Fasciola Gigantica

Total Page:16

File Type:pdf, Size:1020Kb

Fasciola Gigantica MOLECULAR AND BIOCHEMICAL CHARACTERIZATION OF TYPE 1 CYSTATIN STEFIN-2 OF THE LIVER FLUKE FASCIOLA GIGANTICA BY MISS SINEE SIRICOON A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF THE DOCTOR OF PHILOSOPHY (BIOMEDICAL SCIENCES) GRADUATE PROGRAM IN BIOMEDICAL SCIENCES FACULTY OF ALLIED HEALTH SCIENCES THAMMASAT UNIVERSITY ACADEMIC YEAR 2015 COPYRIGHT OF THAMMASAT UNIVERSITY MOLECULAR AND BIOCHEMICAL CHARACTERIZATION OF TYPE 1 CYSTATIN STEFIN-2 OF THE LIVER FLUKE FASCIOLA GIGANTICA BY MISS SINEE SIRICOON A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF THE DOCTOR OF PHILOSOPHY (BIOMEDICAL SCIENCES) GRADUATE PROGRAM IN BIOMEDICAL SCIENCES FACULTY OF ALLIED HEALTH SCIENCES THAMMASAT UNIVERSITY ACADEMIC YEAR 2015 COPYRIGHT OF THAMMASAT UNIVERSITY (1) Dissertation Title Molecular and biochemical characterization of type 1 cystatin stefin-2 of the liver fluke Fasciola gigantica Author Miss Sinee Siricoon Degree Doctor of Philosophy (Biomedical Sciences) Department/Faculty/University Graduate Program in Biomedical Sciences Faculty of Allied Health Sciences Thammasat University Dissertation Advisor Associate Professor Hans Rudi Grams, Dr. rer. nat. Dissertation Co-Advisor Professor Vithoon Viyanant, Ph.D. Dissertation Co-Advisor Professor Peter Smooker, Ph.D. Dissertation Co-Advisor Assistant Professor Suksiri Vichasri Grams, Dr. rer. nat. Dissertation Co-Advisor Assistant Professor Amornrat Geadkaew, Ph.D. Academic Years 2015 ABSTRACT Cysteine proteases including cathepsin B and cathepsin L are involved in physiological and biological processes in all living organisms and imbalanced activity of these proteases may cause several diseases. They are also important antigens in the trematode genus Fasciola and have vital roles in parasite survival including protection, infection and nutrition of the liver fluke. The biological roles and application of parasite cathepsins, e.g. in chemotherapy and as vaccines have been studied but data concerning their regulation is still incomplete. Especially, the cysteine protease inhibitors of the cystatin superfamily have not been investigated in depth in trematodes. This research was conducted to characterize the molecular (2) and biochemical properties of a type 1 cystatin (Stefin-2) in the liver fluke Fasciola gigantica. In the present study, a cDNA encoding type 1 cystatin of the parasite, FgStefin-2, was isolated from total RNA of adult F. gigantica by RT-PCR. A FgStefin-2- specific probe detected gene and transcript in Southern and Northern analyses of genomic DNA and total RNA of the fluke. FgStefin-2, which unusually for type 1 cystatins carries a signal peptide, was expressed as active recombinant protein in Escherichia coli (rFgStefin-2). Purified rFgStefin-2 was used for cysteine protease inhibition assays, functional analysis and polyclonal antibody production. The polyclonal antibody was used to study the distribution of native FgStefin-2 in 2- and 4-week-old juveniles and adult F. gigantica and to detect rFgStefin-2 and native FgStefin-2 in crude worm (CW) extract and excretory/secretory (ES) products of adult F. gigantica in immunoblots. Immunohistochemical analysis showed that FgStefin-2 is located in several tissues of the parasite including the prostate gland in adults and gut epithelium in all stages. Immunoblots demonstrated that the polyclonal antibody reacted with rFgStefin-2, CW extract and ES product of the adult parasite, but did not cross-react with rFgMDCd10, rFgStefin-1 and CW extracts of other trematodes. The inhibitory properties of rFgStefin-2 against bovine cathepsin B, bovine cathepsin L and the proteolytic activity of ES products, CW extracts from metacercariae and adult parasite were characterized by using fluorogenic substrates and by zymography using gelatin as substrate. The recombinant protein exhibited inhibitory activity against cysteine proteases (cathepsins B and L) and the proteolytic activity of ES products, CW extracts from metacercariae and adult parasites. This protein was found to be active over a wide pH range and heat stable. Preliminary study on immunomodulatory properties of the protein showed that it may interfere with an immune response mechanism that is involved in polyclonal T-cell proliferation. Furthermore, the novel cathepsin B5 of F. gigantica, FgCB5, was expressed and purified in a yeast-based eukaryotic expression system. Immunoblots