Methyl Acrylate

Total Page:16

File Type:pdf, Size:1020Kb

Methyl Acrylate Methyl acrylate sc-215333 Material Safety Data Sheet Hazard Alert Code Key: EXTREME HIGH MODERATE LOW Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION PRODUCT NAME Methyl acrylate STATEMENT OF HAZARDOUS NATURE CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200. NFPA FLAMMABILITY3 HEALTH3 HAZARD INSTABILITY2 SUPPLIER Santa Cruz Biotechnology, Inc. 2145 Delaware Avenue Santa Cruz, California 95060 800.457.3801 or 831.457.3800 EMERGENCY: ChemWatch Within the US & Canada: 877-715-9305 Outside the US & Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112 SYNONYMS C4-H6-O2, H2C=CHCOOCH3, "acrylic acid, methyl ester", "propenoic acid, methyl ester", "methyl propenate", "methyl propenoate", "methyl 2-propenoate" Section 2 - HAZARDS IDENTIFICATION CHEMWATCH HAZARD RATINGS Min Max Flammability: 3 Toxicity: 2 Body Contact: 2 Min/Nil=0 Low=1 Reactivity: 2 Moderate=2 High=3 Chronic: 2 Extreme=4 CANADIAN WHMIS SYMBOLS 1 of 13 EMERGENCY OVERVIEW RISK May cause SENSITISATION by inhalation and skin contact. Harmful by inhalation, in contact with skin and if swallowed. Irritating to eyes, respiratory system and skin. Highly flammable. POTENTIAL HEALTH EFFECTS ACUTE HEALTH EFFECTS SWALLOWED ! Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual. EYE ! Irritation of the eyes may produce a heavy secretion of tears (lachrymation). ! The vapour when concentrated has pronounced eye irritation effects and this gives some warning of high vapour concentrations. If eye irritation occurs seek to reduce exposure with available control measures, or evacuate area. ! There is evidence that material may produce eye irritation in some persons and produce eye damage 24 hours or more after instillation. Severe inflammation may be expected with pain. SKIN ! Skin contact with the material may be harmful; systemic effects may resultfollowing absorption. ! The material may cause moderate inflammation of the skin either following direct contact or after a delay of some time. Repeated exposure can cause contact dermatitis which is characterized by redness, swelling and blistering. ! Minor exposure to methyl acrylate may cause sensitisation in some cases In a vase study involving 105 exposed workers 53. 7 % showed the clinical presence of three allergies (dermatitis, eczema, urticaria). ! Open cuts, abraded or irritated skin should not be exposed to this material. ! Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. INHALED ! Inhalation of vapors or aerosols (mists, fumes), generated by the material during the course of normal handling, may be harmful. ! The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage. ! Inhalation of quantities of liquid mist may be extremely hazardous, even lethal due to spasm, extreme irritation of larynx and bronchi, chemical pneumonitis and pulmonary edema. ! If exposure to highly concentrated vapor atmosphere is prolonged this may lead to narcosis, unconsciousness, even coma and unless resuscitated - death. ! There is some evidence to suggest that this material can cause, if inhaled once, irreversible damage of organs. ! The use of a quantity of material in an unventilated or confined space may result in increased exposure and an irritating atmosphere developing. Before starting consider control of exposure by mechanical ventilation. CHRONIC HEALTH EFFECTS ! Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. Inhaling this product is more likely to cause a sensitization reaction in some persons compared to the general population. Skin contact with the material is more likely to cause a sensitization reaction in some persons compared to the general population. There has been some concern that this material can cause cancer or mutations but there is not enough data to make an assessment. