Obsah DNA a AT/GC Genomový Poměr V Čeledi Apiaceae

Total Page:16

File Type:pdf, Size:1020Kb

Obsah DNA a AT/GC Genomový Poměr V Čeledi Apiaceae MASARYKOVA UNIVERZITA Přírodovědecká fakulta Ústav botaniky a zoologie Obsah DNA a AT/GC genomový poměr v čeledi Apiaceae Diplomová práce Brno 2012 Bc. Jana Schwarzová Vedoucí diplomové práce: doc. RNDr. Petr Bureš, Ph.D. PROHLÁŠENÍ Prohlašuji, ţe jsem tuto práci vypracovala samostatně, pod vedením doc. RNDr. Petra Bureše, Ph.D. na základě uvedených pramenů a odborné literatury. Souhlasím s uloţením této diplomové práce v knihovně Ústavu botaniky a zoologie PřF MU v Brně, případně jiné knihovně Masarykovy univerzity, s jejím veřejným půjčováním a vyuţitím pro vědecké, vzdělávací nebo jiné veřejně prospěšné účely, a to za předpokladu, ţe převzaté informace budou řádně citovány a nebudou vyuţívány komerčně. V Brně, 11. ledna 2012 …………………………… podpis PODĚKOVÁNÍ Děkuji hlavně svému školiteli doc. RNDr. Petru Burešovi, Ph.D. Dále bych chtěla poděkovat Mgr. Lucii Horové, která mi byla oporou při měření na cytometrech, a Ing. Jakubovi Šmerdovi, Ph.D. za jeho dobré rady. Srdečný dík patří doc. RNDr. Vítu Grulichovi, CSc. za pomoc při hledání vhodných lokalit a determinaci rostlin, Ing. Jiřímu Danihelkovi, Ph.D. děkuji za pomoc s herbářem. Za pomoc při sběru rostlin a zvládání počítačových záludností děkuji kamarádům Marku Schwarzovi, Karlu Fajmonovi, DAniele Bártové, Viky Hralové, Pavlu Veselému, Boţce a Marťasovi Jirouškovým. Za rostlinný materiál vděčím také Mgr. Věře Hroudové z botanické zahrady PřF UK, Mgr. Magdaléně Chytré, Ing. Marii Tupé a celému kolektivu botanické zahrady PřF MU. Mnoha dalším lidem, hlavně rodině, děkuji za veškerou hmotnou i nehmotnou podporu. „Ostrouhej a pokrájej mrkev na drobné nudličky.“ Magdalena Dobromila Rettigová POUŢITÉ ZKRATKY AT dusíkaté báze adenin a thymin AFLP polymorfismus délek amplifikovaných fragmentů CV koeficient variance DNA deoxyribonukleová kyselina cpDNA chloroplastová DNA nrDNA jaderná ribozomální DNA DAPI barvivo 4’,6-diamidino-2-fenylindol EIH Ellenbergovy indikační hodnoty GC dusíkaté báze guanin a cytosin ITS vnitřní přepisované mezerníky LMA mnoţství listové sušiny na jednotku plochy PCR polymerázová řetězová reakce PI barvivo propidium jodid SLA specifická listová plocha 1C haploidní obsah DNA v jádře 1Cx monoploidní obsah DNA, často synonymum k termínu velikost genomu 2n počet chromozomů v nereplikované somatické buňce ABSTRAKT V průběhu evoluce druhů dochází neustále k plynulým či skokovým změnám v jaderných genomech. Výsledkem je dnešní vysoká variabilita v obsahu DNA i jejím sloţení u krytosemenných rostlin. V předkládané práci byly cytometrickým měřením stanoveny absolutní obsah DNA (2C-value), monoploidní velikost genomu (Cx-value), průměrná velikost chromozomů a poměr AT/GC bazí pro 79 taxonů čeledi Apiaceae a 2 druhy čeledi Araliaceae. Z čeledi Apiaceae jsou zastoupeny všechny běţné rody rostoucí v České republice. Celkově se stanovené hodnoty pro obsah DNA v čeledi Apiaceae liší téměř třináctkrát, rozdíl v obsahu GC bazí činí necelá čtyři procenta. Dále byl sledován vztah těchto genomických parametrů vůči sobě navzájem a vůči vybraným ekologickým a fenotypovým znakům. K tomu byla pouţita neparametrická statistika a analýza fylogeneticky nezávislých kontrastů. Zjištěná pozitivní korelace mezi obsahem DNA (1Cx i 1C), průměrnou velikostí chromozomů a obsahem GC bazí vypovídá o pravděpodobném namnoţení GC bohatých retrotranspozonů. Obsah DNA má přitom silnou vazbu k evoluci testovaných druhů. Čeleď Apiaceae se zřejmě vyvíjela pod vlivem proměnných prostředí (zjištěn signifikantní fylogenetický signál u Ellenbergových indikačních hodnot pro světlo, teplo, vlhkost a úţivnost půdy), ale přímý vztah těchto faktorů ke genomickým parametrům nebyl zaznamenán. Z fenotypových znaků jsou ve vztahu s velikostí genomu výška rostlin, délka ţivotního cyklu (ţivotní strategie) a počet okolíčků v okolíku (ten navíc pozitivně koreluje s obsahem GC bazí). Vztah velikosti semen s jakýmkoliv genomickým parametrem nebyl potvrzen. Klíčová slova: Apiaceae (čeleď miříkovité), průtoková cytometrie, velikost genomu, obsah GC bazí, průměrná velikost chromozomů, Ellenbergovy indikační hodnoty, fylogeneticky nezávislé kontrasty. ABSTRACT DNA content and AT/GC genomic ratio in