Zones-Of-Crustal-Activity-Questions

Total Page:16

File Type:pdf, Size:1020Kb

Zones-Of-Crustal-Activity-Questions 1. Which two features are commonly found at divergent plate boundaries? A) mid-ocean ridges and rift valleys B) wide valleys and deltas C) ocean trenches and subduction zones D) hot spots and island arcs 2. Which coastal area is most likely to experience a severe earthquake? A) east coast of North America B) east coast of Australia C) west coast of Africa D) west coast of South America 3. The diagrams below show four major types of fault motion occurring in Earth’s crust. Which type of fault motion best matches the general pattern of crustal movement at California’s San Andreas fault? A) B) C) D) 4. The edges of most lithospheric plates are characterized by A) reversed magnetic orientation B) unusually rapid radioactive decay C) frequent volcanic activity D) low P-wave and high S-wave velocity Base your answers to questions 5 through 8 on the map below which shows mid-ocean ridges and trenches in the Pacific Ocean. Specific areas A, B. C, and D are indicated by shaded rectangles. 5. Which map best shows the direction of movement of the oceanic crustal plates in the vicinity of the East Pacific Rise (ridge)? A) B) C) D) 6. The crust at the mid-ocean ridges is composed mainly of A) granite B) shale C) basalt D) limestone 7. Movement of the crustal plates shown in the diagram is most likely caused by A) the revolution of the Earth B) the erosion of the Earth's crust C) shifting of the Earth's magnetic poles D) convection currents in the Earth's mantle 8. Mid-ocean ridges such as the East Pacific Rise and the Oceanic Ridge are best described as A) mountains containing folded sedimentary rocks B) mountains containing fossils of present-day marine life C) sections of the ocean floor that contain the youngest oceanic crust D) sections of the ocean floor that are the remains of a submerged continent 9. The movement of tectonic plates is inferred by many 11. Base your answer to the following question on the scientists to be driven by diagram below which shows a coastal area with a mountain range and a portion of the ocean floor. A A) tidal motions in the hydrosphere turbidity current through a submarine canyon has B) density differences in the troposphere formed a fan-shaped sediment deposit on the ocean C) convection currents in the asthenosphere floor. D) solidification in the lithosphere 10. Letters A through D shown on the map below are locations on Earth's surface. In which region of the ocean is the submarine canyon located? A) tidal zone B) continental margin C) deep ocean basin D) mid-ocean ridge 12. Active volcanoes are most abundant along the Which location is closest to a major zone of frequent A) edges of tectonic plates earthquakes and volcanic activities? B) eastern coastline of continents C) 23.5° N and 23.5° S parallels of latitude A) A B) B C) C D) D D) equatorial ocean floor 13. The formation of the Canary Islands was primarily caused by their location near a A) subduction zone B) mantle hot spot C) divergent boundary D) transform fault 14. Which surface feature was produced by crustal movements at a transform plate boundary? A) East African Rift B) Aleutian Trench C) Tasman Hot Spot D) San Andreas Fault 15. Which of the following is located at a converging plate boundary? A) Southwest Indian Ridge B) Iceland Hotspot C) Marianas Trench D) Sandwich Plate Base your answers to questions 16 through 18 on the diagram below which is a cross section of the major surface features of the Earth along the Tropic of Capricorn (23½º S) between 75º W and 15º E longitude. Letters A through G represent locations on the Earth's crust. 16. A mid-ocean ridge is located near position A) A B) E C) C D) D 17. Which diagram shows the most probable direction of movement of the crustal plates and the inferred mantle convection currents under position A? A) B) C) D) 18. What is the approximate width of the Atlantic Ocean at this location? A) 1,200 km B) 2,600 km C) 3,500 km D) 4,400 km 19. Hot springs on the ocean floor near the midocean ridges provide evidence that A) convection currents exist in the asthenosphere B) meteor craters are found beneath the oceans C) climate change has melted huge glaciers D) marine fossils have been uplifted to high elevations 20. The map below shows California and a section of the San Andreas Fault. What is the primary geologic process occurring along the San Andreas Fault? A) transform movement B) spreading movement C) subduction D) convergence 21. Base your answer to the following question on the map below. Letters A through F are locations on Earth’s surface. Which location is closest to a divergent plate boundary at an oceanic ridge? A) A B) B C) C D) E Base your answers to questions 22 and 23 on the block diagram below, which shows a tectonic plate boundary. 