Identification and Characterization of E3 Ubiquitin Ligases Involved in Jasmonate Signalling

Total Page:16

File Type:pdf, Size:1020Kb

Identification and Characterization of E3 Ubiquitin Ligases Involved in Jasmonate Signalling Ghent University Faculty of Sciences – Department of Plant Biotechnology and Bioinformatics Identification and characterization of E3 ubiquitin ligases involved in jasmonate signalling Astrid Nagels Durand Thesis submitted in partial fulfilment of requirements for the degree of Doctor (PhD) in Sciences: Biotechnology July 2015 Promotors: Prof. Dr. Alain Goossens Faculty of Sciences, Department Plant Biotechnology and Bioinformatics, Ghent University, Belgium VIB Department of Plant Systems Biology, Secondary Metabolism group, B-9052 Ghent, Belgium Dr. Laurens Pauwels Faculty of Sciences, Department Plant Biotechnology and Bioinformatics, Ghent University, Belgium VIB Department of Plant Systems Biology, Secondary Metabolism group, B-9052 Ghent, Belgium This research was performed in the Department of Plant Systems Biology of the Flanders Institute for Biotechnology This work was supported by The Research Foundation-Flanders (FWO) through the projects GA13111N and G005212N. ii EXAM COMMISSION Chairman Prof. Dr. Lieven De Veylder Department of Plant Biotechnology and Bioinformatics Faculty of Sciences Ghent University Promotors Prof. Dr. Alain Goossens Department of Plant Biotechnology and Bioinformatics (Secretary) Faculty of Sciences Ghent University Dr. Laurens Pauwels Department of Plant Biotechnology and Bioinformatics (Secretary) Faculty of Sciences Ghent University Promotion commission Prof. Dr. Rudi Beyaert Department of Biomedical Molecular Biology Faculty of Sciences Ghent University Dr. Steven Spoel * Institute of Molecular Plant Sciences School of Biological Sciences University of Edinburgh (UK) Prof. Dr. Steven Maere Department of Plant Biotechnology and Bioinformatics Faculty of Sciences Ghent University Prof. Dr. Tina Kyndt * Department of Molecular Biotechnology Faculty of Bioscience Engineering Ghent University Dr. Barbara De Coninck * Centre of Microbial and Plant Genetics Katholieke Universiteit Leuven Dr. Jefri Heyman * Department of Plant Biotechnology and Bioinformatics Faculty of Sciences Ghent University *Members of the reading committee iii iv Summary Summary Ubiquitination, the covalent attachment of ubiquitin (Ub) to a target protein, is a post- translational modification that is involved in most, if not all, biological processes in eukaryotic organisms. Ubiquitination of a target protein requires the consecutive action of three enzymes (E1, E2 and E3). The E3 Ub ligase is of special interest because it is responsible for recruiting the target protein, determining the specificity of this modification. The Ub system contributes to the regulation of the production, perception and signal transduction of plant hormones. These hormones are critical for correct plant development and adaptation to the variable environmental conditions plants are exposed to during their life cycle. Jasmonic acid and its derivatives, known as jasmonates (JAs), act as signalling compounds regulating plant development and plant responses to various biotic and abiotic stress conditions. Even though more than 1500 E3 ligases are encoded by the genome of the model plant Arabidopsis thaliana , very few have been associated with JA biosynthesis or signal transduction. Best characterized is the SCF COI1 E3 ligase, a component of the JA-receptor. Making use of transcriptomic data and a bio-informatics approach, we have identified a set of 22 E3 ligases with a putative role in JA-signalling (see Chapter 3), further extending the connection between the Ub system and JA-signalling. Despite the large number of E3s present in plants, very few ubiquitination targets have been associated with a specific E3 ligase. Here, we used a customized Tandem Affinity Purification (TAP) platform to identify E3-interacting proteins that constitute potential ubiquitination substrates. Customization consisted of inactivation of the Ub-ligase activity of the E3s by introduction of specific mutations in their RING domain, preventing target ubiquitination and resulting in stabilization of the E3-target interaction. Mutated E3s where then used as baits in purification experiments. This approach led to the identification of potential targets of several E3 ligases with a predicted function in JA-signalling, including AE31, ATL23, BRIZ1/2, KEG and RGLG3/4 (see Chapter 3 and 5). To cope with the restraints that in vitro ubiquitination assays impose on the ability to demonstrate ubiquitination of a protein by a specific E3 ligase, we attempted to develop an alternative in vivo assay. The yeast S. cerevisiae was chosen as a heterologous host to maintain modification of the potential target protein by related or unrelated E3s to a minimum. The principle of this assay is based on the assembly of plant E3 ligases with the yeast ubiquitination machinery. Upon expression of the suspected target-E3 couple, the target would be ubiquitinated, and this should be dependent on co-expression of the (functional) E3. Because yeast is relatively resistant to proteasome inhibition, and target ubiquitination in most cases leads to proteasome mediated degradation of the latter, we first engineered a strain that had increased sensitivity to proteasome inhibition and determined which treatment was most efficient to attain this inhibition (see Chapter 3). We also generated a set of MultiSite Gateway compatible vectors for the expression of genes in S. cerevisiae , as this cloning technology is vi Summary widely used by plant researchers (see Chapter 4). The assay was tested using the heterodimeric E3 ligase BRIZ1/2 and its candidate target LARP6b. Although we could not detect ubiquitination of the LARP6b protein after purification of the protein under denaturing conditions, we did detect a modified form of the protein and this was dependent on co- expression of both BRIZ1 and BRIZ2 (see Chapter 3). Further work focussed on the redundant E3 ligases RGLG3/4 that were reported to be involved in JA-signalling. We identified PKC-θ INTERACTING PROTEIN COUSIN OF THIOREDOXIN 1 (PICOT1/GRXS17) and HEMOGLOBIN 3 (GLB3) as potential targets of RGLG3/4 using the customized TAP approach described above, followed by confirmation of direct interaction using yeast two-hybrid (Y2H). We further demonstrated RGLG3/4 mediate PICOT1 poly-ubiquitination and subsequent proteasomal degradation. PICOT1 is an iron-sulfur (Fe-S) cluster binding glutathioredoxin that localizes to the nucleus and the cytoplasm in Arabidopsis. The use of PICOT1 as a bait in TAP experiments further showed that PICOT1 forms a protein complex with nearly all components of the cytosolic Fe-S assembly pathway as well as with some other known Fe-S proteins. In contrast to the human and yeast orthologs of PICOT1, which function in Fe-homeostasis and Fe-S cluster assembly, the activity of the PICOT1- interacting Fe-S protein XANTHINE DEHYDROGENASE 1 was only marginally affected in picot1 seedlings. In addition to Fe-S proteins, PICOT1 interacted with several proteins involved in tRNA thiolation. Accordingly, plants carrying mutations in genes involved in tRNA modification were found to resemble picot1 plants phenotypically (see Chapter 5). Our most remarkable finding, however, was that PICOT1 potentially regulates the JA- receptor F-box component COI1. The thioredoxin domain of PICOT1 mediates direct interaction with COI1 in the nucleus. In addition, the short-root phenotype of picot1 seedlings was partially rescued in coi1-16picot1 lines. Despite their physical and genetic interaction however, picot1 seedlings did not show alterations in their response to JA. Transcriptome analysis of picot1, coi1-16 and coi1-16picot1 seedlings