the family Apiaceae During the evolution of the species continuous or jump changes in nuclear genomes constantly occure. These processes lead to high nowaday variability in DNA content and its composition in angiosperms. In this study, absolute DNA content (2C-value), monoploid genome size (Cx-value), average chromosome size and AT/GC genomic ratio was measured using flow cytometry for 79 Apiaceae family taxa and 2 Araliaceae family species. All common Apiaceae genera growing in the Czech Republic are included. Overall the estimations for DNA content in the Apiaceae family vary about 13-fold, the difference in GC content is almost four percent. Consequently, the relationship of these genomic parameters against each other and against the chosen environmental and phenotypic characteristics was observed. For this purpose nonparametric statistics and the phylogenetically independent contrasts analysis were used. A detected positive correlation between DNA content (both 1Cx and 1C), average chromosome size and GC bases content suggests GC-rich retrotransposon proliferation. Furthermore, DNA content shows strong relationship to the evolution of the tested species. The Apiaceae family evolution was evidently influenced by the environmental variables (there was found a significant phylogenetic signal for the Ellenberg's indicator values for light, temperature, moisture and soil nutrients), but a direct relationship of these factors to genomic parameters was not detected. From phenotypic traits growth size, life cycle length (life history strategy) and a number of umbellets in an umbel (which also positively correlates with GC content) corresponded positively with genome size. Relationship between seed size and any genomic parameter was not confirmed. Key words: Apiaceae (the celery family), flow cytometry, genome size, GC content, average chromosome size, Ellenberg’s indicator values, phylogenetically independent contrasts. OBSAH 1. ÚVOD ...................................................................................................................................... 1 1.1. Modelový taxon – čeleď Apiaceae ............................................................................................................. 2 1.1.1. Taxonomie a fylogeneze ...................................................................................................................... 3 1.1.2. Morfologie a biologie .......................................................................................................................... 5 1.2. Obsah DNA ................................................................................................................................................ 6 1.2.1. Terminologie ........................................................................................................................................ 6 1.2.2. Obsah DNA a proč ho měřit ................................................................................................................ 7 1.2.3. Hlavní mechanismy změn velikosti genomu ....................................................................................... 8 1.2.4. Velikost genomu a jeho vztah k fenotypovým vlastnostem ............................................................... 11 1.2.5. Velikost genomu a jeho vztah k faktorům prostředí .......................................................................... 14 1.3. AT/GC genomový poměr ........................................................................................................................ 16 1.4. Cíle diplomové práce ............................................................................................................................... 17 2. MATERIÁL A METODIKA ...................................................................................................... 18 2.1. Rostlinný materiál ................................................................................................................................... 18 2.2. Průtoková cytometrie .............................................................................................................................. 19 2.2.1. Historie............................................................................................................................................... 