showed that procathepsin B5 was detected in CW extract and in minor amounts in ES product. Analyses of recombinant cathepsin B5 revealed that it was active at acidic pH, able to effectively digest several of the host substrates and also exhibited (3) substantial exopeptidase activity. Inhibitory activities of rFgStefin-1, rFgStefin-2 and human cystatin C against rFgCB5 demonstrated nanomolar inhibition constants. This experiment was used to confirm that rFgStefin-2 has been evolutionary adapted to block cathepsin B. In summary, FgStefin-2 may play important roles, for example in the protection of the minute newly excysted juvenile from autoproteolysis and in the regulation of cysteine protease activity in the reproductive system. This knowledge may help to evaluate application of the protein as diagnosis tool, drug target and vaccine candidate against fascioliasis. Keywords: cystatin, cysteine protease, protease inhibitor, Fasciola gigantica (4) ACKNOWLEDGEMENTS This Ph.D. dissertation was completed with the support and collaboration of several people and institutes. First, I would like to express my deepest gratitude to my major advisor, Assoc. Prof. Dr. Hans Rudi Grams, for his constant support, encouragement, kindness, solving technical problems and invaluable advice throughout my study. Without his virtue, this dissertation might not have been possible. Beside my advisor, I would like to thanks my co-advisor, Professor Dr. Vithoon Viyanant, Thailand Center of Excellence in Drug Discovery and Development (TCEDDD), Thammasat University who always encouraged and suggested me about this study. Furthermore, I am also deeply grateful to Assist. Prof. Dr. Suksiri Vichasri Grams for her guidance valuable advice, suggestions and comments. Equally, I am very thankful to Assist. Prof. Dr. Amornrat Geadkaew for her kindness and suggestion in my laboratory work. My special thanks and deep appreciation are bestowed on Prof. Dr. Peter Smooker, who provided the excellent opportunity to conduct research in his laboratory at RMIT University, Australia for his kind advice, intensive supervision, invaluable suggestions and encouragement. I would like to express my deep thankfulness to Assoc. Prof. Dr. Smarn Tesana, Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand for his kind acceptance to be the chair committee of my dissertation defense committee and his kindness, comments and corrections of my thesis. My dissertation would have not been accomplished without the financial support of the Thailand Research Fund through a Royal Golden Jubilee scholar under the supervision of Assoc. Prof. Dr. Hans Rudi Grams and the support from Thammasat University through a graduate student grant. Many thanks to all of my friends, seniors, juniors, instructors and staff members of the Graduate Program in Biomedical Sciences, Faculty of Allied Health (5) Sciences, Thammasat University for unconditional support, their friendship and helpfulness. Finally, I would like to express my deepest thankfulness to my beloved family, my father, my mother and all of my best friends for their strong encouragement, understanding, never-ending support and who stayed with me at all times. I would not have achieved my goal without them. Sinee Siricoon (6) TABLE OF CONTENTS Page ABSTRACT (1) ACKNOWLEDGEMENTS (4) TABLE OF CONTENTS (6) LIST OF TABLES (17) LIST OF FIGURES (18) LIST OF ABBREVIATIONS (24) CHAPTER 1 INTRODUCTION 1 CHAPTER 2 OBJECTIVES 4 CHAPTER 3 REVIEW OF LITERATURE 5 3.1 Fascioliasis 5 3.1.1 Definition and classification of Fasciola species 5 3.1.2 Geographic distribution and epidemiology of Fasciola spp. 5 3.1.3 The Morphology and life cycle of Fasciola spp. 10 3.1.4 Parasite physiology in the mammalian host 17 3.1.4.1 Gut 17 3.1.4.2 Reproductive System 19 3.1.5 Pathogenesis 22 (7) TABLE OF CONTENTS (Cont.) Page 3.1.6 Diagnosis of fascioliasis 23 3.1.7 Treatment of fascioliasis 25 3.1.8 Control and prevention of fascioliasis 26 3.1.9 Vaccine against animal fascioliasis 29 3.2 Proteases 29 3.2.1 Definition and Classification of proteases 29 3.2.2 Cysteine proteases and substrate specificity 34 3.2.3 Physiological roles of cysteine proteases 42 3.2.4 Mammalian cathepsins 42 3.2.4.1 Cathepsin L 43 3.2.4.2 Cathepsin B 43 3.2.5 Fasciola papain-like cysteine proteases 47 3.2.5.1 Cathepsin L-like proteases of Fasciola 49 3.2.5.2 Cathepsin B-like proteases of Fasciola 54 3.3 Cystatins and the mechanism of their interaction with cysteine 