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. In a 13-week study of methyl acrylate, rats were given up to 20 mg/kg/day in drinking water. Treatment related effects were seen in rats receiving higher doses and included spontaneous renal disease. The no-observed-effect level (NOEL) was 5 mg/kg/day. In an inhalation study rats, rabbits and guinea pigs were exposed to methyl methacrylate 7 hours/day. All animals exposed at 578 ppm (two-seven times) died. These animals exhibited ocular and respiratory tract irritation, salivation, laboured breathing, lethargy and/or convulsions. Signs of toxicity at 237 ppm were similar to those at 578 ppm. Rats exposed to methyl methacrylate vapour for up to 2 years showed concentration-related changes in the transitional region between the respiratory and olfactory nasal epithelium ranging from very mild to mild atrophy of ciliated and olfactory cells. No animals showed signs of squamous cell metaplasia at concentrations up to 135 ppm. Corneal opacification and vascularisation occurred at all concentrations. Severity was dependent on concentration and duration. 2 of 13 Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS NAME CAS RN % methyl acrylate 96-33-3 >98 inhibitor stabiliser, must be present for transport and storage; more inhibitor means longer storage life typically 4-methoxyphenol (MEHQ) 150-76-5 0.001-0.1 Section 4 - FIRST AID MEASURES SWALLOWED · IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY. · Where Medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise: EYE ! If this product comes in contact with the eyes: · Wash out immediately with fresh running water. · Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. SKIN ! If skin contact occurs: · Immediately remove all contaminated clothing, including footwear · Flush skin and hair with running water (and soap if available). INHALED · If fumes or combustion products are inhaled remove from contaminated area. · Lay patient down. Keep warm and rested. NOTES TO PHYSICIAN ! for poisons (where specific treatment regime is absent): ----------------------------------------------------------------------------------------------------------------BASIC TREATMENT ---------------------------------------------------------------------------------------------------------------- · Establish a patent airway with suction where necessary. · Watch for signs of respiratory insufficiency and assist ventilation as necessary. Treat symptomatically. If exposure has been severe and/or symptoms marked, observation in hospital for 48 hours should be considered due to possibility of delayed pulmonary edema. Section 5 - FIRE FIGHTING MEASURES Vapor Pressure (mmHg): 67.806 @ 20C Upper Explosive Limit (%): 12.0 Specific Gravity (water=1): 0.956 @ 25C Lower Explosive Limit (%): 2.5 EXTINGUISHING MEDIA · Foam. · Dry chemical powder. FIRE FIGHTING · Alert Emergency Responders and tell them location and nature of hazard. · May be violently or explosively reactive. When any large container (including road and rail tankers) is involved in a fire, consider evacuation by 1000 metres in all directions. GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS · Liquid and vapor are highly flammable. · Severe fire hazard when exposed to heat, flame and/or oxidizers. Combustion products include: carbon dioxide (CO2), other pyrolysis products typical of burning organic material. Contains low boiling substance: Closed containers may rupture due to pressure buildup under fire conditions. FIRE INCOMPATIBILITY ! Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids,chlorine bleaches, pool chlorine etc. as ignition may result. PERSONAL PROTECTION Glasses: Chemical goggles. Gloves: 3 of 13 1.BUTYL 2.TEFLON 3.PVA Respirator: Type A Filter of sufficient capacity Section 6 - ACCIDENTAL RELEASE MEASURES MINOR SPILLS · Remove all ignition sources. · Clean up all spills immediately. MAJOR SPILLS · Clear area of personnel and move upwind. · Alert Emergency Responders and tell them location and nature of hazard. Section 7 - HANDLING AND STORAGE PROCEDURE FOR HANDLING · Most acrylic monomers have low viscosity therefore pouring, material transfer and processing of these materials do not necessitate heating. · Viscous monomers may require heating to facilitate handling. To facilitate product transfer from original containers, product must be heated to no more than 60 deg. C. (140 F.), for not more than 24 hours. · Containers, even those that have been emptied, may contain explosive vapours. · Do NOT cut, drill, grind, weld or perform similar operations on or near containers. Contains low boiling substance: Storage in sealed containers may result in pressure buildup causing violent rupture of containers not rated appropriately. · Check for bulging containers. · Vent periodically. · DO NOT allow clothing wet with material to stay in contact with skin. · Avoid all personal contact, including inhalation. · Wear protective clothing when risk of exposure occurs. RECOMMENDED STORAGE