22. Which tectonic plate boundary is best represented by this diagram? A) Nazca Plate and Pacific Plate boundary B) Scotia Plate and South American Plate boundary C) Juan de Fuca Plate and North American Plate boundary D) Antarctic Plate and Indian-Australian Plate boundary 23. Compared to the oceanic crust, the continental crust is A) more dense and more mafic B) more dense and more felsic C) less dense and more mafic D) less dense and more felsic Base your answers to questions 24 and 25 on the map below. Dots on the map show the distribution of major earthquake epicenters. The shaded circle labeled A represents a location on Earth's surface. 24. Location A is best described as an area that is A) within a rift valley at a mid-ocean ridge B) at the boundary between two diverging plates C) within a deep-sea trench between two converging plates D) above a mantle hot spot near the center of a crustal plate 25. Which conclusion can best be inferred from the data shown on this map? A) Earthquakes generally are evenly distributed over the surface of Earth. B) Most earthquakes occur west of the Prime Meridian and north of the Equator. C) Most earthquakes are concentrated in zones along plate boundaries. D) Most earthquakes occur on continents. 26. Earth's internal heat is the primary source of energy 28. Crustal disturbances such as earthquakes and that volcanic eruptions are best described as A) warms the lower troposphere A) events that are cyclic and predictable B) melts glacial ice at lower altitudes B) events that are usually related and cannot be C) moves the lithospheric plates predicted with accuracy D) pollutes deep groundwater with radioactivity C) unrelated events that follow no pattern 27. On which plate is the Hawaii Hot Spot located? D) phenomena seldom found in the same regions A) South American B) Antarctic C) Nazca D) Pacific 29. Which cross section best represents the convection currents in the mantle beneath the Peru-Chile Trench? A) B) C) D) 30. Where does most present-day faulting of rock occur? A) in regions of glacial activity B) in the interior areas of continents C) at locations with many lakes D) at interfaces between moving parts of the crust 31. What type of plate boundary exists between the African Plate and the Antartic Plate? A) convergent B) transform C) divergent D) complex 32. Base your answer to the following question on the map below, which shows the tectonic plate boundaries near the East African Rift. Arrows show relative tectonic plate movement. A region of Africa is crosshatched. What appears to be happening to the crosshatched region of eastern Africa? A) A folded mountain range is forming as this region collides with the rest of Africa. B) Several volcanic mountains are forming as the rest of Africa subducts under this region. C) This region is moving eastward relative to the rest of Africa. D) This region is moving northward relative to the rest of Africa. Base your answers to questions 33 through 35 on the information, map, and cross section below. The map represents a portion of Earth's surface in the Pacific Ocean. The positions of islands, earthquake epicenters, active volcanoes, and the Tonga Trench are shown. Lines of latitude and longitude have been included. The cross section shows earthquakes that occurred beneath line XY on the map. Depth beneath Earths surface is indicated by the scale along the left side of the cross section, as are the range of depths for shallow, intermediate, and deep earthquakes. Distance from the trench is indicated by the scale along the bottom of the cross section. 33. Which cross section has arrows that best represent the relative motion of the crustal plates along the Wadati-Benioff zone beneath the Tonga Trench? A) B) C) D) 34. The greatest number of earthquakes shown in the cross section occurred A) at sea level B) between sea level and a depth of 100 km C) at a depth between 100 and 300 km D) at a depth between 300 and 600 km 35. The Tonga Trench is located at the tectonic boundary between the Pacific Plate and the A) Antarctic Plate B) Philippine Plate C) Indian-Australian Plate D) Nazca Plate 36. According to the plate tectonics theory, the 38. The diagram below represents a cross section of the Peru-Chile Trench and the Andes Mountains formed Earth's crust at a location where an oceanic plate is along the west coast of South America because the converging (colliding) with a continental plate.