19 2.2.2. Stavba a princip průtokového cytometru ........................................................................................... 20 2.3. Měření materiálu ..................................................................................................................................... 21 2.4. Stanovení velikosti genomu, chromozomů a AT/GC genomového poměru ........................................ 23 2.5. Sestavení fylogenetického stromu ........................................................................................................... 24 2.6. Znaky pouţité v analýzách ...................................................................................................................... 26 2.7. Statistické zpracování dat ....................................................................................................................... 26 2.7.1. Phylocom ........................................................................................................................................... 26 2.7.2. Další pouţité programy .....................................................................................................................
Recommended publications
  • Flowering Plants Eudicots Apiales, Gentianales (Except Rubiaceae)
    Edited by K. Kubitzki Volume XV Flowering Plants Eudicots Apiales, Gentianales (except Rubiaceae) Joachim W. Kadereit · Volker Bittrich (Eds.) THE FAMILIES AND GENERA OF VASCULAR PLANTS Edited by K. Kubitzki For further volumes see list at the end of the book and: http://www.springer.com/series/1306 The Families and Genera of Vascular Plants Edited by K. Kubitzki Flowering Plants Á Eudicots XV Apiales, Gentianales (except Rubiaceae) Volume Editors: Joachim W. Kadereit • Volker Bittrich With 85 Figures Editors Joachim W. Kadereit Volker Bittrich Johannes Gutenberg Campinas Universita¨t Mainz Brazil Mainz Germany Series Editor Prof. Dr. Klaus Kubitzki Universita¨t Hamburg Biozentrum Klein-Flottbek und Botanischer Garten 22609 Hamburg Germany The Families and Genera of Vascular Plants ISBN 978-3-319-93604-8 ISBN 978-3-319-93605-5 (eBook) https://doi.org/10.1007/978-3-319-93605-5 Library of Congress Control Number: 2018961008 # Springer International Publishing AG, part of Springer Nature 2018 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
    [Show full text]
  • The Phylogenetic Significance of Fruit Structural Variation in the Tribe Heteromorpheae (Apiaceae)
    Pak. J. Bot., 48(1): 201-210, 2016. THE PHYLOGENETIC SIGNIFICANCE OF FRUIT STRUCTURAL VARIATION IN THE TRIBE HETEROMORPHEAE (APIACEAE) MEI LIU1*, BEN-ERIK VAN WYK2, PATRICIA M. TILNEY2, GREGORY M. PLUNKETT3 AND PORTER P. LOWRY II4,5 AND ANTHONY R. MAGEE6 1Department of Biology, Harbin Normal University, Harbin, People’s Republic of China 2Department of Botany and Plant Biotechnology, University of Johannesburg, Auckland Park, Johannesburg, South Africa 3Cullman Program for Molecular Systematics, The New York Botanical Garden, Bronx, New York, United States of America 4Missouri Botanical Garden, Saint Louis, Missouri, United States of America 5Département Systématique et Evolution (UMR 7205) Muséum National d’Histoire Naturelle, CP 39, 57 rue Cuvier, 75213 Paris CEDEX 05, France 6South African National Biodiversity Institute, Compton Herbarium, Private Bag X7, Claremont 7735, South Africa *Correspondence author’s e-mail: [email protected]; Tel: +86 451 8806 0576; Fax: +86 451 8806 0575 Abstract Fruit structure of Apiaceae was studied in 19 species representing the 10 genera of the tribe Heteromorpheae. Our results indicate this group has a woody habit, simple leaves, heteromorphic mericarps with lateral wings. fruits with bottle- shaped or bulging epidermal cells which have thickened and cutinized outer wall, regular vittae (one in furrow and two in commissure) and irregular vittae (short, dwarf, or branching and anatosmosing), and dispersed druse crystals. However, lateral winged mericarps, bottle-shaped epidermal cells, and branching and anatosmosing vittae are peculiar in the tribe Heteromorpheae of Apioideae sub family. Although many features share with other early-diverging groups of Apiaceae, including Annesorhiza clade, Saniculoideae sensu lato, Azorelloideae, Mackinlayoideae, as well as with Araliaceae.