Recommended publications
  • Aldrich Polymer Products Applicaton & Reference Information
    Reference:Reference: PolymerPolymer PropertiesProperties Thermal Transitions of Homopolymers: Glass Transition & Melting Point Literature values for the glass transition temperature, (Tg), and in Table I have been taken from melting temperature, (Tm), are given in Table I for the more various sources and represent the most commonly common homopolymers. Polymers are listed by the repeat- reported numbers.1 Several factors can influence the ing unit in the polymer chain. These polymers and corre- reported values, including molecular weight, molecular sponding monomers are available from Aldrich. Literature val- weight distribution, tacticity, thermal history, purity, and ues for a given material can vary widely. The values reported method of measurement. Table I: Thermal Transitions of Homopolymers: Glass Transition (Tg) & Melting Point (Tm) Temperatures Repeating Unit Tg (°C) Tm (°C) Repeating Unit Tg (°C) Tm (°C) Acenaphthylene 214 N,N-Dimethylacrylamide 89 Acetaldehyde -32 165 Dimethylaminoethyl methacrylate 19 4-Acetoxystyrene 116 2,6-Dimethyl-1,4-phenylene oxide 167 Acrylamide 165 Dimethylsiloxane -127 -40 Acrylic acid 105 2,4-Dimethylstyrene 112 Acrylonitrile, syndiotactic 125 319 2,5-Dimethylstyrene 143 Allyl glycidyl ether -78 3,5-Dimethylstyrene 104 Benzyl acrylate 6 Dodecyl acrylate -3 Benzyl methacrylate 54 Dodecyl methacrylate -65 Bisphenol A-alt-epichlorohydrin 100 Dodecyl vinyl ether -62 Bisphenol A terephthalate 205 Epibromohydrin -14 Bisphenol carbonate 174 Epichlorohydrin -22 Bisphenol F carbonate 147 1,2-Epoxybutane -70
    [Show full text]
  • New L-Serine Derivative Ligands As Cocatalysts for Diels-Alder Reaction
    Hindawi Publishing Corporation ISRN Organic Chemistry Volume 2013, Article ID 217675, 5 pages http://dx.doi.org/10.1155/2013/217675 Research Article New L-Serine Derivative Ligands as Cocatalysts for Diels-Alder Reaction Carlos A. D. Sousa,1 José E. Rodríguez-Borges,2 and Cristina Freire1 1 REQUIMTE, Departamento de Qu´ımica e Bioqu´ımica, Faculdade de Cienciasˆ da Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal 2 Centro de Investigac¸ao˜ em Qu´ımica, Departamento de Qu´ımica e Bioqu´ımica, Faculdade de Cienciasˆ da Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal Correspondence should be addressed to Cristina Freire; [email protected] Received 1 October 2013; Accepted 21 October 2013 Academic Editors: P. S. Andrada, M. W. Paixao, and N. Zanatta Copyright © 2013 Carlos A. D. Sousa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. New L-serine derivative ligands were prepared and tested as cocatalyst in the Diels-Alder reactions between cyclopentadiene (CPD) and methyl acrylate, in the presence of several Lewis acids. The catalytic potential of the in situ formed complexes was evaluated based on the reaction yield. Bidentate serine ligands showed good ability to coordinate medium strength Lewis acids, thus boosting their catalytic activity. The synthesis of the L-serine ligands proved to be highly efficient and straightforward. 1. Introduction derivative ligands, as alternative to the usual strong Lewis acids.
    [Show full text]
  • Filter Chart
    Filter Chart Chemical Filter Chemical Filter Chemical Filter Abate FFP1 tert-Butyl acetate A1 Copper fume FFP1 Acetaldehyde A1 Butyl acrylate A1 Dusts & mist (as Cu) FFP1 Acetic acid E1 n-Butyl alcohol A1 Cotton dust, raw FFP1 Acetic anhydride B1 sec-Butyl alcohol R A1 Crag herbicide FFP1 Acetonitrile A1 Butylamine B1 Cresol, all isomers FFP1 Acetylene dichloride A1 tert-Butyl chromate (as Cro3) FFP1 Cumene FFP1 Acetylene tetrabromide A1 n-Butyl glycidyl ether(BGE) A1 Cyanamide A1 P1 Acetylsalicylic acid FFP2 n-Butyl lactate A1 Cyanogen B1 Acrolein A1 o-sec Butyl phenol A1 Acrylamide A1 P2 p-tert Butyltoluene A1 Cyanogen chloride (CK) B1 Acrylonitrile A1 Cadmium, dust & salts (as Cd) FFP1 Cyclohexane A1 Aldrin A1 P2 Cadmium oxide fume (as Cd) FFP1 Cyclohexnol A1 Allyl alcohol A1 Calcium cyanamide FFP1 Cyclohexanone A1 Allyl chloride A1 Calcium