revealed a set of genes are upregulated in coi1-16 in a PICOT1-dependent manner. These genes were not related to JA-signalling, and included a set of co-regulated genes that are expressed in response to infection with Hyaloperonospera arabidopsidis (previously known as H. parasitica ). We therefore propose PICOT1 regulates the JA-independent function of COI1 (see Chapter 6). In conclusion, a bio-informatics approach combined with customized protein-protein interaction mining was effective in extending our knowledge on the role of the Ub system in JA-signalling. Additionally, we have identified the E3 ligases RGLG3/4 and their target PICOT1 as molecular players in COI1-dependent but JA-independent signalling. vii Summary viii Samenvatting Samenvatting Ubiquitinatie, de covalente binding van ubiquitine (Ub) aan een substraateiwit, is een post-translationele modificatie die betrokken is in bijna alle biologische processen in eukaryote organismen. Ubiquitinatie van een substraat vereist de opeenvolgende werking van drie enzymen (E1, E2 en E3). Het E3 ligase is van uitzonderlijk belang omdat het verantwoordelijk is voor de rekrutering van het substraateiwit en op die manier de specificiteit van de modificatie bepaalt. Het Ub systeem draagt bij aan de regulatie van de aanmaak, de perceptie en de signaaltransductie van plantenhormonen. Deze hormonen zijn van cruciaal belang voor de correcte ontwikkeling en voor aanpassing van planten aan de wisselende omstandigheden waaraan deze gedurende hun levenscyclus worden blootgesteld. Jasmijnzuur en derivaten, gekend als jasmonaten (JAs), werken als signaalmoleculen die plantenontwikkeling en verdedigingsresponsen tegen verscheidene biotische en abiotische stresscondities reguleren. Hoewel er meer dan 1500 E3 ligasen gecodeerd zijn in het genoom van de modelplant Arabidopsis thaliana (zandraket), zijn er slechts enkelen geassocieerd met JA-biosynthese of signaaltransductie.
Recommended publications
  • The Arabidopsis KH-Domain RNA-Binding Protein ESR1 Functions in Components of Jasmonate Signalling, Unlinking Growth Restraint and Resistance to Stress
    RESEARCH ARTICLE The Arabidopsis KH-Domain RNA-Binding Protein ESR1 Functions in Components of Jasmonate Signalling, Unlinking Growth Restraint and Resistance to Stress Louise F. Thatcher1*, Lars G. Kamphuis1,2, James K. Hane1¤a, Luis Oñate-Sánchez1¤b, Karam B. Singh1,2 1 CSIRO Agriculture Flagship, Centre for Environment and Life Sciences, Wembley, Western Australia, Australia, 2 The Institute of Agriculture, The University of Western Australia, Crawley, Western Australia, Australia a11111 ¤a Current address: Curtin Institute for Computation and Centre for Crop and Disease Management, Department of Environment & Agriculture, Curtin University, Bentley, Western Australia, Australia ¤b Current address: Centro de Biotecnología y Genómica de Plantas, UPM-INIA, and E.T.S.I. Agrónomos, Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain * [email protected] OPEN ACCESS Abstract Citation: Thatcher LF, Kamphuis LG, Hane JK, Oñate-Sánchez L, Singh KB (2015) The Arabidopsis Glutathione S-transferases (GSTs) play important roles in the protection of cells against tox- KH-Domain RNA-Binding Protein ESR1 Functions in ins and oxidative damage where one Arabidopsis member, GSTF8, has become a com- Components of Jasmonate Signalling, Unlinking Growth Restraint and Resistance to Stress. PLoS monly used marker gene for early stress and defense responses. A GSTF8 promoter ONE 10(5): e0126978. doi:10.1371/journal. fragment fused to the luciferase reporter gene was used in a forward genetic screen for Ara- pone.0126978 bidopsis mutants with up-regulated GSTF8 promoter activity. This identified the esr1-1 (en- Academic Editor: Ramamurthy Mahalingam, hanced stress response 1) mutant which also conferred increased resistance to the fungal Oklahoma State University, UNITED STATES pathogen Fusarium oxysporum.