    [Show full text]
  • Population Genetics of the Narrow Endemic Hladnikia Pastinacifolia Rchb
    ACTA BIOLOGICA CRACOVIENSIA Series Botanica 54/1: 84–96, 2012 DOI: 10.2478/v10182-012-0009-8 POPULATION GENETICS OF THE NARROW ENDEMIC HLADNIKIA PASTINACIFOLIA RCHB. (APIACEAE) INDICATES SURVIVAL IN SITU DURING THE PLEISTOCENE NINA ŠAJNA1*, TATJANA KAVAR2, JELKA ŠUŠTAR-VOZLIÈ2, and MITJA KALIGARIÈ1 1University of Maribor, Biology Department, Faculty of Natural Sciences and Mathematics, Koroška c. 160, SI – 2000 Maribor, Slovenia 2Agricultural Institute of Slovenia, Field Crop and Seed Production Department, Hacquetova 17, SI-1000 Ljubljana, Slovenia Received July 15, 2011; revision accepted April 6, 2012 Hladnikia pastinacifolia Rchb., a narrow endemic, has an extremely restricted distribution in Trnovski gozd (Slovenia), despite the presence of many sites with suitable habitats. We compared the morphological traits of plants from different populations and habitats. The overall pattern showed that the smallest plants, with low fruit number, are found on Èaven (locus classicus or type locality); the largest individuals, with high fruit number, grow in the Golobnica gorge. As judged by plant size and seed set, the optimal habitats are screes. We used RAPD mark- ers to estimate genetic variation between and within populations, as well as between and within the northern and the southern parts of the distribution area. Hladnikia showed only a low level of RAPD variability. AMOVA parti- tioned the majority of genetic diversity within selected populations. The low genetic differentiation between popu- lations and their genetic depauperation indicates survival in situ, since the Trnovski gozd plateau most likely was a nunatak region in the southern Prealps during Pleistocene glaciations. Later range expansion of extant popula- tions was limited by poor seed dispersal.
    [Show full text]
  • Phylogeny and Phylogenetic Nomenclature of the Campanulidae Based on an Expanded Sample of Genes and Taxa
    Systematic Botany (2010), 35(2): pp. 425–441 © Copyright 2010 by the American Society of Plant Taxonomists Phylogeny and Phylogenetic Nomenclature of the Campanulidae based on an Expanded Sample of Genes and Taxa David C. Tank 1,2,3 and Michael J. Donoghue 1 1 Peabody Museum of Natural History & Department of Ecology & Evolutionary Biology, Yale University, P. O. Box 208106, New Haven, Connecticut 06520 U. S. A. 2 Department of Forest Resources & Stillinger Herbarium, College of Natural Resources, University of Idaho, P. O. Box 441133, Moscow, Idaho 83844-1133 U. S. A. 3 Author for correspondence ( [email protected] ) Communicating Editor: Javier Francisco-Ortega Abstract— Previous attempts to resolve relationships among the primary lineages of Campanulidae (e.g. Apiales, Asterales, Dipsacales) have mostly been unconvincing, and the placement of a number of smaller groups (e.g. Bruniaceae, Columelliaceae, Escalloniaceae) remains uncertain. Here we build on a recent analysis of an incomplete data set that was assembled from the literature for a set of 50 campanulid taxa. To this data set we first added newly generated DNA sequence data for the same set of genes and taxa. Second, we sequenced three additional cpDNA coding regions (ca. 8,000 bp) for the same set of 50 campanulid taxa. Finally, we assembled the most comprehensive sample of cam- panulid diversity to date, including ca. 17,000 bp of cpDNA for 122 campanulid taxa and five outgroups. Simply filling in missing data in the 50-taxon data set (rendering it 94% complete) resulted in a topology that was similar to earlier studies, but with little additional resolution or confidence.