hydroxide FFP1 Cyclohexene Allyl glycidyl ether (AGE) A1 Calcium oxide FFP1 A1 Allyl propyl disulfide B1 Camphor, synthetic A1 Cyclohexylamine A1 Aluminium metal and oxide FFP2 Caprolactam Dust FFP1 Cyclonite B1 Aluminium pyro powders FFP2 Vapor A1 1.3 Cyclopentadiene A1 Aluminium welding fumes A1 P2 Captafol(DifolatanR) FFP1 2.4-D (2.4-Dichlorophenoxy acetic acid) FFP1 Aluminium soluble salts FFP2 Captan FFP1 Aluminium, alkyls A1 R Carbary (Seven ) FFP1 D.D.T. (Dichlorodiphenyl A1 P1 4-Aminodiphenyl FFP1 Carbofuran (FuradanR) FFP1 trichloroethane) A1 P1 2- Aminoethanol A1 Carbon black FFP1 DDVP Decaborane B1 P1 2- Aminopyridine K1 Carbon dusulfide B1 DemetonR B1 P1 Ammonia A1 Carbon tetrabromide
    [Show full text]
  • Methyl Acrylate (CASRN 96-33-3) | IRIS
    Integrated Risk Information System (IRIS) U.S. Environmental Protection Agency Chemical Assessment Summary National Center for Environmental Assessment Methyl acrylate; CASRN 96-33-3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data, as outlined in the IRIS assessment development process. Sections I (Health Hazard Assessments for Noncarcinogenic Effects) and II (Carcinogenicity Assessment for Lifetime Exposure) present the conclusions that were reached during the assessment development process. Supporting information and explanations of the methods used to derive the values given in IRIS are provided in the guidance documents located on the IRIS website. STATUS OF DATA FOR Methyl acrylate File First On-Line 12/01/1990 Category (section) Assessment Available? Last Revised Oral RfD (I.A.) not evaluated Inhalation RfC (I.B.) not evaluated Carcinogenicity Assessment (II.) yes 12/01/1990 I. Chronic Health Hazard Assessments for Noncarcinogenic Effects I.A. Reference Dose for Chronic Oral Exposure (RfD) Substance Name — Methyl acrylate CASRN — 96-33-3 Not available at this time. 1 Integrated Risk Information System (IRIS) U.S. Environmental Protection Agency Chemical Assessment Summary National Center for Environmental Assessment I.B. Reference Concentration for Chronic Inhalation Exposure (RfC) Substance Name — Methyl acrylate CASRN — 96-33-3 Not available at this time. II. Carcinogenicity Assessment for Lifetime Exposure Substance Name — Methyl acrylate CASRN — 96-33-3 Last Revised — 12/01/1990 Section II provides information on three aspects of the carcinogenic assessment for the substance in question; the weight-of-evidence judgment of the likelihood that the substance is a human carcinogen, and quantitative estimates of risk from oral exposure and from inhalation exposure.
    [Show full text]
  • A Novel Synthesis of Methyl Acrylate-Rl-D and 1 H Nuclear Magnetic Resonance Spectra of Its Alternating Copolymers
    Polymer Journal, Vol. 12, No.3, pp 177-181 (1980) A Novel Synthesis of Methyl Acrylate-rl-d and 1 H Nuclear Magnetic Resonance Spectra of Its Alternating Copolymers Kenji YOKOTA, Tadamichi HIRABAYASHJ, and Kensuke TAKAHASHI Materials Research Laboratory, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466, Japan. (Received November 13, 1979) ABSTRACT: Methyl acrylate-a-d of high isotopic purity was synthesized in 50 per cent yield by reducing methyl a-bromoacrylate with zinc dust and deuterium oxide in diethylene glycol dimethyl ether at 80-1 oooc. 1 H nuclear magnetic resonance spectra of alternating styrene-a-d-methyl acrylate-a-d and a-methylstyrene-methyl acrylate-a-d copolymers ate discussed. KEY WORDS Methyl Acrylate-a-d I Deuteraiion I Zinc I Deuterium Oxide I 1 H NMR I Alternating Copolymer I The partial deuteration of a vinyl monomer at a The last step, in which a deuterium is substituted for specified position has made possible the useful bromine, is an application of Whitesides et al.'s simplification of 1 H nuclear magnetic resonance deuteration procedure.4 They carried out the (NMR) spectra of derived polymers.' reaction on some saturated halogeno-esters and Matsuzaki et a/. 2 synthesized methyl acrylate-IX-d -nitriles. by hydrolyzing acrylonitrile-IX-d 3 with D 20-D2 S04 Methyl acrylate-IX-d thus obtained was and esterifying the resulting acid with methanol. The copolymerized to give alternating styrene-IX-d­ yield however was low (14%) and the isotopic purity, methyl acrylate-IX-d and IX-methylstyrene-methyl unsatisfactory (91 %). acrylate-IX-d copolymers.
