Mangrove and Saltmarsh Dynamics in Homebush Bay: Implications for Management at Sydney Olympic Park

Total Page:16

File Type:pdf, Size:1020Kb

Mangrove and Saltmarsh Dynamics in Homebush Bay: Implications for Management at Sydney Olympic Park University of Wollongong Research Online Faculty of Science, Medicine & Health - Honours Theses University of Wollongong Thesis Collections 2015 Mangrove and saltmarsh dynamics in Homebush Bay: implications for management at Sydney Olympic Park Catherine Bowie Follow this and additional works at: https://ro.uow.edu.au/thsci University of Wollongong Copyright Warning You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form. Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong. Recommended Citation Bowie, Catherine, Mangrove and saltmarsh dynamics in Homebush Bay: implications for management at Sydney Olympic Park, BEnviSci Hons, School of Earth & Environmental Sciences, University of Wollongong, 2015. https://ro.uow.edu.au/thsci/108 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] Mangrove and saltmarsh dynamics in Homebush Bay: implications for management at Sydney Olympic Park Abstract Mangrove and saltmarsh wetlands generally occur at the interface of terrestrial and marine ecosystems. Prior to the 1980’s, coastal wetlands, including those in urban areas, were regarded as wastelands of little value; however, since then the ecosystem services they provide have been recognised. Urban wetlands face a range of challenges, most often reclamation for coastal development and poor ecosystem health. The Badu Wetland in Sydney Olympic Park, NSW, Australia, has been impacted by multiple pressures associated with wetlands in urban environments. This study aims to identify the relationship between coastal wetland health and distribution, and water levels. Particular emphasis was given to the effect of previous management interventions on current health and distribution, and the projected influence of sea-level rise in the 21st century. This was achieved by 1) collating information about past and present vegetation changes, policies to ameliorate vegetation change, and future threats to vegetation health; 2) mapping the current wetland distribution, and establishing the degree of change from previous mapping; 3) modelling the relationship between wetland vegetation distribution and elevation using digital elevation models; 4) establishing the vertical accretion and surface elevation trends using an established network of surface elevation tables and marker horizons; and 5) exploring the relationship between elevation and accretion trends and environmental variables, such as elevation, distance from the channel and hydroperiod. It was found that the Badu Wetland had poor mangrove health, including mangrove dieback, and this is linked to poor tidal flushing, either through long flow lengths or slight depressions within the landscape causing pooling of tidal waters. Vegetation distribution of mangrove and saltmarsh has remained relatively stable since 2002, and surface elevation and accretion trends over this period within both the mangrove and saltmarsh exceeds current rates of sea level rise. However, these rates may lag behind projected rates of sea level rise for the 21st century. Degree Type Thesis Degree Name BEnviSci Hons Department School of Earth & Environmental Sciences Advisor(s) Kerrylee Rogers Keywords Urban wetlands, netlands, surface, elevation change This thesis is available at Research Online: https://ro.uow.edu.au/thsci/108 Faculty of Science, Medicine and Health School of Earth and Environmental Science Mangrove and saltmarsh dynamics in Homebush Bay: implications for management at Sydney Olympic Park Catherine Bowie A thesis submitted in part fulfilment of the requirements of the Bachelor of Environmental Science in the School of Earth and Environmental Sciences, Faculty of Science, Medicine and Health, University of Wollongong 2015 i The information in this thesis is entirely the result of investigations conducted by the author, unless otherwise acknowledged, and has not been submitted in part, or otherwise, for any other degree or qualification. Catherine Bowie 16th November 2015 ii Acknowledgements I wish to acknowledge the support provided to me by the following people and organisations through my honours project. First, I would like to thank my supervisors, Dr Kerrylee Rogers and Dr Swapan Paul. Particular thanks to Kerrylee for her continual encouragement, advice and patience, and to Swapan and the Sydney Olympic Park Authority for a warm welcome to the site and the provision of knowledge and resources wherever possible. Thanks to Chris Owers and Kirti Lai for showing me the ropes on the RTK-GPS, providing advice and assistance with ArcGIS, and continual encouragement. Thanks also to the ‘coastal coffee crew’, for the warm welcome into the sphere of coastal research, and the advice and encouragement provided over a friendly coffee every week. Thanks to all those who assisted during fieldwork, despite the often muddy and smelly nature of the wetlands. To Kerrylee and Swapan for introducing me to the site, and to Tristan Haider and Simone Haider, who were (nearly) always enthusiastic and happy to help. Thanks also to Peter and Louise McGrath for their hospitality, welcoming Tristan and I into their home when fieldwork was conducted over several days. Thanks to all of the School of Earth and Environmental Sciences staff and students not already mentioned, for providing lab space, equipment and support. Special thanks to my fellow honours students, understanding of every trial and tribulation, even as they were experiencing their own. Finally, thanks to my friends and family for much needed distractions from honours, and to Graham Bowie for his proofreading efforts throughout the year. iii Table of Contents List of Figures ............................................................................................. vii List of Tables ............................................................................................... xii List of Abbreviations .................................................................................. xiv 1. Abstract ................................................................................................ xv 2. Introduction ............................................................................................ 