    [Show full text]
  • Apiaceae, Apioideae) and Its Taxonomic Implications in Korea
    Bangladesh J. Plant Taxon. 25(2): 175-186, 2018 (December) © 2018 Bangladesh Association of Plant Taxonomists MERICARP MORPHOLOGY OF THE TRIBE SELINEAE (APIACEAE, APIOIDEAE) AND ITS TAXONOMIC IMPLICATIONS IN KOREA 1 2 2 CHANGYOUNG LEE , JINKI KIM, ASHWINI M. DARSHETKAR , RITESH KUMAR CHOUDHARY , 3 4 5 SANG-HONG PARK , JOONGKU LEE AND SANGHO CHOI International Biological Material Research Center, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea Keywords: Mericarp surface characters; SEM; NMDS; UPGMA. Abstract Mericarp morphology of 24 taxa belonging to nine genera of the tribe Selineae (Family: Apiaceae) in Korea was studied by Scanning Electron Microscopy. UPGMA and NMDS analyses were performed based on 12 morphological characters. The mericarp surface characters like mericarp shape, rib number and shape, surface pattern, surface appendages and mericarp symmetry proved useful in distinguishing the genera of the tribe Selineae. Introduction The family Apiaceae comprises about 455 genera and is widely distributed across temperate regions of the world (Pimenov and Leonov, 1993). Many members of Apiaceae can be easily distinguished by umbellate inflorescence, fruits consisting of two one-seeded mericarps suspended from a split central column or carpophore and numerous minute epigynous flowers (Downie et al., 1998). Fruits of Apiaceae are known as cremocarps which in the dry state split into two mericarps. Each mericarp has a flat commissural and convex dorsal surface. Drude (1898) proposed a sound system of classification of Apiaceae with three subfamilies Hydrocotiloideae, Saniculoideae and Apioideae and 12 tribes. Apioideae is the largest subfamily consisting of 404 genera and about 2,935 species (Pimenov and Leonov, 1993) and can be distinguished from the other two subfamilies by the synapomorphies like the presence of compound umbels, well-developed vittae (secretory canals) and free carpophores.
    [Show full text]
  • Recent Advances in Understanding Apiales and a Revised Classification
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector South African Journal of Botany 2004, 70(3): 371–381 Copyright © NISC Pty Ltd Printed in South Africa — All rights reserved SOUTH AFRICAN JOURNAL OF BOTANY ISSN 0254–6299 Recent advances in understanding Apiales and a revised classification GM Plunkett1*, GT Chandler1,2, PP Lowry II3, SM Pinney1 and TS Sprenkle1 1 Department of Biology, Virginia Commonwealth University, PO Box 842012, Richmond, Virginia 23284-2012, United States of America 2 Present address: Department of Biology, University of North Carolina, Wilmington, North Carolina 28403-5915, United States of America 3 Missouri Botanical Garden, PO Box 299, St Louis, Missouri 63166-0299, United States of America; Département de Systématique et Evolution, Muséum National d’Histoire Naturelle, Case Postale 39, 57 rue Cuvier, 75231 Paris CEDEX 05, France * Corresponding author, e-mail: [email protected] Received 23 August 2003, accepted in revised form 18 November 2003 Despite the long history of recognising the angiosperm Apiales, which includes a core group of four families order Apiales as a natural alliance, the circumscription (Apiaceae, Araliaceae, Myodocarpaceae, Pittosporaceae) of the order and the relationships among its constituent to which three small families are also added groups have been troublesome. Recent studies, howev- (Griseliniaceae, Torricelliaceae and Pennantiaceae). After er, have made great progress in understanding phylo- a brief review of recent advances in each of the major genetic relationships in Apiales. Although much of this groups, a revised classification of the order is present- recent work has been based on molecular data, the ed, which includes the recognition of the new suborder results are congruent with other sources of data, includ- Apiineae (comprising the four core families) and two ing morphology and geography.