    [Show full text]
  • Influences of Gravitational Intensity on the Transcriptional Landscape of Arabidopsis
    Influences of Gravitational Intensity on the Transcriptional Landscape of Arabidopsis thaliana A dissertation presented to the faculty of the College of Arts and Sciences of Ohio University In partial fulfillment of the requirements for the degree Doctor of Philosophy Alexander D. Meyers May 2020 © 2020 Alexander D. Meyers. All Rights Reserved. 2 This dissertation titled Influences of Gravitational Intensity on the Transcriptional Landscape of Arabidopsis thaliana by ALEXANDER D. MEYERS has been approved for the Department of Molecular and Cellular Biology and the College of Arts and Sciences by Sarah E. Wyatt Professor of Environmental and Plant Biology Florenz Plassmann Dean, College of Arts and Sciences 3 Abstract MEYERS, ALEXANDER D, Ph.D., May 2020, Molecular and Cellular Biology Influences of Gravitational Intensity on the Transcriptional Landscape of Arabidopsis thaliana Director of Dissertation: Sarah E. Wyatt Plants use a myriad of environmental cues to inform their growth and development. The force of gravity has been a consistent abiotic input throughout plant evolution, and plants utilize gravity sensing mechanisms to maintain proper orientation and architecture. Despite thorough study, the specific mechanics behind plant gravity perception remain largely undefined or unproven. At the center of plant gravitropism are dense, specialized organelles called starch statoliths that sediment in the direction of gravity. Herein I describe a series of experiments in Arabidopsis that leveraged RNA sequencing to probe gravity response mechanisms in plants, utilizing reorientation in Earth’s 1g, fractional gravity environments aboard the International Space Station, and simulated fractional and hyper gravity environments within various specialized hardware. Seedlings were examined at organ-level resolution, and the statolith-deficient pgm-1 mutant was subjected to all treatments alongside wildtype seedlings in an effort to resolve the impact of starch statoliths on gravity response.
    [Show full text]
  • Proquest Dissertations
    RICE UNIVERSITY Investigation of Triterpene Biosynthesis in Arabidopsis thaliana by Mariya D. Kolesnikova A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE Doctor of Philosophy APPROVED, THESIS COMMITTEE: Seircni P. T. Matsuda, Professor, Department Chair Department of Chemistry Department of Biochemistry and Cell Biology JU- Ronald J. Parry, Professor Department of Chemistry Department of Biochemistry and Cell Biology UL Jonatnan Silberg, ^gs&tant Profasabr Department of Biochemistry and Cell Biology HOUSTON, TEXAS May 2008 UMI Number: 3362344 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. UMI® UMI Microform 3362344 Copyright 2009 by ProQuest LLC All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 ii ABSTRACT Investigation of Triterpene Biosynthesis in Arabidopsis thaliana By Mariya D. Kolesnikova This thesis describes functional characterization of three oxidosqualene cyclase genes (Atlg78955, At3g45130, and At4gl5340) from the model plant Arabidopsis thaliana that encode enzymes with novel catalytic functions. Oxidosqualene cyclases are a family of membrane proteins that convert the acyclic substrate oxidosqualene into polycyclic products with many chiral centers. The complex mechanistic pathways and relevant catalytic motifs can be elucidated through judicious applications of mutagenesis, heterologous expression in combination with a genome mining approach, and protein modeling.