Recommended publications
  • Canada's Active Western Margin
    Geoscience Canada. Volume 3. Nunber 4 269 in the area of Washington and Oregon seemed necessary geometrically. This suggestion was reiterated by Tobin and Sykes (1968) in their study of the seismicity ofthe regionanddevelopedin established the presence and basic bathymetric trench at the foot of the Canada's Active configuration of an active spreading continental slope, the absence of a ocean ridge system ofl the west coast of clearly defined eastward dipping Beniofl Western Margin - Vancwver Island. The theory of the earthquake zone and the apparently geometrical mwement of rigid quiescent state of present volcanism The Case for lithospheric plates on a spherical earth have all contributed toward a (introducedas the 'paving stone' theory) widespreaa uncertalnfy as to whether Subduction was tirst ~ro~osedand tasted bv subddctlon 1s cbrrently taking place ~c~enziiand Parker (1967) using data (e.8.. Crosson. 1972: ~rivast&a,1973; R. P. Riddihough and R. D. Hyndnan from the N. Pacific and in the global Stacey. 1973). Past subduction, fran Victoria Geophysical Observatory, extension of the theory by Morgan several tens of m.y. ago until at leastone Earth Physics Branch, (1 968) this reglon again played a major or two m y. ago. IS more generally Department Energy, Mines and role Morgan alsoconcluded that a small accepted ana it seems to us that the Resources, block eitof theJuandeFuca ridge (the case for contemporary subduction, in a 5071 W. Saanich Rd. Juan de Fuca plate. Fig. 2) was moving large part, must beargued upona Victoria B. C. independently of the main Pacific plate. continuation into the present of the The possibility that theJuan de Fuca processes shown to be active in the Summary plate is now underthrustingNorth recent geological past.
    [Show full text]
  • Washington Division of Geology and Earth Resources Open File Report
    l 122 EARTHQUAKES AND SEISMOLOGY - LEGAL ASPECTS OPEN FILE REPORT 92-2 EARTHQUAKES AND Ludwin, R. S.; Malone, S. D.; Crosson, R. EARTHQUAKES AND SEISMOLOGY - LEGAL S.; Qamar, A. I., 1991, Washington SEISMOLOGY - 1946 EVENT ASPECTS eanhquak:es, 1985. Clague, J. J., 1989, Research on eanh- Ludwin, R. S.; Qamar, A. I., 1991, Reeval­ Perkins, J. B.; Moy, Kenneth, 1989, Llabil­ quak:e-induced ground failures in south­ uation of the 19th century Washington ity of local government for earthquake western British Columbia [abstract). and Oregon eanhquake catalog using hazards and losses-A guide to the law Evans, S. G., 1989, The 1946 Mount Colo­ original accounts-The moderate sized and its impacts in the States of Califor­ nel Foster rock avalanches and auoci­ earthquake of May l, 1882 [abstract). nia, Alaska, Utah, and Washington; ated displacement wave, Vancouver Is­ Final repon. Maley, Richard, 1986, Strong motion accel­ land, British Columbia. erograph stations in Oregon and Wash­ Hasegawa, H. S.; Rogers, G. C., 1978, EARTHQUAKES AND ington (April 1986). Appendix C Quantification of the magnitude 7.3, SEISMOLOGY - NETWORKS Malone, S. D., 1991, The HAWK seismic British Columbia earthquake of June 23, AND CATALOGS data acquisition and analysis system 1946. [abstract). Berg, J. W., Jr.; Baker, C. D., 1963, Oregon Hodgson, E. A., 1946, British Columbia eanhquak:es, 1841 through 1958 [ab­ Milne, W. G., 1953, Seismological investi­ earthquake, June 23, 1946. gations in British Columbia (abstract). stract). Hodgson, J. H.; Milne, W. G., 1951, Direc­ Chan, W.W., 1988, Network and array anal­ Munro, P. S.; Halliday, R. J.; Shannon, W.