    [Show full text]
  • Wetland Conservation Strategy for the Weiser River Basin, Idaho
    WETLAND CONSERVATION STRATEGY FOR THE WEISER RIVER BASIN, IDAHO Prepared by Edward Bottum Idaho Conservation Data Center March 2005 Idaho Department of Fish and Game Natural Resource Policy Bureau 600 South Walnut, P.O. Box 25 Boise, ID 83707 Report prepared with funding from the United States Environmental Protection Agency through Section 104(b) (3) of the Clean Water Act Grant No. CD 970007-01-2 TABLE OF CONTENTS SUMMARY.....................................................................................................................................1 ACKNOWLEDGMENTS ...............................................................................................................2 INTRODUCTION ...........................................................................................................................3 SURVEY AREA..............................................................................................................................4 METHODS ......................................................................................................................................5 FIELD METHODS....................................................................................................................5 Reference Areas and Sample Sites ......................................................................................5 Field Data Collection ...........................................................................................................5 OFFICE METHODS .................................................................................................................6
    [Show full text]
  • The Evolution of Araliaceae: a Phylogenetic Analysis Based on ITS Sequences of Nuclear Ribosomal DNA
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Lincoln University Research Archive Systematic Botany (2001), 26(1): pp. 144±167 q Copyright 2001 by the American Society of Plant Taxonomists The Evolution of Araliaceae: A Phylogenetic Analysis Based on ITS Sequences of Nuclear Ribosomal DNA JUN WEN Department of Biology, Colorado State University, Fort Collins, Colorado 80523 Current address: Department of Botany, Field Museum of Natural History, Roosevelt Rd at Lake Shore Dr., Chicago, Illinois 60605-2496 GREGORY M. PLUNKETT Department of Biology, Virginia Commonwealth University, Richmond, Virginia 23284-2012 ANTHONY D. MITCHELL Ecology and Entomology Group, Soil, Plant and Ecological Sciences Division, PO Box 84, Lincoln University, Canterbury, New Zealand STEVEN J. WAGSTAFF Landcare Research, P.O. Box 69, Lincoln 8152, New Zealand Communicating Editor: Alan Whittemore ABSTRACT. Phylogenetic analyses of ITS sequence data from 70 species and 40 genera of Araliaceae (representing all major lineages within the ``core group'' of the family) do not support the widely used traditional division of Araliaceae into three tribes. Tribe Aralieae (characterized by imbricate petals) is found nested within a paraphyletic Schef¯erieae (whose taxa have valvate petals). There are, however, two large monophyletic groups comprising most araliad genera: the ''Aralia-Polyscias-Pseudopanax group'' (which in- cludes Aralia, Meryta, Munroidendron, Panax, Pentapanax, Polyscias, Pseudopanax, Reynoldsia, Sciadodendron, Tetra- plasandra, and their close allies), and the ''Eleutherococcus-Dendropanax-Schef¯era group'' (including Brassaiopsis, Dendropanax, Eleutherococcus, Fatsia, Hedera, Oreopanax, Schef¯era, Sinopanax, and their close allies). The ITS trees also permit a re-evaluation of several taxonomically important morphological characters (e.g., petal aestivation, leaf architecture, carpel number, and habit), and provide the opportunity to assess traditional generic delimitations in the family.