58 proteases 3.3.1 Cysteine protease inhibitors of mammalian and pathogenic 65 organisms 3.3.1.1 Ixodes scapularis (blood feeding tick) 65 3.3.1.2 Schistosoma spp. 65 3.3.1.3 Fasciola hepatica 66 3.3.1.4 Parasitic nematodes 67 3.3.1.5 Homo sapiens 69 3.4 Immunomodulation by nematode cystatins 76 3.4.1 Interference with antigen presentation and T cell responses 76 3.4.2 Modulation of the cytokine production 79 (8) TABLE OF CONTENTS (Cont.) Page 3.4.3 Effects on the inducible nitric oxide production 79 CHAPTER 4 MATERIALS and METHODS 81 4.1 Molecular cloning and sequence analysis of FgStefin-2 81 4.1.1 Molecular cloning of FgStefin-2 cDNA 81 4.1.1.1 PCR amplification of FgStefin-2 cDNA 81 4.1.1.2 Agarose gel electrophoresis 82 4.1.1.3 Isolation of PCR product from agarose gel by 83 using QIAquick® Gel Extraction Kit 4.1.2 Molecular cloning of the PCR-amplified FgStefin-2 cDNA 84 and transformation of the bacterial host cells with the recombinant plasmid 4.1.2.1 Ligation of FgStefin-2 PCR product into the pGEM® - T Easy vector 84 4.1.2.2 Preparation and storage of chemical competent E.
Recommended publications
  • Novel Binding Partners of PBF in Thyroid Tumourigenesis
    NOVEL BINDING PARTNERS OF PBF IN THYROID TUMOURIGENESIS By Neil Sharma A thesis presented to the College of Medical and Dental Sciences at the University of Birmingham for the Degree of Doctor of Philosophy Centre for Endocrinology, Diabetes and Metabolism, School of Clinical and Experimental Medicine August 2013 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. SUMMARY Thyroid cancer is the most common endocrine cancer, with a rising incidence. The proto-oncogene PBF is over-expressed in thyroid tumours, and the degree of over-expression is directly linked to patient survival. PBF causes transformation in vitro and tumourigenesis in vivo, with PBF-transgenic mice developing large, macro-follicular goitres, effects partly mediated by the internalisation and repression of the membrane-bound transporters NIS and MCT8. NIS repression leads to a reduction in iodide uptake, which may negatively affect the efficacy of radioiodine treatment, and therefore prognosis. Work within this thesis describes the use of tandem mass spectrometry to produce a list of potential binding partners of PBF. This will aid further research into the pathophysiology of PBF, not just in relation to thyroid cancer but also other malignancies.
    [Show full text]
  • Gastropods Alien to South Africa Cause Severe Environmental Harm in Their Global Alien Ranges Across Habitats
    Received: 18 December 2017 | Revised: 4 May 2018 | Accepted: 27 June 2018 DOI: 10.1002/ece3.4385 ORIGINAL RESEARCH Gastropods alien to South Africa cause severe environmental harm in their global alien ranges across habitats David Kesner1 | Sabrina Kumschick1,2 1Department of Botany & Zoology, Centre for Invasion Biology, Stellenbosch University, Abstract Matieland, South Africa Alien gastropods have caused extensive harm to biodiversity and socioeconomic sys- 2 Invasive Species Programme, South African tems like agriculture and horticulture worldwide. For conservation and management National Biodiversity Institute, Kirstenbosch National Botanical Gardens, Claremont, purposes, information on impacts needs to be easily interpretable and comparable, South Africa and the factors that determine impacts understood. This study aimed to assess gas- Correspondence tropods alien to South Africa to compare impact severity between species and under- Sabrina Kumschick, Centre for Invasion stand how they vary between habitats and mechanisms. Furthermore, we explore the Biology, Department of Botany & Zoology, Stellenbosch University, Matieland, relationship between environmental and socioeconomic impacts, and both impact South Africa. measures with life- history traits. We used the Environmental Impact Classification for Email: [email protected] Alien Taxa (EICAT) and Socio- Economic Impact Classification for Alien Taxa (SEICAT) Funding information to assess impacts of 34 gastropods alien to South Africa including evidence of impact South African National Department of Environmental Affairs; National Research from their entire alien range. We tested for correlations between environmental and Foundation; DST-NRF Centre of Excellence socioeconomic impacts per species, and with fecundity and native latitude range for Invasion Biology; South African National Biodiversity Institute using Kendall’s tau tests.
