyama, Toyama, Japan Email 6Department of Internal Medicine, Kanazawa Medical University, Ishikawa, Japan [email protected] or [email protected] Abstract Obesity-associated activation of the renin-angiotensin-aldosterone system is implicated Key Words in the pathogenesis of insulin resistance; however, influences of mineralocorticoid f Endocrinology renin-angiotensin system of receptor (MR) inhibition remain unclear. Therefore, we aimed to clarify the anti- f glucose metabolism inflammatory mechanisms of MR inhibition using eplerenone, a selective MR antagonist, f mineralocorticoid in C57BL/6 mice fed a high-fat diet (HFD) for 12 weeks. Eplerenone prevented excessive receptor Journal body weight gain and fat accumulation, ameliorated glucose intolerance and insulin f NLRP3 inflammasome, adipose tissue macrophage resistance and enhanced energy metabolism. In the epididymal white adipose tissue (eWAT), eplerenone prevented obesity-induced accumulation of F4/80+CD11c+CD206−- M1-adipose tissue macrophage (ATM) and reduction of F4/80+CD11c−CD206+-M2-ATM. Interestingly, M1-macrophage exhibited lower expression levels of MR, compared with M2-macrophage, in the ATM of eWAT and in vitro-polarized bone marrow-derived macrophages (BMDM).
    [Show full text]
  • Cytochrome P450 3A Time-Dependent Inhibition Assays
    DMD Fast Forward. Published on April 2, 2021 as DOI: 10.1124/dmd.121.000356 This article has not been copyedited and formatted. The final version may differ from this version. Cytochrome P450 3A Time-Dependent Inhibition Assays are Too Sensitive for Identification of Drugs Causing Clinically Significant Drug-Drug Interactions: A Comparison of Human Liver Microsomes and Hepatocytes and Definition of Boundaries for Inactivation Rate Constants Heather Eng, Elaine Tseng, Matthew A. Cerny, Theunis C. Goosen, and R. Scott Obach Medicine Design, Pfizer Inc., Groton, Connecticut Downloaded from dmd.aspetjournals.org at ASPET Journals on September 27, 2021 Page 1 of 36 DMD Fast Forward. Published on April 2, 2021 as DOI: 10.1124/dmd.121.000356 This article has not been copyedited and formatted. The final version may differ from this version. Running title: Sensitivity of CYP3A Time-Dependent Inhibition Assays Corresponding authors: Heather Eng; Pfizer Inc., Eastern Point Road, Groton, CT 06340; [email protected]. R. Scott Obach; Pfizer Inc., Eastern Point Road, Groton, CT 06340; [email protected]. Number of text pages: 17 Number of tables: 2 Downloaded from Number of figures: 5 dmd.aspetjournals.org Number of references: 86 Number of words in Abstract: 217 Number of words in Introduction: 1289 at ASPET Journals on September 27, 2021 Number of words in Discussion: 1658 List of nonstandard abbreviations: ADME, absorption, distribution, metabolism, and excretion; AUCR, area under the plasma concentration-time curve ratio; CYP, cytochrome P450; DDI, drug-drug interaction; HHEP, human hepatocyte; HLM, human liver microsome; KI, inhibition constant; kinact, maximal rate of enzyme inactivation; kobs, rate constant for inhibition; LC-MS/MS, tandem liquid chromatography-mass spectrometry; M-I, metabolite-intermediate; m/z, mass to charge ratio; PBPK, physiologically based pharmacokinetic modeling; TDI, time-dependent inhibition; v/v, volume per volume ratio Page 2 of 36 DMD Fast Forward.