    [Show full text]
  • Major Clades Within Apiaceae Subfamily Apioideae As Inferred by Phylogenetic Analysis of Nrdna ITS Sequences
    Plant Div. Evol. Vol. 128/1–2, 111–136 E Stuttgart, August 20, 2010 Major clades within Apiaceae subfamily Apioideae as inferred by phylogenetic analysis of nrDNA ITS sequences By Stephen R. Downie, Krzysztof Spalik, Deborah S. Katz-Downie and Jean-Pierre Reduron With 1 figure and 2 tables Abstract Downie, S.R., Spalik, K., Katz-Downie, D.S. & Reduron, J.-P.: Major clades within Apiaceae subfam- ily Apioideae as inferred by phylogenetic analysis of nrDNA ITS sequences. — Plant Div. Evol. 128: 111–136. 2010. — ISSN 1869-6155. The results of phylogenetic analyses of 1240 nrDNA ITS sequences of Apiaceae subfamily Apioideae, representing 292 genera and 959 species from all major clades of the subfamily except those most basally branching, were compared to a preexisting phylogenetic classification for the group based on several molecular markers and a smaller sampling of taxa. This was done to confirm previously defined tribal and generic limits and to identify additional major clades and genera whose monophyly and relationships can be tested in future studies. All species for which ITS data are available in Gen- Bank plus newly obtained sequences for 53 additional taxa were considered for inclusion in this study and their simultaneous analysis permitted misidentifications and other problematic sequences to be revealed. Analyses of these ITS data, in conjunction with results of recently published molecular stud- ies, identified 41 major clades in Apioideae, of which 21 have already been recognized at the tribal or subtribal rank. No major changes to the preexisting phylogenetic classification of Apioideae are pro- posed, other than the recognition of additional major clades and the expansion of others to accom- modate increased sampling.
    [Show full text]
  • Plant Biodiversity Science, Discovery, and Conservation: Case Studies from Australasia and the Pacific
    Plant Biodiversity Science, Discovery, and Conservation: Case Studies from Australasia and the Pacific Craig Costion School of Earth and Environmental Sciences Department of Ecology and Evolutionary Biology University of Adelaide Adelaide, SA 5005 Thesis by publication submitted for the degree of Doctor of Philosophy in Ecology and Evolutionary Biology July 2011 ABSTRACT This thesis advances plant biodiversity knowledge in three separate bioregions, Micronesia, the Queensland Wet Tropics, and South Australia. A systematic treatment of the endemic flora of Micronesia is presented for the first time thus advancing alpha taxonomy for the Micronesia-Polynesia biodiversity hotspot region. The recognized species boundaries are used in combination with all known botanical collections as a basis for assessing the degree of threat for the endemic plants of the Palau archipelago located at the western most edge of Micronesia’s Caroline Islands. A preliminary assessment is conducted utilizing the IUCN red list Criteria followed by a new proposed alternative methodology that enables a degree of threat to be established utilizing existing data. Historical records and archaeological evidence are reviewed to establish the minimum extent of deforestation on the islands of Palau since the arrival of humans. This enabled a quantification of population declines of the majority of plants endemic to the archipelago. In the state of South Australia, the importance of establishing concepts of endemism is emphasized even further. A thorough scientific assessment is presented on the state’s proposed biological corridor reserve network. The report highlights the exclusion from the reserve system of one of the state’s most important hotspots of plant endemism that is highly threatened from habitat fragmentation and promotes the use of biodiversity indices to guide conservation priorities in setting up reserve networks.