    [Show full text]
  • Fasciola Hepatica
    Fasciola hepatica Robinson, M., Dalton, J., O'Brien, B., & Donnelly, S. (2013). Fasciola hepatica: The therapeutic potential of a worm secretome. International Journal for Parasitology, 43(3-4), 283–291. https://doi.org/10.1016/j.ijpara.2012.11.004 Published in: International Journal for Parasitology Document Version: Peer reviewed version Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights NOTICE: this is the author’s version of a work that was accepted for publication in International Journal for Parasitology. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in International Journal for Parasitology, [VOL 43, ISSUE 2-3, 2013] General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected].
    [Show full text]
  • Proteomics and Phylogenetic Analysis of the Cathepsin L
    Research Proteomics and Phylogenetic Analysis of the Cathepsin L Protease Family of the Helminth Pathogen Fasciola hepatica EXPANSION OF A REPERTOIRE OF VIRULENCE-ASSOCIATED FACTORS* Mark W. Robinson‡§¶, Jose F. Tort‡ʈ, Jonathan Lowther‡, Sheila M. Donnelly‡, Emily Wong‡, Weibo Xu‡, Colin M. Stack‡**, Matthew Padula‡‡, Ben Herbert‡‡, and John P. Dalton‡§§ Cathepsin L proteases secreted by the helminth pathogen zymes. The prosegment region was highly conserved Fasciola hepatica have functions in parasite virulence in- between the clades except at the boundary of prosegment cluding tissue invasion and suppression of host immune and mature enzyme. Despite the lack of conservation at this Downloaded from responses. Using proteomics methods alongside phylo- section, sites for exogenous cleavage by asparaginyl en- genetic studies we characterized the profile of cathepsin dopeptidases and a Leu-Ser2His motif for autocatalytic L proteases secreted by adult F. hepatica and hence iden- cleavage by cathepsin Ls were preserved. Molecular & tified those involved in host-pathogen interaction. Phylo- Cellular Proteomics 7:1111–1123, 2008. genetic analyses showed that the Fasciola cathepsin L gene family expanded by a series of gene duplications https://www.mcponline.org followed by divergence that gave rise to three clades associated with mature adult worms (Clades 1, 2, and 5) The helminth pathogens Fasciola hepatica and Fasciola and two clades specific to infective juvenile stages gigantica are the causative agents of liver fluke disease (fas- (Clades 3 and 4). Consistent with these observations our ciolosis) in sheep and cattle. Although infections of F. hepat- proteomics studies identified representatives from ica occur predominantly in regions with temperate climates, Clades 1, 2, and 5 but not from Clades 3 and 4 in adult F.
    [Show full text]
  • Spatiotemporal Proteomics Uncovers Cathepsin-Dependent Host Cell
    bioRxiv preprint doi: https://doi.org/10.1101/455048; this version posted November 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 Spatiotemporal proteomics uncovers cathepsin-dependent host 2 cell death during bacterial infection 3 Joel Selkrig1, Nan Li1,2,3, Jacob Bobonis1,4, Annika Hausmann5, Anna Sueki1,4, Haruna 4 Imamura6, Bachir El Debs1, Gianluca Sigismondo3, Bogdan I. Florea7, Herman S. 5 Overkleeft7, Pedro Beltrao6, Wolf-Dietrich Hardt5, Jeroen Krijgsveld3‡, Athanasios Typas1‡. 6 7 1 European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, 69117 8 Heidelberg, Germany. 9 2 Institute of Synthetic Biology (iSynBio), Shenzhen Institutes of Advanced Technology (SIAT), 10 Chinese Academy of Sciences (CAS), 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 11 China. 12 3 German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany. 13 4 Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences 14 5 Institute of Microbiology, ETH Zurich, CH-8093 Zurich, Switzerland. 15 6 European Bioinformatics Institute, European Molecular Biology Laboratory, Wellcome Trust Genome 16 Campus, Hinxton, Cambridge, CB10 1SD 17 7 Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 18 55, 2333 CC Leiden, the Netherlands. 19 20 21 ‡ to whom correspondence should be addressed: 22 [email protected] & [email protected] 23 24 SUMMARY 25 Immune cells need to swiftly and effectively respond to invading pathogens.