    [Show full text]
  • Randomized, Placebo-Controlled Trial of the Effects of Drospirenone
    Menopause: The Journal of The North American Menopause Society Vol. 14, No. 3, pp. 408/414 DOI: 10.1097/01.gme.0000243572.63322.f7 * 2007 by The North American Menopause Society Randomized, placebo-controlled trial of the effects of drospirenone-estradiol on blood pressure and potassium balance in hypertensive postmenopausal women receiving hydrochlorothiazide Richard A. Preston, MD, MSPH,1 Paul M. Norris, MD,2 Alberto B. Alonso, MD, PA,1 Pingping Ni, PhD,3 Vladimir Hanes, MD,3 and Adel H. Karara, PhD, FCP3 Abstract Objective: Drospirenone (DRSP), a spironolactone analog with aldosterone antagonist activity, is a novel progestogen developed for use as hormone therapy in postmenopausal women in combination with 17A-estradiol (E2). DRSP/E2 lowers blood pressure when used alone in hypertensive postmenopausal women or when administered concomitantly with angiotensin-converting enzyme inhibitors or angiotensin receptor blockers. DRSP/E2 has not been studied in combination with the widely prescribed hydrochlorothiazide (HCTZ). We investigated the effects of 3 mg DRSP/1 mg E2 versus placebo on blood pressure and potassium balance when added to existing therapy with 25 mg HCTZ in postmenopausal women with established stage I hypertension. Design: This was a single-center, double-blind, randomized, placebo-controlled, two-treatment, two 4-week treatment period crossover study in 36 postmenopausal women with stage I hypertension maintained on 25 mg HCTZ. The endpoint was a change from baseline in systolic and diastolic blood pressures by 24-hour ambulatory blood pressure monitoring. Safety monitoring included serum potassium (mEq/L) and adverse events. Results: Mean systolic and diastolic blood pressures by 24-hour ambulatory blood pressure monitoring were reduced significantly, by j7.2 and j4.5 mm Hg, respectively, with DRSP/E2 as compared with placebo.
    [Show full text]
  • Interactions with HBV Treatment
    www.hep-druginteractions.org Interactions with HBV Treatment Charts revised September 2021. Full information available at www.hep-druginteractions.org Page 1 of 6 Please note that if a drug is not listed it cannot automatically be assumed it is safe to coadminister. ADV, Adefovir; ETV, Entecavir; LAM, Lamivudine; PEG IFN, Peginterferon; RBV, Ribavirin; TBV, Telbivudine; TAF, Tenofovir alafenamide; TDF, Tenofovir-DF. ADV ETV LAM PEG PEG RBV TBV TAF TDF ADV ETV LAM PEG PEG RBV TBV TAF TDF IFN IFN IFN IFN alfa-2a alfa-2b alfa-2a alfa-2b Anaesthetics & Muscle Relaxants Antibacterials (continued) Bupivacaine ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ Cloxacillin ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ Cisatracurium ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ Dapsone ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ Isoflurane ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ Delamanid ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ Ketamine ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ Ertapenem ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ Nitrous oxide ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ Erythromycin ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ Propofol ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ Ethambutol ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ Thiopental ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ Flucloxacillin ◆ ◆ ◆ ◆ ◆ ◆ Tizanidine ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ Gentamicin ◆ ◆ ◆ ◆ ◆ ◆ Analgesics Imipenem ◆ ◆ ◆ ◆ ◆ ◆ ◆ Aceclofenac ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ Isoniazid ◆ ◆ ◆ ◆ ◆ ◆ Alfentanil ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ Levofloxacin ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ Aspirin ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ Linezolid ◆ ◆ ◆ ◆ ◆ ◆ Buprenorphine ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ Lymecycline ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ Celecoxib ◆ ◆ ◆ ◆ ◆ ◆ ◆ Meropenem ◆ ◆ ◆ ◆ ◆ ◆ Codeine ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ for distribution. for Methenamine ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ Dexketoprofen ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ Metronidazole ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ Dextropropoxyphene ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ Moxifloxacin ◆ ◆ ◆