    [Show full text]
  • Cambridge University Press 978-1-108-44568-9 — Active Faults of the World Robert Yeats Index More Information
    Cambridge University Press 978-1-108-44568-9 — Active Faults of the World Robert Yeats Index More Information Index Abancay Deflection, 201, 204–206, 223 Allmendinger, R. W., 206 Abant, Turkey, earthquake of 1957 Ms 7.0, 286 allochthonous terranes, 26 Abdrakhmatov, K. Y., 381, 383 Alpine fault, New Zealand, 482, 486, 489–490, 493 Abercrombie, R. E., 461, 464 Alps, 245, 249 Abers, G. A., 475–477 Alquist-Priolo Act, California, 75 Abidin, H. Z., 464 Altay Range, 384–387 Abiz, Iran, fault, 318 Alteriis, G., 251 Acambay graben, Mexico, 182 Altiplano Plateau, 190, 191, 200, 204, 205, 222 Acambay, Mexico, earthquake of 1912 Ms 6.7, 181 Altunel, E., 305, 322 Accra, Ghana, earthquake of 1939 M 6.4, 235 Altyn Tagh fault, 336, 355, 358, 360, 362, 364–366, accreted terrane, 3 378 Acocella, V., 234 Alvarado, P., 210, 214 active fault front, 408 Álvarez-Marrón, J. M., 219 Adamek, S., 170 Amaziahu, Dead Sea, fault, 297 Adams, J., 52, 66, 71–73, 87, 494 Ambraseys, N. N., 226, 229–231, 234, 259, 264, 275, Adria, 249, 250 277, 286, 288–290, 292, 296, 300, 301, 311, 321, Afar Triangle and triple junction, 226, 227, 231–233, 328, 334, 339, 341, 352, 353 237 Ammon, C. J., 464 Afghan (Helmand) block, 318 Amuri, New Zealand, earthquake of 1888 Mw 7–7.3, 486 Agadir, Morocco, earthquake of 1960 Ms 5.9, 243 Amurian Plate, 389, 399 Age of Enlightenment, 239 Anatolia Plate, 263, 268, 292, 293 Agua Blanca fault, Baja California, 107 Ancash, Peru, earthquake of 1946 M 6.3 to 6.9, 201 Aguilera, J., vii, 79, 138, 189 Ancón fault, Venezuela, 166 Airy, G.
    [Show full text]
  • Geology 111 • Discovering Planet Earth • Steven Earle • 2010
    H1) Earthquakes The plates that make up the earth's lithosphere are constantly in motion. The rate of motion is a few centimetres per year, or approximately 0.1 mm per day (about as fast as your fingernails grow). This does not mean, however, that the rocks present at the places where plates meet (e.g., convergent boundaries and transform faults) are constantly sliding past each other. Under some circumstances they do, but in most cases, particularly in the upper part of the crust, the friction between rocks at a boundary is great enough so that the two plates are locked together. As the plates themselves continue to move, deformation takes place in the rocks close to the locked boundary and strain builds up in the deformed rocks. This strain, or elastic deformation, represents potential energy stored within the rocks in the vicinity of the boundary between two plates. Eventually the strain will become so great that the friction and rock-strength that is preventing movement between the plates will be overcome, the rocks will break and the plates will suddenly slide past each other - producing an earthquake [see Fig. 10.4]. A huge amount of energy will suddenly be released, and will radiate away from the location of the earthquake in the form of deformation waves within the surrounding rock. S-waves (shear waves), and P-waves (compression waves) are known as body waves as they travel through the rock. As soon as this happens, much of the strain that had built up along the fault zone will be released1.
    [Show full text]
  • Mantle Flow Through the Northern Cordilleran Slab Window Revealed by Volcanic Geochemistry
    Downloaded from geology.gsapubs.org on February 23, 2011 Mantle fl ow through the Northern Cordilleran slab window revealed by volcanic geochemistry Derek J. Thorkelson*, Julianne K. Madsen, and Christa L. Sluggett Department of Earth Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada ABSTRACT 180°W 135°W 90°W 45°W 0° The Northern Cordilleran slab window formed beneath west- ern Canada concurrently with the opening of the Californian slab N 60°N window beneath the southwestern United States, beginning in Late North Oligocene–Miocene time. A database of 3530 analyses from Miocene– American Holocene volcanoes along a 3500-km-long transect, from the north- Juan Vancouver Northern de ern Cascade Arc to the Aleutian Arc, was used to investigate mantle Cordilleran Fuca conditions in the Northern Cordilleran slab window. Using geochemi- Caribbean 30°N Californian Mexico Eurasian cal ratios sensitive to tectonic affi nity, such as Nb/Zr, we show that City and typical volcanic arc compositions in the Cascade and Aleutian sys- Central African American Cocos tems (derived from subduction-hydrated mantle) are separated by an Pacific 0° extensive volcanic fi eld with intraplate compositions (derived from La Paz relatively anhydrous mantle). This chemically defi ned region of intra- South Nazca American plate volcanism is spatially coincident with a geophysical model of 30°S the Northern Cordilleran slab window. We suggest that opening of Santiago the slab window triggered upwelling of anhydrous mantle and dis- Patagonian placement of the hydrous mantle wedge, which had developed during extensive early Cenozoic arc and backarc volcanism in western Can- Scotia Antarctic Antarctic 60°S ada.