    [Show full text]
  • Provisional Peer-Reviewed Toxicity Values for Methyl Acrylate (Casrn 96-33-3)
    EPA/690/R-12/021F l Final 11-15-2012 Provisional Peer-Reviewed Toxicity Values for Methyl Acrylate (CASRN 96-33-3) Superfund Health Risk Technical Support Center National Center for Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency Cincinnati, OH 45268 AUTHORS, CONTRIBUTORS, AND REVIEWERS CHEMICAL MANAGER J. Phillip Kaiser, PhD National Center for Environmental Assessment, Cincinnati, OH DRAFT DOCUMENT PREPARED BY ICF International 9300 Lee Highway Fairfax, VA 22031 PRIMARY INTERNAL REVIEWERS Anuradha Mudipalli, MSc, PhD National Center for Environmental Assessment, Research Triangle Park, NC Q. Jay Zhao, PhD, MPH, DABT National Center for Environmental Assessment, Cincinnati, OH This document was externally peer reviewed under contract to Eastern Research Group, Inc. 110 Hartwell Avenue Lexington, MA 02421-3136 Questions regarding the contents of this document may be directed to the U.S. EPA Office of Research and Development’s National Center for Environmental Assessment, Superfund Health Risk Technical Support Center (513-569-7300). i Methyl Acrylate TABLE OF CONTENTS COMMONLY USED ABBREVIATIONS ................................................................................... iii BACKGROUND .............................................................................................................................1 DISCLAIMERS ...............................................................................................................................1 QUESTIONS REGARDING PPRTVs ............................................................................................1
    [Show full text]
  • ICSHAM Acrylic Esters Safe Handling Guide
    ACRYLATE ESTERS A SUMMARY OF SAFETY AND HANDLING 3RD EDITION Compiled by ATOFINA Chemicals, Inc. BASF Corporation Celanese, Ltd. The Dow Chemical Company ROHM AND HAAS2002 COMPANY TABLE OF CONTENTS 1 INTRODUCTION.....................................................................................................................................................................1 2 NAMES AND GENERAL INFORMATION......................................................................................................................2 2.1 ODOR..............................................................................................................................................................................................2 2.2 REACTIVITY.....................................................................................................................................................................................2 3 PROPERTIES AND CHARACTERISTICS OF ACRYLATES........................................................................................3 4 SAFETY AND HANDLING MANAGEMENT TRAINING..........................................................................................5 4.1 GENERAL CONSIDERATIONS.......................................................................................................................................................5 4.2 SAFETY, HEALTH AND ENVIRONMENTAL REVIEWS...................................................................................................................5 4.3 WRITTEN OPERATING PROCEDURES...........................................................................................................................................5
    [Show full text]
  • Methyl Acrylate
    METHYL ACRYLATE Data were last reviewed in IARC (1986) and the compound was classified in IARC Monographs Supplement 7 (1987). 1. Exposure Data 1.1 Chemical and physical data 1.1.1 Nomenclature Chem. Abstr. Serv. Reg. No.: 96-33-3 Chem. Abstr. Name: 2-Propenoic acid, methyl ester IUPAC Systematic Name: Acrylic acid, methyl ester Synonym: Methyl propenoate 1.1.2 Structural and molecular formulae and relative molecular mass O H2 C CH C O CH3 C4H6O2 Relative molecular mass: 86.09 1.1.3 Chemical and physical properties of the pure substance (a) Description: Liquid with an acrid odour (Budavari, 1996) (b) Boiling-point: 80.6°C (American Conference of Governmental Industrial Hygienists, 1992) (c) Melting-point: –76.5°C (Budavari, 1996) (d) Solubility: Slightly soluble in water (6 g/100 mL at 20°C, 5 g/100 mL at 40°C); soluble in ethanol, diethyl ether, acetone and benzene (American Conference of Governmental Industrial Hygienists, 1992) (e) Vapour pressure: 9.3 kPa at 20°C; relative vapour density (air = 1), 3.0 (Ver- schueren, 1996) ( f ) Flash point: –2.8°C, closed cup; 6.7°C, open cup (American Conference of Governmental Industrial Hygienists, 1992) (g) Explosive limits: upper, 25%; lower, 2.8% by volume in air (American Con- ference of Governmental Industrial Hygienists, 1992) (h) Conversion factor: mg/m3 = 3.52 × ppm –1489– 1490 IARC MONOGRAPHS VOLUME 71 1.2 Production and use Production of methyl acrylate in the United States was reported to be 14 100 tonnes in 1983 (United States National Library of Medicine, 1997).