    [Show full text]
  • A Single Oxidosqualene Cyclase Produces the Seco-Triterpenoid A
    A Single Oxidosqualene Cyclase Produces the Seco-Triterpenoid a-Onocerin Aldo Almeida, Lemeng Dong, Bekzod Khakimov, Jean-Etienne Bassard, Tessa Moses, Frederic Lota, Alain Goossens, Giovanni Appendino, Soren Bak To cite this version: Aldo Almeida, Lemeng Dong, Bekzod Khakimov, Jean-Etienne Bassard, Tessa Moses, et al.. A Single Oxidosqualene Cyclase Produces the Seco-Triterpenoid a-Onocerin. Plant Physiology, American Society of Plant Biologists, 2018. hal-02885734 HAL Id: hal-02885734 https://hal.archives-ouvertes.fr/hal-02885734 Submitted on 30 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A Single Oxidosqualene Cyclase Produces the Seco-Triterpenoid a-Onocerin1[OPEN] Aldo Almeida,a Lemeng Dong,a Bekzod Khakimov,b Jean-Etienne Bassard,a Tessa Moses,c,d Frederic Lota,e Alain Goossens,c,d Giovanni Appendino,f and Søren Baka,2 aDepartment of Plant and Environmental Science, University of Copenhagen, DK-1871 Frederiksberg C, Denmark bDepartment of Food Science, University of Copenhagen, DK-1958 Frederiksberg C, Denmark cGhent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium dVIB Center for Plant Systems Biology, 9052 Ghent, Belgium eAlkion Biopharma SAS, 91000 Evry, France fDipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy ORCID IDs: 0000-0001-5284-8992 (A.A.); 0000-0002-1435-1907 (L.D.); 0000-0001-9366-4727 (T.M.); 0000-0002-9330-5289 (F.L.); 0000-0002-1599-551X (A.G.); 0000-0003-4100-115X (S.B.).
    [Show full text]
  • Allantoin, a Stress-Related Purine Metabolite, Can Activate Jasmonate Signaling in a MYC2-Regulated and Abscisic Acid-Dependent Manner
    Supplementary Data Allantoin, a stress-related purine metabolite, can activate jasmonate signaling in a MYC2-regulated and abscisic acid-dependent manner Hiroshi Takagi, Yasuhiro Ishiga, Shunsuke Watanabe, Tomokazu Konishi, Mayumi Egusa, Nobuhiro Akiyoshi, Takakazu Matsuura, Izumi C. Mori, Takashi Hirayama, Hironori Kaminaka, Hiroshi Shimada, and Atsushi Sakamoto The following Supplementary Data are available for this article: Methods S1. Quantification of JA and JA-Ile; Accession numbers. Figure S1. The purine catabolism pathway and metabolites derived therefrom. Figure S2. Hierarchical tree graph of over-represented GO terms for genes with significantly increased expression in the aln-1 mutant. Figure S3. Hierarchical tree graph of over-represented GO terms for genes with significantly reduced expression in the aln-1 mutant. Figure S4. Basal level expression of PR-1 as a canonical SA marker. Figure S5. Characterization of the aln-1 jar1-1 double mutant. Figure S6. Reduced response to MeJA of anthocyanin accumulation in the aah mutant. Figure S7. Characterization of the aln-1 bglu18 double mutant. Table S1. Primers used in this study. Table S2. LC-ESI-MS/MS parameters for jasmonate determination. Table S3. Genes with significantly increased expression in the aln-1 mutant. Table S4. Genes with significantly reduced expression in the aln-1 mutant. Supplementary Methods S1 Quantification of jasmonic acid (JA) and JA-Ile Extraction and quantification of JA and JA-Ile were performed following the method of Preston et al. (2009) with minor modifications. The stable isotope-labeled compounds used as 2 internal standards were: [ H2]JA (Tokyo Chemical industry Co., Ltd., Tokyo, Japan) and 13 13 [ C6]JA-Ile, which was synthesized with [ C6]Ile (Cambridge Isotope Laboratories, Andover, MA, USA) as described in Jikumaru et al.