    [Show full text]
  • Felipe Jun Fuzita Molecular Physiology of Digestion In
    FELIPE JUN FUZITA MOLECULAR PHYSIOLOGY OF DIGESTION IN ARACHNIDA: FUNCTIONAL AND COMPARATIVE-EVOLUTIONARY APPROACHES Thesis presented to the Programa de Pós-Graduação Interunidades em Biotecnologia USP/Instituto Butantan/IPT, to obtain the Title of Doctor in Biotechnology. São Paulo 2014 FELIPE JUN FUZITA MOLECULAR PHYSIOLOGY OF DIGESTION IN ARACHNIDA: FUNCTIONAL AND COMPARATIVE-EVOLUTIONARY APPROACHES Thesis presented to the Programa de Pós-Graduação Interunidades em Biotecnologia USP/Instituto Butantan/IPT, to obtain the Title of Doctor in Biotechnology. Concentration area: Biotechnology Advisor: Dr. Adriana Rios Lopes Rocha Corrected version. The original electronic version is available either in the library of the Institute of Biomedical Sciences and in the Digital Library of Theses and Dissertations of the University of Sao Paulo (BDTD). São Paulo 2014 DADOS DE CATALOGAÇÃO NA PUBLICAÇÃO (CIP) Serviço de Biblioteca e Informação Biomédica do Instituto de Ciências Biomédicas da Universidade de São Paulo © reprodução total Fuzita, Felipe Jun. Molecular physiology of digestion in Arachnida: functional and comparative-evolutionary approaches / Felipe Jun Fuzita. -- São Paulo, 2014. Orientador: Profa. Dra. Adriana Rios Lopes Rocha. Tese (Doutorado) – Universidade de São Paulo. Instituto de Ciências Biomédicas. Programa de Pós-Graduação Interunidades em Biotecnologia USP/IPT/Instituto Butantan. Área de concentração: Biotecnologia. Linha de pesquisa: Bioquímica, biologia molecular, espectrometria de massa. Versão do título para o português: Fisiologia molecular da digestão em Arachnida: abordagens funcional e comparativo-evolutiva. 1. Digestão 2. Aranha 3. Escorpião 4. Enzimologia 5. Proteoma 6. Transcriptoma I. Rocha, Profa. Dra. Adriana Rios Lopes I. Universidade de São Paulo. Instituto de Ciências Biomédicas. Programa de Pós-Graduação Interunidades em Biotecnologia USP/IPT/Instituto Butantan III.
    [Show full text]
  • Investigation of the Underlying Hub Genes and Molexular Pathogensis in Gastric Cancer by Integrated Bioinformatic Analyses
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Investigation of the underlying hub genes and molexular pathogensis in gastric cancer by integrated bioinformatic analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract The high mortality rate of gastric cancer (GC) is in part due to the absence of initial disclosure of its biomarkers. The recognition of important genes associated in GC is therefore recommended to advance clinical prognosis, diagnosis and and treatment outcomes. The current investigation used the microarray dataset GSE113255 RNA seq data from the Gene Expression Omnibus database to diagnose differentially expressed genes (DEGs). Pathway and gene ontology enrichment analyses were performed, and a proteinprotein interaction network, modules, target genes - miRNA regulatory network and target genes - TF regulatory network were constructed and analyzed. Finally, validation of hub genes was performed. The 1008 DEGs identified consisted of 505 up regulated genes and 503 down regulated genes.