    [Show full text]
  • United States Patent Office Patented July 27, 1971
    3,595,819 United States Patent Office Patented July 27, 1971 2 polymers, a homogeneous thermoplastic composition can 3,595,819 HAGHLY TRANSPARENT SELF-EXTENGUISHENG be obtained which is highly transparent, highly resilient COMPOSITIONS OF METHACRYLATE AND and resistant to weather or atmospheric conditions. In WNY CHLORIDE RESNS addition, such a thermoplastic mixture can be character Ibrahim Daki and Tommaso Perotti Nigra, Busto Arsizio, ized as having self-extinguishing properties. and Rinaldo Casiraghi, Milan, Italy, assignors to More particularly, the thermoplastic compositions of Montecatini Edison S.p.A., Milan, Italy the present invention comprise (1) from about 35-55% No Drawing. Continuation-in-part of application Ser. No. by weight of a methacrylate resin containing less than 642,297, May 31, 1967, which is a continuation-in about 0.08% by weight of bivalent sulfur, the resin being part of application Ser. No. 354,79, Mar. 25, 1964, both now abandoned. This application July 24, 1968, O made up of a methyl methacrylate homopolymer and/or Ser. No. 747,107 a copolymer of methyl methacrylate with an alkyl acry ... C. C08f 29/22 late, the alkyl acrylate content of the copolymer being U.S. C. 260-23 6 Claims lower than 5% by weight; (2) from about 45-65% by weight of a vinyl chloride resin made up of a copolymer of vinyl chloride and 2-ethylhexyl acrylate, the 2-ethyl ABSTRACT OF THE DISCLOSURE hexyl acrylate content of the copolymer being from about 3% to 5% by weight; (3) from about 0-10% by weight Highly transparent, self-extinguishing, thermoplastic of a non-flammable, organic phosphoric acid salt plasti compositions having high resistance to chemical reagents cizer; and (4) lubricants and antioxidants.
    [Show full text]
  • Committee for Risk Assessment RAC Annex 1 Background Document to the Opinion Proposing Harmonised Classification and Labelling
    Committee for Risk Assessment RAC Annex 1 Background document to the Opinion proposing harmonised classification and labelling at EU level of methyl acrylate; methyl propenoate EC Number: 202-500-6 CAS Number: 96-33-3 CLH-O-0000006956-59-01/F The background document is a compilation of information considered relevant by the dossier submitter or by RAC for the proposed classification. It includes the proposal of the dossier submitter and the conclusion of RAC. It is based on the official CLH report submitted to public consultation. RAC has not changed the text of this CLH report but inserted text which is specifically marked as ‘RAC evaluation’. Only the RAC text reflects the view of RAC. Adopted 18 March 2021 P.O. Box 400, FI-00121 Helsinki, Finland | Tel. +358 9 686180 | Fax +358 9 68618210 | echa.europa.eu [04.01-ML-009.02] ANNEX 1 - BACKGROUND DOCUMENT TO RAC OPINION ON METHYL ACRYLATE CLH report Proposal for Harmonised Classification and Labelling Based on Regulation (EC) No 1272/2008 (CLP Regulation), Annex VI, Part 2 International Chemical Identification: Methyl acrylate EC Number: 202-500-6 CAS Number: 96-33-3 Index Number: 607-034-00-0 Contact details for dossier submitter: Environment Agency Austria, Spittelauer Lände 5, A-1090 Vienna on behalf of the Austrian Competent Authority (Austrian Federal Ministry for sustainability and tourism, Stubenring 1, 1010 Vienna, Austria) Version number: 02 Date: January 2020 ANNEX 1 - BACKGROUND DOCUMENT TO RAC OPINION ON METHYL ACRYLATE CONTENTS 1 IDENTITY OF THE SUBSTANCE ........................................................................................................... 1 1.1 NAME AND OTHER IDENTIFIERS OF THE SUBSTANCE .................................................................................