    [Show full text]
  • A Profile of the Expression of a Metabolic Gene Cluster in Arabidopsis
    A PROFILE OF THE EXPRESSION OF A METABOLIC GENE CLUSTER IN ARABIDOPSIS by Eric Eugene Johnson B.A., Southern Illinois University at Carbondale 2005 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in The Faculty of Graduate Studies (Botany) THE UNIVERSITY OF BRITISH COLUMBIA (VANCOUVER) July 2012 © Eric Eugene Johnson, 2012 ABSTRACT Plant cells often display a microtubule reorganization event when encountered with stress. This has been found to be integral for the reaction to stresses such as aluminum toxicity and cold stress. A cDNA microarray was previously conducted that identified MARNERAL SYNTHASE (MRN1), an oxidosqualene cyclase that produces the triterpene marneral, as the most highly upregulated gene when microtubule dynamics are disrupted in Arabidopsis. This work identifies two cytochrome P450s, CYP71A16 and CYP705A12, that are highly coregulated with MRN1 and are located within close proximity to the MRN1 loci. Using GC-FID and GC-MS, MRN1 and CYP71A16 are shown to function together in a single pathway in what is known as a metabolic gene cluster, while further testing shows that they are not in fact regulated by microtubule dynamics. The expression profile of these genes is explored since there is no known function for marneral or its related metabolites. Using a promoter-reporter and real time PCR analysis, it was found that the hormones ABA and methyl jasmonate induce expression of the three genes to different degrees depending on seedling age. Osmotic stressors, including mannitol and NaCl treatments, also induce the expression of these genes. MRN1, in particular, seems to show the highest level of induction suggesting that the pathway is transcriptionally regulated through MRN1.
    [Show full text]
  • Studies Into the Occurrence of Alpha-Onocerin in Restharrow
    Hayes, Steven Paul (2013) Studies into the occurrence of alpha-onocerin in restharrow. PhD thesis, University of Nottingham. Access from the University of Nottingham repository: http://eprints.nottingham.ac.uk/29348/1/594743.pdf Copyright and reuse: The Nottingham ePrints service makes this work by researchers of the University of Nottingham available open access under the following conditions. · Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. · To the extent reasonable and practicable the material made available in Nottingham ePrints has been checked for eligibility before being made available. · Copies of full items can be used for personal research or study, educational, or not- for-profit purposes without prior permission or charge provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. · Quotations or similar reproductions must be sufficiently acknowledged. Please see our full end user licence at: http://eprints.nottingham.ac.uk/end_user_agreement.pdf A note on versions: The version presented here may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the repository url above for details on accessing the published version and note that access may require a subscription. For more information, please contact [email protected] STUDIES INTO THE OCCURRENCE OF -ONOCERIN IN RESTHARROW BY STEVEN PAUL HAYES BSc.
    [Show full text]
  • Characterising the Dmc1 and Rad51 Strand-Exchange
    STUDIES INTO THE OCCURRENCE OF α-ONOCERIN IN RESTHARROW BY STEVEN PAUL HAYES BSc. (Hons), MSc. Thesis submitted to the University of Nottingham for the degree of Doctor of Philosophy November 2012 School of Biosciences Division of Plant and Crop Sciences The University of Nottingham, Sutton Bonington Campus Loughborough, Leicestershire, UK I ABSTRACT With the increasing evidence of climate change in the coming decades, adaptive mechanisms present in nature may permit crop survival and growth on marginal or saline soils and is considered an important area of future research. Some subspecies of Restharrow; O. repens subsp. maritima and O. reclinata have developed the remarkable ability to colonise sand dunes, shingle beaches and cliff tops. α-onocerin is a major component within the roots of Restharrow (Ononis) contributing up to 0.5% dry weight as described by Rowan and Dean (1972b). The ecological function of α-onocerin is poorly understood, with suggestions that it has waterproofing properties, potentially inhibiting the flow of sodium chloride ions into root cells, or preventing desiccation in arid environments. The fact that α-onocerin (a secondary plant metabolite) biosynthesis has evolved a number of times in distantly related taxa; Club mosses, Ferns and Angiosperms, argues for a relatively simple mutation from non-producing antecedents. No direct research has been reported to have investigated the biosynthetic mechanism towards α-onocerin synthesis via a squalene derived product originally characterised by Dean, and Rowan (1972a). A bi- cyclisation event of 2,3;22,23-dioxidosqualene by an oxidosqualene cyclase, may provide plants with an alternative mechanism for synthesising a range of triterpene diol products via α-onocerin (Dean, and Rowan, 1972a).