    [Show full text]
  • New Mesh Headings for 2019 Listed in Alphabetical Order with Heading, Scope Note, Annotation (AN), Previous Indexing (PI), and Tree Locations
    New MeSH Headings for 2019 Listed in alphabetical order with Heading, Scope Note, Annotation (AN), Previous Indexing (PI), and Tree Locations 17 alpha-Hydroxyprogesterone Caproate Hydroxyprogesterone derivative that acts as a PROGESTIN and is used to reduce the risk of recurrent MISCARRIAGE and of PREMATURE BIRTH. It is also used in combination with ESTROGEN in the management of MENSTRUATION DISORDERS. Tree locations: 17-alpha-Hydroxyprogesterone D04.210.500.745.745.654.829.395.400.500 D06.472.334.851.687.750.478.400.250 2-Methoxyestradiol A metabolite of estradiol that lacks estrogenic activity and inhibits TUBULIN polymerization. It has antineoplastic properties, including inhibition of angiogenesis and induction of APOPTOSIS. Tree locations: Estradiol D04.210.500.365.415.248.830 D06.472.334.851.437.500.750 5-Methoxypsoralen A linear furanocoumarin that has phototoxic and anti-inflammatory properties, with effects similar to METHOXSALEN. It is used in PUVA THERAPY for the treatment of PSORIASIS. Tree locations: Furocoumarins D03.383.663.283.446.794.688 D03.633.100.150.446.794.688 D03.633.300.770.688 Abciximab A Fab fragment of the chimeric monoclonal antibody 7E3 that binds to the glycoprotein IIb-IIIa receptor of human platelets, and blocks PLATELET GLYCOPROTEIN GPIIB-IIIA COMPLEX, potently inhibiting PLATELET AGGREGATION. It is used in treatment of refractory unstable angina, and for prevention of ischemic complications in patients undergoing percutaneous coronary procedures such as ANGIOPLASTY; ATHERECTOMY; or stenting. Tree locations: Antibodies, Monoclonal, Humanized D12.776.124.486.485.114.224.060.125 D12.776.124.790.651.114.224.060.125 D12.776.377.715.548.114.224.200.125 Immunoglobulin Fab Fragments D12.644.541.500.650.125 D12.776.124.486.485.680.650.125 D12.776.124.790.651.680.650.125 D12.776.377.715.548.680.650.125 Acamprosate Structural analog of taurine that is used for the prevention of relapse in individuals with ALCOHOLISM.
    [Show full text]
  • Selection of a Mineralocorticoid Receptor Antagonist for Patients with Hypertension Or Heart Failure
    European Journal of Heart Failure (2014) 16, 143–150 REVIEW doi:10.1111/ejhf.31 Selection of a mineralocorticoid receptor antagonist for patients with hypertension or heart failure Javaid Iqbal1*, Yasir Parviz1, Bertram Pitt2, John Newell-Price3, Abdallah Al-Mohammad1, and Faiez Zannad4 1Department of Cardiovascular Science at the University of Sheffield and Cardiology Department at Sheffield Teaching Hospitals NHS Trust, Sheffield,K; U 2Cardiovascular Centre, University of Michigan, Ann Arbor, MI, USA; 3Department of Human Metabolism at the University of Sheffield and Endocrinology Department at Sheffield Teaching Hospitals NHS Trust, Sheffield, UK; and 4INSERM, Centre d’Investigation Clinique and Centre Hospitalier Universitaire, and the Department of Cardiology, Nancy University, Université de Lorraine, Nancy, France Received 8 April 2013; revised 15July2013; accepted 19July2013; online publish-ahead-of-print 14 December 2013 Clinical trials have demonstrated morbidity and mortality benefits of mineralocorticoid receptor antagonists (MRAs) in patients with heart failure. These studies have used either spironolactone or eplerenone as the MRA. It is generally believed that these two agents have the same effects, and the data from studies using one drug could be extrapolated for the other. National and international guidelines do not generally discriminate between spironolactone and eplerenone, but strongly recommend using an MRA for patients with heart failure due to LV systolic dysfunction and post-infarct LV systolic dysfunction. There are no major clinical trials directly comparing the efficacy of these two drugs. This article aims to compare the pharmacokinetics and pharmacodynamics of spironolactone and eplerenone, and to analyse the available data for their cardiovascular indications and adverse effects.