    [Show full text]
  • Rare, Threatened, and Endangered Vascular Plants in Oregon
    RARE, THREATENED AND ENDANGERED VASCULAR PLANTS IN OREGON --AN INTERIM REPORT i •< . * •• Jean L. Siddall Kenton . Chambers David H. Wagner L Vorobik. 779 OREGON NATURAL AREA PRESERVES ADVISORY COMMITTEE to the State Land Board Salem, October, 1979 Natural Area Preserves Advisory Committee to the State Land Board Victor Atiyeh Norma Paulus Clay Myers Governor Secretary of State State Treasurer Members Robert E. Frenkel (Chairman), Corvallis Bruce Nolf (Vice Chairman), Bend Charles Collins, Roseburg Richard Forbes, Portland Jefferson Gonor, Newport Jean L. Siddall, Lake Oswego David H. Wagner, Eugene Ex-Officio Members Judith Hvam Will iam S. Phelps Department of Fish and Wildlife State Forestry Department Peter Bond J. Morris Johnson State Parks and Recreation Division State System of Higher Education Copies available from: Division of State Lands, 1445 State Street, Salem,Oregon 97310. Cover: Darlingtonia californica. Illustration by Linda Vorobik, Eugene, Oregon. RARE, THREATENED AND ENDANGERED VASCULAR PLANTS IN OREGON - an Interim Report by Jean L. Siddall Chairman Oregon Rare and Endangered Plant Species Taskforce Lake Oswego, Oregon Kenton L. Chambers Professor of Botany and Curator of Herbarium Oregon State University Corvallis, Oregon David H. Wagner Director and Curator of Herbarium University of Oregon Eugene, Oregon Oregon Natural Area Preserves Advisory Committee Oregon State Land Board Division of State Lands Salem, Oregon October 1979 F O R E W O R D This report on rare, threatened and endangered vascular plants in Oregon is a basic document in the process of inventorying the state's natural areas * Prerequisite to the orderly establishment of natural preserves for research and conservation in Oregon are (1) a classification of the ecological types, and (2) a listing of the special organisms, which should be represented in a comprehensive system of designated natural areas.
    [Show full text]
  • Apiaceae, Subfamily Apioideae)
    Phytotaxa 316 (1): 095–098 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2017 Magnolia Press Correspondence ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.316.1.11 NEW COMBINATIONS IN LOMATIUM (APIACEAE, SUBFAMILY APIOIDEAE) MARY ANN E. FEIST1, JAMES F. SMITH2, DONALD H. MANSFIELD3, MARK DARRACH4, RICHARD P. MCNEILL5, STEPHEN R. DOWNIE6, GREGORY M. PLUNKETT7 & BARBARA L. WILSON8 1Department of Botany, Wisconsin State Herbarium, 430 Lincoln Drive, University of Wisconsin, Madison, Wisconsin 53706, USA; [email protected] 2Department of Biological Sciences, Snake River Plains Herbarium, Boise State University, Boise, Idaho 83725, USA; [email protected] 3Department of Biology, Harold M. Tucker Herbarium, The College of Idaho, Caldwell, Idaho 83605, USA; [email protected] 4Herbarium, Burke Museum of Natural History and Culture, University of Washington, Seattle, Washington 98195, USA; [email protected], [email protected] 5 Vegetation and Ecological Restoration, Yosemite National Park, P.O. Box 700, El Portal CA 95318, USA; [email protected] 6Department of Plant Biology, 265 Morrill Hall, 505 South Goodwin Avenue, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA; [email protected] 7Cullman Program for Molecular Systematics, New York Botanical Garden, 2900 Southern Blvd., Bronx, New York 10458-5126, USA; [email protected] 8 OSU Herbarium, Department of Botany and Plant Pathology, 2082 Cordley Hall, Corvallis, Oregon 97331, USA; [email protected] Molecular and morphological phylogenetic analyses indicate that many of the perennial endemic genera of North American Apiaceae are either polyphyletic or nested within paraphyletic groups. In light of these results, taxonomic changes are needed to ensure that ongoing efforts to prepare state, regional, and continental floristic treatments of Apiaceae reflect recent findings.
    [Show full text]