    [Show full text]
  • Recent Movements of the Juan De Fuca Plate System
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 89, NO. B8, PAGES 6980-6994, AUGUST 10, 1984 Recent Movements of the Juan de Fuca Plate System ROBIN RIDDIHOUGH! Earth PhysicsBranch, Pacific GeoscienceCentre, Departmentof Energy, Mines and Resources Sidney,British Columbia Analysis of the magnetic anomalies of the Juan de Fuca plate system allows instantaneouspoles of rotation relative to the Pacific plate to be calculatedfrom 7 Ma to the present.By combiningthese with global solutions for Pacific/America and "absolute" (relative to hot spot) motions, a plate motion sequencecan be constructed.This sequenceshows that both absolute motions and motions relative to America are characterizedby slower velocitieswhere younger and more buoyant material enters the convergencezone: "pivoting subduction."The resistanceprovided by the youngestportion of the Juan de Fuca plate apparently resulted in its detachmentat 4 Ma as the independentExplorer plate. In relation to the hot spot framework, this plate almost immediately began to rotate clockwisearound a pole close to itself such that its translational movement into the mantle virtually ceased.After 4 Ma the remainder of the Juan de Fuca plate adjusted its motion in responseto the fact that the youngest material entering the subductionzone was now to the south. Differencesin seismicityand recent uplift betweennorthern and southernVancouver Island may reflect a distinction in tectonicstyle betweenthe "normal" subductionof the Juan de Fuca plate to the south and a complex "underplating"occurring as the Explorer plate is overriddenby the continent.The history of the Explorer plate may exemplifythe conditionsunder which the self-drivingforces of small subductingplates are overcomeby the influenceof larger, adjacent plates. The recent rapid migration of the absolutepole of rotation of the Juan de Fuca plate toward the plate suggeststhat it, too, may be nearingthis condition.
    [Show full text]
  • Tidally Controlled Gas Bubble Emissions: a Comprehensive 10.1002/2016GC006528 Study Using Long-Term Monitoring Data from the NEPTUNE
    PUBLICATIONS Geochemistry, Geophysics, Geosystems RESEARCH ARTICLE Tidally controlled gas bubble emissions: A comprehensive 10.1002/2016GC006528 study using long-term monitoring data from the NEPTUNE Key Points: cabled observatory offshore Vancouver Island Continuous monitoring of transient gas bubble emissions over 1 year was Miriam Romer€ 1, Michael Riedel2, Martin Scherwath3, Martin Heesemann3, and George D. Spence4 enabled by the NEPTUNE cabled observatory 1 Flare onsets were triggered and MARUM-Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, Germany, controlled by tidally induced bottom 2GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany, 3Ocean Networks Canada, University of Victoria, British pressure changes Columbia, Canada, 4School of Earth and Ocean Sciences, University of Victoria, British Columbia, Canada Decreasing pressure allowing gas to migrate and shifting the CH4 solubility in pore waters leads to ebullition Abstract Long-term monitoring over 1 year revealed high temporal variability of gas emissions at a cold seep in 1250 m water depth offshore Vancouver Island, British Columbia. Data from the North East Pacific Supporting Information: Time series Underwater Networked Experiment observatory operated by Ocean Networks Canada were Figure S1 used. The site is equipped with a 260 kHz Imagenex sonar collecting hourly data, conductivity-temperature- Table S1 Movie S1 depth sensors, bottom pressure recorders, current meter, and an ocean bottom seismograph. This enables correlation of the data and analyzing trigger mechanisms and regulating criteria of gas discharge activity. Correspondence to: Three periods of gas emission activity were observed: (a) short activity phases of few hours lasting several M. Romer,€ months, (b) alternating activity and inactivity of up to several day-long phases each, and (c) a period of sev- [email protected] eral weeks of permanent activity.