    [Show full text]
  • OUH Formulary Approved for Use in Breast Surgery
    Oxford University Hospitals NHS Foundation Trust Formulary FORMULARY (Y): the medicine can be used as per its licence. RESTRICTED FORMULARY (R): the medicine can be used as per the agreed restriction. NON-FORMULARY (NF): the medicine is not on the formulary and should not be used unless exceptional approval has been obtained from MMTC. UNLICENSED MEDICINE – RESTRICTED FORMULARY (UNR): the medicine is unlicensed and can be used as per the agreed restriction. SPECIAL MEDICINE – RESTRICTED FORMULARY (SR): the medicine is a “special” (unlicensed) and can be used as per the agreed restriction. EXTEMPORANEOUS PREPARATION – RESTRICTED FORMULARY (EXTR): the extemporaneous preparation (unlicensed) can be prepared and used as per the agreed restriction. UNLICENSED MEDICINE – NON-FORMULARY (UNNF): the medicine is unlicensed and is not on the formulary. It should not be used unless exceptional approval has been obtained from MMTC. SPECIAL MEDICINE – NON-FORMULARY (SNF): the medicine is a “special” (unlicensed) and is not on the formulary. It should not be used unless exceptional approval has been obtained from MMTC. EXTEMPORANEOUS PREPARATION – NON-FORMULARY (EXTNF): the extemporaneous preparation (unlicensed) cannot be prepared and used unless exceptional approval has been obtained from MMTC. CLINICAL TRIALS (C): the medicine is clinical trial material and is not for clinical use. NICE TECHNOLOGY APPRAISAL (NICETA): the medicine has received a positive appraisal from NICE. It will be available on the formulary from the day the Technology Appraisal is published. Prescribers who wish to treat patients who meet NICE criteria, will have access to these medicines from this date. However, these medicines will not be part of routine practice until a NICE TA Implementation Plan has been presented and approved by MMTC (when the drug will be given a Restricted formulary status).
    [Show full text]
  • Cytochrome P450 Drug Interaction Table
    SUBSTRATES 1A2 2B6 2C8 2C9 2C19 2D6 2E1 3A4,5,7 amitriptyline bupropion paclitaxel NSAIDs: Proton Pump Beta Blockers: Anesthetics: Macrolide antibiotics: caffeine cyclophosphamide torsemide diclofenac Inhibitors: carvedilol enflurane clarithromycin clomipramine efavirenz amodiaquine ibuprofen lansoprazole S-metoprolol halothane erythromycin (not clozapine ifosfamide cerivastatin lornoxicam omeprazole propafenone isoflurane 3A5) cyclobenzaprine methadone repaglinide meloxicam pantoprazole timolol methoxyflurane NOT azithromycin estradiol S-naproxen_Nor rabeprazole sevoflurane telithromycin fluvoxamine piroxicam Antidepressants: haloperidol suprofen Anti-epileptics: amitriptyline acetaminophen Anti-arrhythmics: imipramine N-DeMe diazepam Nor clomipramine NAPQI quinidine 3OH (not mexilletine Oral Hypoglycemic phenytoin(O) desipramine aniline2 3A5) naproxen Agents: S-mephenytoin imipramine benzene olanzapine tolbutamide phenobarbitone paroxetine chlorzoxazone Benzodiazepines: ondansetron glipizide ethanol alprazolam phenacetin_ amitriptyline Antipsychotics: N,N-dimethyl diazepam 3OH acetaminophen NAPQI Angiotensin II carisoprodol haloperidol formamide midazolam propranolol Blockers: citalopram perphenazine theophylline triazolam riluzole losartan chloramphenicol risperidone 9OH 8-OH ropivacaine irbesartan clomipramine thioridazine Immune Modulators: tacrine cyclophosphamide zuclopenthixol cyclosporine theophylline Sulfonylureas: hexobarbital tacrolimus (FK506) tizanidine glyburide imipramine N-DeME alprenolol verapamil glibenclamide indomethacin