    [Show full text]
  • Effects of Chronic Cold Treatment on Root Elongation and Gene Expression in Arabidopsis Thaliana
    Effects of Chronic Cold Treatment on Root Elongation and Gene Expression in Arabidopsis thaliana Inauguraldissertation zur Erlangung der Würde eines Doktors der Philosophie vorgelegt der Philosophisch-Naturwissenschaftlichen Fakultät der Universität Basel von Yang Ping Lee aus Malaysia 2008 Friedrich Miescher Institut Basel Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät auf Auftrag von Prof. Dr. Frederick Meins Jr., Prof. Dr. Christian Körner und Prof. Dr. Thomas Boller Basel, den 19. Februar 2008 Prof. Dr. Hans-Peter Hauri (Dekan) Summary Low temperature is a major limitation of plant growth. Cold adaptation is important for the survival and distribution of plant species at high elevations and high latitudes. Much is known about the molecular basis for cold acclimation and freezing tolerance, which are triggered by acute cold treatment. The causes of growth limitation at low, non-freezing temperatures are largely unexplored. To better understand the mechanisms limiting plant growth in cold environments, I studied the elongation-growth of roots and patterns of gene expression in Arabidopsis accessions from diverse habitats. Arabidopsis thaliana (L.) Heyhn is a small, annual weed that is widely distributed in different growth environments and is well-suited for molecular genetic studies. My initial study of 23 accessions failed to detect ecotypic differentiation for root elongation rates at low, non- freezing temperatures (10 °C); however, evidence was obtained implicating the cell-cycle gene CYCB1;1 as part of a compensatory mechanism for maintaining proliferation under these conditions. I used microarray technology to obtain a global picture of cold-responsive gene expression in the temperate Col-0 accession and the high-altitude (3400 m) Sha accession, which is expected to be adapted for a cold environment.
    [Show full text]
  • PDF) S2 Table
    RESEARCH ARTICLE The photosynthetic bacteria Rhodobacter capsulatus and Synechocystis sp. PCC 6803 as new hosts for cyclic plant triterpene biosynthesis Anita Loeschcke1,2☯, Dennis Dienst3,2☯, Vera Wewer4,2☯, Jennifer Hage-HuÈ lsmann1,2, Maximilian Dietsch3,2, Sarah Kranz-Finger5,2, Vanessa HuÈren3,2, Sabine Metzger4,2, Vlada B. Urlacher5,2, Tamara Gigolashvili6,2, Stanislav Kopriva6,2, Ilka M. Axmann3,2*, a1111111111 Thomas Drepper1,2*, Karl-Erich Jaeger1,2,7 a1111111111 a1111111111 1 Institute of Molecular Enzyme Technology, Heinrich Heine University DuÈsseldorf, Forschungszentrum JuÈlich, JuÈlich, Germany, 2 Cluster of Excellence on Plant Sciences (CEPLAS), 3 Institute for Synthetic a1111111111 Microbiology, Department of Biology, Heinrich Heine University DuÈsseldorf, DuÈsseldorf, Germany, 4 MS a1111111111 Platform, Department of Biology, University of Cologne, Cologne, Germany, 5 Institute of Biochemistry II, Department of Chemistry, Heinrich Heine University DuÈsseldorf, DuÈsseldorf, Germany, 6 Botanical Institute, University of Cologne, Cologne, Germany, 7 Institute of Bio- and Geosciences (IBG-1), Forschungszentrum JuÈlich, JuÈlich, Germany ☯ These authors contributed equally to this work. OPEN ACCESS * [email protected] (IMA); [email protected] (TD) Citation: Loeschcke A, Dienst D, Wewer V, Hage- HuÈlsmann J, Dietsch M, Kranz-Finger S, et al. (2017) The photosynthetic bacteria Rhodobacter Abstract capsulatus and Synechocystis sp. PCC 6803 as new hosts for cyclic plant triterpene biosynthesis. Cyclic triterpenes constitute one of the most diverse groups of plant natural products. PLoS ONE 12(12): e0189816. https://doi.org/ 10.1371/journal.pone.0189816 Besides the intriguing biochemistry of their biosynthetic pathways, plant triterpenes exhibit versatile bioactivities, including antimicrobial effects against plant and human pathogens.