    [Show full text]
  • Structural Dynamics Investigation of Human Family 1 & 2 Cystatin
    RESEARCH ARTICLE Structural Dynamics Investigation of Human Family 1 & 2 Cystatin-Cathepsin L1 Interaction: A Comparison of Binding Modes Suman Kumar Nandy, Alpana Seal* Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, West Bengal, India * [email protected] Abstract a11111 Cystatin superfamily is a large group of evolutionarily related proteins involved in numerous physiological activities through their inhibitory activity towards cysteine proteases. Despite sharing the same cystatin fold, and inhibiting cysteine proteases through the same tripartite edge involving highly conserved N-terminal region, L1 and L2 loop; cystatins differ widely in their inhibitory affinity towards C1 family of cysteine proteases and molecular details of these interactions are still elusive. In this study, inhibitory interactions of human family 1 & 2 cystatins with cathepsin L1 are predicted and their stability and viability are verified through OPEN ACCESS protein docking & comparative molecular dynamics. An overall stabilization effect is Citation: Nandy SK, Seal A (2016) Structural Dynamics Investigation of Human Family 1 & 2 observed in all cystatins on complex formation. Complexes are mostly dominated by van Cystatin-Cathepsin L1 Interaction: A Comparison of der Waals interaction but the relative participation of the conserved regions varied exten- Binding Modes. PLoS ONE 11(10): e0164970. sively. While van der Waals contacts prevail in L1 and L2 loop, N-terminal segment chiefly doi:10.1371/journal.pone.0164970 acts as electrostatic interaction site. In fact the comparative dynamics study points towards Editor: Claudio M Soares, Universidade Nova de the instrumental role of L1 loop in directing the total interaction profile of the complex either Lisboa Instituto de Tecnologia Quimica e Biologica, towards electrostatic or van der Waals contacts.
    [Show full text]
  • Supplementary Information (2.608Mb)
    Dynamic pigmentary and structural coloration within cephalopod chromatophore organs Thomas L. Williams1*, Stephen L. Senft2*, Jingjie Yeo3,4,5*, Francisco J. Martín-Martínez4, Alan M. Kuzirian2, Camille A. Martin1, Christopher W. DiBona1, Chun-Teh Chen4, Sean R. Dinneen,1 Hieu T. Nguyen,6 Conor M. Gomes1, Joshua J. C. Rosenthal2, Matthew D. MacManes6, Feixia Chu6, Markus J. Buehler4, Roger T. Hanlon2#, Leila F. Deravi1# 1 Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, United States. 2 The Marine Biological Laboratory, Woods Hole, MA 02543, United States. 3 Department of Biomedical Engineering, Tufts University, Medford, MA 02155, United States. 4 Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States. 5 Institute of High Performance Computing, A*STAR, Singapore 138632, Singapore. 6 Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, United States. These authors contributed equally: Thomas L. Williams, Stephen L. Senft, Jingjie Yeo Correspondence and requests for materials should be addressed to L.F.D. (email: [email protected]) or to R.T.H. (email: [email protected]) 1 Figure S1. QSpec analysis showing both scale and significance of differences in protein expression, as measured by spectral count MS/MS data. The three chromatophores are compared pairwise (Brown vs. Red, Brown vs. Yellow, and Red vs. Yellow) to show how protein abundance differs between brown, red, and yellow chromatophores. For each protein detected in more than one chromatophore, significance is expressed as the negative log of the false discovery rate (- log10(FDR)), where a value greater than 1.301 signifies an FDR of less than 5%, while the magnitude of the differential expression between the two types of chromatophore is shown as the log base two of the fold change (log2((Fold Change)), where a value of 1 or -1 means that the protein is twice as abundant in the indicated chromatophore color as compared to the other.
    [Show full text]
  • Proteolysis in Septic Shock Patients: Plasma Peptidomic Patterns Are Associated with Mortality J
    British Journal of Anaesthesia, ▪ (▪): 1e10 (2018) doi: 10.1016/j.bja.2018.05.072 Advance Access Publication Date: xxx Clinical Investigation CLINICAL INVESTIGATION Proteolysis in septic shock patients: plasma peptidomic patterns are associated with mortality J. Bauza-Martinez 1,#, F. Aletti2,#, B. B. Pinto3, V. Ribas4, M. A. Odena1, R. Dı´az1, E. R. Medina5, R. Ferrer6, E. B. Kistler7, G. Tedeschi8,9, G. W. Schmid-Schonbein€ 2, A. Herpain10, K. Bendjelid3,* and E. de Oliveira1,* 1Proteomics Platform, Barcelona Science Park, Barcelona, Spain, 2Department of Bioengineering, University of California San Diego, La Jolla, CA, USA, 3Geneva University Hospital, Geneva, Switzerland, 4Eurecat, Technology Centre of Catalonia, Barcelona, Spain, 5University Hospital Mu´ tua Terrassa, Barcelona, Spain, 6Intensive Care Department, Vall d’Hebron University Hospital, Barcelona, Spain, 7Department of Anesthesiology and Critical Care, VA San Diego Healthcare System, San Diego, CA, USA, 8Dipartimento di Medicina Veterinaria, Universita degli Studi di Milano, Milan, Italy, 9Fondazione Filarete Milano, Milan, Italy and 10Universite Libre de Bruxelles, Brussels, Belgium *Corresponding authors. E-mails: [email protected], [email protected] # These authors contributed equally to this study. Abstract Background: Uncontrolled proteolysis contributes to cell injury and organ dysfunction in animal models of circulatory shock. We investigated in humans the relationship between septic shock, proteolysis, and outcome. Methods: Intensive care patients with septic shock (n¼29) or sepsis (n¼6) and non-hospitalised subjects (n¼9) were recruited as part of the prospective observational trial ‘ShockOmics’ (ClinicalTrials.gov Identifier NCT02141607). A mass spectrometry-based approach was used to analyse the plasma peptidomes and the origin of circulating peptides from proteolysis in the enrolled subjects.