    [Show full text]
  • Appendix B - Product Name Sorted by Applicant
    JUNE 2021 - APPROVED DRUG PRODUCT LIST B - 1 APPENDIX B - PRODUCT NAME SORTED BY APPLICANT ** 3 ** 3D IMAGING DRUG * 3D IMAGING DRUG DESIGN AND DEVELOPMENT LLC AMMONIA N 13, AMMONIA N-13 FLUDEOXYGLUCOSE F18, FLUDEOXYGLUCOSE F-18 SODIUM FLUORIDE F-18, SODIUM FLUORIDE F-18 3M * 3M CO PERIDEX, CHLORHEXIDINE GLUCONATE * 3M HEALTH CARE INC AVAGARD, ALCOHOL (OTC) DURAPREP, IODINE POVACRYLEX (OTC) 3M HEALTH CARE * 3M HEALTH CARE INFECTION PREVENTION DIV SOLUPREP, CHLORHEXIDINE GLUCONATE (OTC) ** 6 ** 60 DEGREES PHARMS * 60 DEGREES PHARMACEUTICALS LLC ARAKODA, TAFENOQUINE SUCCINATE ** A ** AAA USA INC * ADVANCED ACCELERATOR APPLICATIONS USA INC LUTATHERA, LUTETIUM DOTATATE LU-177 NETSPOT, GALLIUM DOTATATE GA-68 AAIPHARMA LLC * AAIPHARMA LLC AZASAN, AZATHIOPRINE ABBVIE * ABBVIE INC ANDROGEL, TESTOSTERONE CYCLOSPORINE, CYCLOSPORINE DEPAKOTE ER, DIVALPROEX SODIUM DEPAKOTE, DIVALPROEX SODIUM GENGRAF, CYCLOSPORINE K-TAB, POTASSIUM CHLORIDE KALETRA, LOPINAVIR NIASPAN, NIACIN NIMBEX PRESERVATIVE FREE, CISATRACURIUM BESYLATE NIMBEX, CISATRACURIUM BESYLATE NORVIR, RITONAVIR SYNTHROID, LEVOTHYROXINE SODIUM ** TARKA, TRANDOLAPRIL TRICOR, FENOFIBRATE TRILIPIX, CHOLINE FENOFIBRATE ULTANE, SEVOFLURANE ZEMPLAR, PARICALCITOL ABBVIE ENDOCRINE * ABBVIE ENDOCRINE INC LUPANETA PACK, LEUPROLIDE ACETATE ABBVIE ENDOCRINE INC * ABBVIE ENDOCRINE INC LUPRON DEPOT, LEUPROLIDE ACETATE LUPRON DEPOT-PED KIT, LEUPROLIDE ACETATE ABBVIE INC * ABBVIE INC DUOPA, CARBIDOPA MAVYRET, GLECAPREVIR NORVIR, RITONAVIR ORIAHNN (COPACKAGED), ELAGOLIX SODIUM,ESTRADIOL,NORETHINDRONE ACETATE
    [Show full text]
  • Your 2021 Premium Value Formulary Effective July 1, 2021
    Your 2021 Premium Value Formulary Effective July 1, 2021 Understanding your formulary What is a formulary? What are tiers? A formulary is a list of prescribed medications or other Tiers are the different cost levels you pay for a pharmacy care products, services or supplies chosen medication. Each tier is assigned a cost, set by your for their safety, cost, and effectiveness. Medications employer or plan sponsor. are listed by categories or classes and are placed into The formulary gives you choices so you and your cost levels known as tiers. It includes both brand and doctor can decide your best course of treatment. In generic prescription medications. this formulary, brand-name medications are shown in UPPERCASE (for example, BRAND DRUG). Generic medications are shown in lowercase (for example, generic drug). Reading your formulary About this formulary This formulary may not be a complete list of When differences between this formulary and your medications that are covered by your plan. Please benefit plan exist, the benefit plan documents rule. review your benefit plan for full details. Tier information Drug Tier Includes Helpful Tips Tier 1 $ Lower-cost medications Brand name and generic medications can be Tier 2 $$ Low-cost medications found in any of the 4 tiers. The lower the tier, $$$ Tier 3 Mid-range cost medications the less your medications will cost. Tier 4 $$$$ Higher-cost medications Drug list information Prior Authorization – Your doctor is required to give OptumRx more information to PA determine coverage. QL Quantity Limit – Medication may be limited to a certain quantity. SP Specialty Medication – Medication is designated as specialty.
    [Show full text]