    [Show full text]
  • The Hydrolytic Behavior of N, N′-(Dimethylamino) Ethyl Acrylate-Functionalized Polymeric Stars
    Polymer Chemistry View Article Online PAPER View Journal | View Issue The hydrolytic behavior of N,N’-(dimethylamino) ethyl acrylate-functionalized polymeric stars† Cite this: Polym. Chem., 2017, 8, 5060 Marianne S. Rolph, Anaïs Pitto-Barry and Rachel K. O’Reilly * Well-defined N,N’-(dimethylamino)ethyl acrylate (DMAEA) functionalized polymeric stars have been syn- thesized via an arm-first approach. Utilizing reversible addition–fragmentation chain transfer polymeriz- ation, linear homopolymers (PEGA, PHEA) were chain extended with DMAEA and a divinyl crosslinker to produce a series of crosslinked polymeric stars. These stars were characterized using a range of tech- niques including NMR, SEC, DLS and TEM analysis. The hydrolytic behavior of the DMAEA when tethered within a micellar core was investigated by 1H NMR spectroscopy and was found to be strongly dependent on temperature. At elevated temperatures either a higher crosslinking density or a longer arm length was found to offer greater protection to the amine resulting in slower hydrolysis, with hydrolysis found to level off at a lower final percentage hydrolysis. In contrast, the composition and nature of the arm was found to Creative Commons Attribution 3.0 Unported Licence. have little impact on the hydrolysis, with the same trends relating to the effect of temperature and cross- Received 7th February 2017, linking density observed with a linear (HEA) and a brush (PEGA) arm. Additionally, the release of DMAE Accepted 16th March 2017 from the polymeric stars was successfully confirmed through the use of an enzymatic assay, producing a DOI: 10.1039/c7py00219j concentration of DMAE in good agreement with the theoretical concentration based on the 1H NMR rsc.li/polymers spectroscopic analysis.
    [Show full text]
  • United States Patent (19) 11) 4,316,971 Rim Et Al
    United States Patent (19) 11) 4,316,971 Rim et al. 45) Feb. 23, 1982 54 MODIFIED MONOOLEFIN COPOLYMER 56) References Cited ELASTOMER WITH IMPROVED HEAT AND U.S. PATENT DOCUMENTS OIL RESISTANCE 3,435,096 3/1969 Limbert ............................... 525/310 3,538,191 11/1970 Meredith ..... ... 525/30 (75) Inventors: Yong S. Rim, Woodbridge; John A. 3,657,395 4/1972 Meredith ..... ... 525/310 Davison, Southington; Walter 3,876,727 4/1975 Meredith ..... ... 525/310 Nudenberg, Newtown, all of Conn. 3,923,930 12/1975 Waldbillig ... ... 525/30 3,953,541 4/1976 Fuji............. ... 525/30 73) Assignee: Uniroyal, Inc., New York, N.Y. 4,065,521 12/1977 Lachowicz .......................... 525/310 Primary Examiner-Paul R. Michl 21) Appl. No.: 40,784 Attorney, Agent, or Firm-James J. Long 22) Filed: May 21, 1979 57 ABSTRACT An EPM or EPDM type of elastomer is modified by graft copolymerization with acrylic ester type of mono Related U.S. Application Data meric material, said monomeric material being material 63 Continuation-in-part of Ser. No. 17,298, Mar. 5, 1979, whose homopolymer has a glass transition temperature abandoned. of not greater than 6 C., in an amount sufficient to provide an ester group (-COO-) content of from 25 (51) Int, Cl..................... C08F 255/04; C08F 255/06 to 40% by weight, to yield a mixed copolymerizate 52 U.S. C. ....................... is . 525/310; 525/309; vulcanizable to a heat and oil resistant elastomeric state. 525/301; 525/303; 525/292 58) Field of Search ................ 525/303, 308, 309, 310 2 Claims, No Drawings 4,316,971 1.
    [Show full text]