    [Show full text]
  • Forwards Geology,Seismology & Geotechnical
    - c. x . @ , , C PUBLIC DOCUMENT ROOM , , , , UNITED STATES //- - / #,% O[ ~ !" o NUCLEAR REGULATORY COMMISSION 2 9 . 3 ; ,E WASHINGTON, D. C. 20555 @@ %...../ g e October 3, 1979 . a Valentine B. Deale, Esq., Chairman Dr. Frank F. Hooper Atomic Safety and Licensing Board School of Natural Resources 1001 Connecti:ut Avenue, N.W. University of Michigan Washington, DC 20036 Ann Arbor, MI 48109 Mr. Gustave A. Linenberger Atomic Safety and Licensing Board U.S. Nuclear Regulatory Commission Washington, DC 20555 In the Matter of Puget Sound Power & Light Company,~et al. (Skagit Nuclear Power Project, Units 1 and 2) ~~ - , Docket Nos. STN 50-522 and STN 50-523 Gentlemen: Enclosed is the NRC Staff's geology, seismology and geotechnical engineering review report which will be incorporated as Section 2.5 of the Final Supple- ment to the Staff's Safety Evaluation Report (SER). This report will also constitute the Staff's direct testimony on geology-seismology issues in this proceeding. The Staff's witnesses will consist of H. Lefevre, S. Wastler, Dr. J. Kelleher, and Dr. R. Regan. Also enclosed is the supplemental testi- many of Dr. Kelleher which addresses the Board request for testimony concerning the methods used by the Staff to estimate strong ground motion. The U.S. Geological Survey has assisted the NRC Staff in the review of the Skagit site. The U.S.G.S.'s review reports of February 23, 1978 and Sep- tember 17, 1979 (these reports have been previously distributed to the Board and parties), are attached as Appendix D to the Staff's report.
    [Show full text]
  • Seismic Structure of the Endeavour Segment, Juan De Fuca Ridge: Correlations with Seismicity and Hydrothermal Activity E
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112, B02401, doi:10.1029/2005JB004210, 2007 Click Here for Full Article Seismic structure of the Endeavour Segment, Juan de Fuca Ridge: Correlations with seismicity and hydrothermal activity E. M. Van Ark,1 R. S. Detrick,2 J. P. Canales,2 S. M. Carbotte,3 A. J. Harding,4 G. M. Kent,4 M. R. Nedimovic,3 W. S. D. Wilcock,5 J. B. Diebold,3 and J. M. Babcock4 Received 9 December 2005; revised 23 June 2006; accepted 21 September 2006; published 3 February 2007. [1] Multichannel seismic reflection data collected in July 2002 at the Endeavour Segment, Juan de Fuca Ridge, show a midcrustal reflector underlying all of the known high-temperature hydrothermal vent fields in this area. On the basis of the character and geometry of this reflection, its similarity to events at other spreading centers, and its polarity, we identify this as a reflection from one or more crustal magma bodies rather than from a hydrothermal cracking front interface. The Endeavour magma chamber reflector is found under the central, topographically shallow section of the segment at two-way traveltime (TWTT) values of 0.9–1.4 s (2.1–3.3 km) below the seafloor. It extends approximately 24 km along axis and is shallowest beneath the center of the segment and deepens toward the segment ends. On cross-axis lines the axial magma chamber (AMC) reflector is only 0.4–1.2 km wide and appears to dip 8–36° to the east. While a magma chamber underlies all known Endeavour high-temperature hydrothermal vent fields, AMC depth is not a dominant factor in determining vent fluid properties.