    [Show full text]
  • Identification and Characteristics of a Cathepsin L-Like Cysteine Protease from Clonorchis Sinensis
    Parasitology Research (2019) 118:829–835 https://doi.org/10.1007/s00436-019-06223-y HELMINTHOLOGY - ORIGINAL PAPER Identification and characteristics of a cathepsin L-like cysteine protease from Clonorchis sinensis Changling Ma1 & Kai Liang2 & Lili Tang2 & Shanshan He2 & Xiaoquan Liu2 & Mian He2 & Yanwen Li2 Received: 24 June 2018 /Accepted: 17 January 2019 /Published online: 28 January 2019 # Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Cathepsin L-like protease is an important member of the papain-like cysteine protease and plays numerous indispensable roles in the biology of parasitic organisms. In a previous study, we identified a gene encoding a cathepsin L-like protease of Clonorchis sinensis (CsCPL) that was detected in the cercaria, metacercaria, and adult worm stages by immunolocalization, suggesting that this cysteine protease may be important and involved in the development of C. sinensis. In this study, the mature domain of CsCPL (CsCPL-m) was cloned and expressed in the form of inclusion bodies in Escherichia coli. After refolding, the recom- binant CsCPL-m displayed optimal protease activity towards Z-Phe-Arg-AMC substrates but not towards Z-Arg-Arg-AMC, and the activity of the protease was inhibited completely by the cysteine protease-specific inhibitors E-64 and IAA, which further demonstrated that CsCPL belongs to the cathepsin L-like cysteine protease family. Recombinant CsCPL-m exhibited consider- able activity at temperatures ranging from 28 to 42 °C, with the highest activity observed at 42 °C. Furthermore, recombinant CsCPL-m exhibited activity across a broad range of pH values (pH 4.0–8.0), with an optimal pH of 5.5.
    [Show full text]
  • An Annotated List of the Non-Marine Mollusca of Britain and Ireland
    JOURNAL OF CONCHOLOGY (2005), VOL.38, NO .6 607 AN ANNOTATED LIST OF THE NON-MARINE MOLLUSCA OF BRITAIN AND IRELAND ROY ANDERSON1 Abstract An updated nomenclatural list of the non-marine Mollusca of the Britain and Ireland is provided. This updates all previous lists and revises nomenclature and classification in the context of recent changes and of new European lists, including the Clecom List. Cases are made for the usage of names in the List by means of annotations. The List will provide a basis for the future census and cataloguing of the fauna of Britain and Ireland. Key words Taxonomic, list, nomenclature, non-marine, Mollusca, Britain, Ireland, annotated. INTRODUCTION There has been a need for some time to modernise the list of non-marine Mollusca for Britain and Ireland, a subject last visited in this journal in 1976 (Waldén 1976; Kerney 1976). Many of the changes that have appeared in the literature since then are contentious and Kerney (1999) chose not to incorporate many of these into the latest atlas of non-marine Mollusca of Britain and Ireland. A new European List, the Clecom List (Falkner et al. 2001) has now appeared and it seems appropriate to examine in more detail constituent changes which might affect the British and Irish faunas. This is given additional urgency by the inception of a new census of the molluscs of Britain and Ireland by the Conchological Society. Recorders in the Society are aware of many of the proposed changes but unable to implement them without general agreement. In addition, many field malacologists make use of the recording package RECORDER, a recent form of which has been developed jointly by JNCC and the National Biodiversity Network in the United Kingdom.
    [Show full text]