    [Show full text]
  • Molecular Genetic and Physiological Studies on the Dual Role of Purine Catabolism in Plant Growth and Stress Response
    Molecular genetic and physiological studies on the dual role of purine catabolism in plant growth and stress response Hiroshi Takagi Department of Mathematical and Life Sciences Graduate School of Science Hiroshima University 2017 DECLARATION OF CO-AUTHORSHIP/PREVIOUS PUBLICATION I. Co-Authorship Declaration I hereby declare that this thesis incorporates material from joint research. I certify that I have essentially done all the work and obtained written permission from each of the co-authors to include the above material in my thesis. I certify that, with the above qualification, this thesis and the work to which it refers are the results of my own efforts. II. Declaration of Previous Publication This thesis includes one original paper that has been published in a peer-reviewed journal: Authors: Takagi, H., Ishiga, Y., Watanabe, S., Konishi, T., Egusa, M., Akiyoshi, N., Matsuura, T., Mori, I.C., Hirayama, T., Kaminaka, H., Shimada, H. and Sakamoto, A. Article title: Allantoin, a stress-related purine metabolite, can activate jasmonate signaling in a MYC2-regulated and abscisic acid-dependent manner Journal: Journal of Experimental Botany 67 (8): 2519–2532 Publisher: Oxford University Press DOI: 10.1093/jxb/erw071 Article first published online: 1 March 2016 Accepted manuscript online: 5 February 2016 I certify that I have obtained a written permission from the copyright owner to use the above-published material in my thesis. It is noted that, where it was necessary, the original text is slightly modified to fit the formatting and structuring style of the thesis. I certify that the above material describes work completed during my registration as graduate student at Hiroshima University.
    [Show full text]
  • Co-Regulation of Clustered and Neo-Functionalized Genes in Plant-Specialized Metabolism
    plants Review Co-regulation of Clustered and Neo-functionalized Genes in Plant-Specialized Metabolism Takayuki Tohge 1,* and Alisdair R. Fernie 2,* 1 Graduate School of Biological Science, Nara Institute of Science and Technology (NAIST), Ikoma 630-0192, Japan 2 Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany * Correspondence: [email protected] (T.T.); [email protected] (A.R.F.); Tel.: +81-(743)-72-5480 (T.T.); +49-(0)331-567-8211(A.R.F.) Received: 1 April 2020; Accepted: 4 May 2020; Published: 13 May 2020 Abstract: Current findings of neighboring genes involved in plant specialized metabolism provide the genomic signatures of metabolic evolution. Two such genomic features, namely, (i) metabolic gene cluster and (ii) neo-functionalization of tandem gene duplications, represent key factors corresponding to the creation of metabolic diversity of plant specialized metabolism. So far, several terpenoid and alkaloid biosynthetic genes have been characterized with gene clusters in some plants. On the other hand, some modification genes involved in flavonoid and glucosinolate biosynthesis were found to arise via gene neo-functionalization. Although the occurrence of both types of metabolic evolution are different, the neighboring genes are generally regulated by the same or related regulation factors. Therefore, the translation-based approaches associated with genomics, and transcriptomics are able to be employed for functional genomics focusing on plant secondary metabolism. Here, we present a survey of the current understanding of neighboring genes involved in plant secondary metabolism. Additionally, a genomic overview of neighboring genes of four model plants and transcriptional co-expression network neighboring genes to detect metabolic gene clusters in Arabidopsis is provided.
    [Show full text]