    [Show full text]
  • Seismotectonics of Western Canada from Regional Moment Tensor Analysis
    Seismotectonics of Western Canada From Regional Moment Tensor Analysis Johannes Peter Ristau University of Victoria 2004 Seismotectonics of Western Canada From Regional Moment Tensor Analysis Johannes Peter Ristau B.Sc., University of Manitoba, 1995 M.Sc., University of Manitoba, 1999 A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY in the School of Earth and Ocean Sciences @ Johannes Peter Ristau, 2004 University of Victoria All rights reserved. This dissertation may not be reproduced in whole or in part, by photocopying or other means, without permission of the author. Supervisor: Dr. Garry C. Rogers Abstract Moment tensor analysis of regional earthquakes (distances .v< 1000 km) in western Canada is now possible due to the installation of more than 40 three-component broad- band seismometers in western Canada and adjacent regions. In this study, regional moment tensor (RMT) analysis using robust waveform fitting techniques are employed to routinely caIcuIate source mechanisms, moments, and depths of earthquakes with M 2~ 4.0 in and near western Canada. This has resulted in about 10 times as many solutions per year for this region than have been calculated with teleseismic methods which are limited to earthquakes about M > 5.0. To date, more than 380 RMT solutions have been calculated in this study for west- ern Canada and adjacent regions for the years 1995-2004. These solutions provide new insights into a number of tectonic problems in western Canada. Local magnitudes (ML) have been calibrated with moment magnitudes (M,) providing a more consistent estimate of the magnitude of an earthquake.
    [Show full text]
  • The Gorda Deformation Zone
    The Gorda Deformation Zone Miles Bodmer University of Oregon Goals • Better understand deformation of the Gorda Plate • Look at deformation at a range of depths (crust – lithosphere - asthenosphere) • Highlight some of my research What Makes The Gorda Interesting? • The Gorda is the oceanic plate outboard of southern Cascadia subduction zone • Southern Cascadia is where large megathrust earthquakes are thought to nucleate • 1/3 of the plate configuration that makes up the Mendocino triple junction • Seismically active Modified from Byrnes et al. (2017) Tectonic History • ~10 Ma Pacific plate motion changes • Ridges begin to reorganize • ~5 Ma the Blanco transform develops • ~4 MA Explorer plate breaks off • The Mendocino transform and Gorda ridge fail to reorient Atwater and Stock, 1998 Magnetic Anomalies • Clear bending of anomalies in Gorda • Juan de Fuca shows signs of reorganization • Formation of new segments • Ridge rotation • Pacific side near Gorda does not show similar signs of reorganization • Variable spreading rates Wilson (2002) Gorda Is Stagnating • Gorda motion becomes increasingly independent in the last 3 Ma • At 0.5 Ma the Pacific controls Gorda motion Riddihough (1984) Seismicity Throughout The Plate 1964 – 1980 Star: M 5.7 (Jay Patton http://earthjay.com/) Wilson (1989) Historic seismicity (USGS www.earthquake.usgs.gov) Large Events In The Plate Correlate With Bathymetry Chaytor (http://activetectonics.coas.oregonstate.edu/gorda.htm) Deformation Accommodated By Left-lateral Faults • Bathymetry clearly shows ridges associated with faulting • Ridges appear smoothly deformed, kinked, or undeformed depending on the region • Moment tensors show dominantly left-lateral strike-slip motion with some normal faulting • Faults show clear regions of deformation Chaytor et al.
    [Show full text]
  • The Earth's Lithosphere-Documentary
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/310021377 The Earth's Lithosphere-Documentary Presentation · November 2011 CITATIONS READS 0 1,973 1 author: A. Balasubramanian University of Mysore 348 PUBLICATIONS 315 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Indian Social Sceince Congress-Trends in Earth Science Research View project Numerical Modelling for Prediction and Control of Saltwater Encroachment in the Coastal Aquifers of Tuticorin, Tamil Nadu View project All content following this page was uploaded by A. Balasubramanian on 13 November 2016. The user has requested enhancement of the downloaded file. THE EARTH’S LITHOSPHERE- Documentary By Prof. A. Balasubramanian University of Mysore 19-11-2011 Introduction Earth’s environmental segments include Atmosphere, Hydrosphere, lithosphere, and biosphere. Lithosphere is the basic solid sphere of the planet earth. It is the sphere of hard rock masses. The land we live in is on this lithosphere only. All other spheres are attached to this lithosphere due to earth’s gravity. Lithosphere is a massive and hard solid substratum holding the semisolid, liquid, biotic and gaseous molecules and masses surrounding it. All geomorphic processes happen on this sphere. It is the sphere where all natural resources are existing. It links the cyclic processes of atmosphere, hydrosphere, and biosphere. Lithosphere also acts as the basic route for all biogeochemical activities. For all geographic studies, a basic understanding of the lithosphere is needed. In this lesson, the following aspects are included: 1. The Earth’s Interior. 2.
    [Show full text]