1 2.1 Background to the Project .................................................................................. 1 2.1.1 Mangrove and Saltmarsh Environments ............................................................... 1 2.1.2 History of the Study Area ...................................................................................... 2 2.2 Aim and Objectives ............................................................................................. 4 3. Literature Review ................................................................................... 5 3.1 History of Vegetation Change................................................................................... 5 3.1.1 Change in Extent and Distribution of Mangrove and Saltmarsh ............................ 5 3.1.2 Change in Extent and Distribution of Vulnerable Species ................................... 13 3.1.3 Change in Extent and Distribution of Non-native Invasive Species ..................... 14 3.2 Past and Current Wetland Management ................................................................ 15 3.2.1 Management Issues ........................................................................................... 15 3.2.2 Management Actions .......................................................................................... 17 3.2.3 Success of Management Actions ........................................................................ 27 3.4 Emerging Threats .................................................................................................... 34 3.4.1 Relationship Between Wetland Distribution and Water Levels ............................ 34 3.4.2 Likely Response of Coastal Wetlands to Sea Level Rise .................................... 37 3.4.3 Likely Outcomes for Coastal Wetlands in Urbanised Landscapes ...................... 40 3.4.4 Coastal Squeeze ................................................................................................ 42 3.5 Methods for Exploring Future Management Options............................................ 44 3.5.1 Surface Elevation Tables (SETs) and Marker Horizons (MH) .............................. 44 3.5.2 Vegetation Health and Extent Monitoring ...........................................................
Recommended publications
  • Figure S1: Map of Sydney Harbour and the Position of the Hawkesbury and Georges Rivers
    10.1071/MF09263_AC © CSIRO 2010 Marine and Freshwater Research 2010, 61(10), 1109–1122 Figure S1: Map of Sydney Harbour and the position of the Hawkesbury and Georges Rivers. Circles and diamonds indicate locations sampled in the Parramatta and Lane Cover Rivers, respectively. Running east to west, the locations within the Parramatta River were: Iron Cove (33°52'14"S 151° 9'2"E), Five Dock Bay (33°51'10"S 151° 8'32"E), Hen and Chicken Bay (33°51'37"S 151° 7'7"E), Morrisons Bay (33°49'49"S 151° 6'43"E), Majors Bay (33°50'33"S 151° 6'4"E), Brays Bay (33°49'53"S 151° 5'33"E) and Duck Creek (33°49'49"S 151° 6'4"E). Running north to south, the locations within the Lane Cove river were: Field of Mars (33°49'3"S 151° 8'35"E), Boronia Park (33°49'37"S 151° 8'38"E), Tambourine Bay (33°49'43"S 151° 9'40"E) and Woodford Bay (33°49'51"S 151°10'24"E). The coordinates for the locations within the other estuaries were: Hawkesbury River (Cogra Bay 33°31'23"S 151°13'23"E; Porto Bay Bay 33°33'51"S 151°13'17"E) and Georges River (Kyle Bay 33°59'28"S 151° 6'8"E and Coronation Bay 33°59'54"S 151° 4'38"E). 10.1071/MF09263_AC © CSIRO 2010 Marine and Freshwater Research 2010, 61(10), 1109–1122 Table S1. Organic contaminants analysed in sediments Class LOD, mg/kg Method Specific chemicals or fractions Polycyclic aromatic 0.01 USEPA methods Naphthalene, acenaphthylene, acenaphthene, fluorene, hydrocarbons (PAHs) 3550/8270 phenanthrene, anthracene, fluoranthene, pyrene, benz(a)anthracene, chrysene, benzo(b)-fluoranthene, benzo(k)-fluoranthene, benzo(a)pyrene, indeno(1,2,3- cd)pyrene, dibenz(ah)anthracene, and benzo(ghi)perylene).
    [Show full text]
  • 109. M4-M5 EIS Vol 2I App T Groundwater Part 1
    M4-M5 Link Environmental Impact Statement August 2017 Appendix T Volume 2I Since finalisation of the Environmental Impact Statement, the project has been declared by Ministerial Order to be State significant infrastructure and critical State significant infrastructure under sections 115U (4) and 115V of the Environmental Planning and Assessment Act 1979. The Ministerial Order also amended Schedule 5 of State Environmental Planning Policy (State and Regional Development) 2011. The project remains subject to assessment under Part 5.1 of the Environmental Planning and Assessment Act 1979 and requires the approval of the Minister for Planning. WestConnex speaks your language Greek Learn more by visiting µ www.westconnex.com.au/yourlanguage www.westconnex.com.au/yourlanguage to watch project videos in your language and read more about WestConnex. If you need an interpreter, call the Translating WestConnex. µ , µ 131 450. and Interpreting Service on 131 450. Italian Arabic Per saperne di più visiti il sito www.westconnex.com.au/yourlanguage www.westconnex.com.au/yourlanguage, dove potrà guardare i video del progetto in lingua italiana e trovare maggiori informazioni su WestConnex. Se ha bisogno di un interprete, contatti il Servizio di Traduzione ed Interpretariato (Translating ł ł .131 450 and Interpreting Service) al numero 131 450. Chinese Korean 了解詳情請上網 www.westconnex.com.au/yourlanguage 를 방문하여한국어로 www.westconnex.com.au/yourlanguage觀看(普通話) 된 프로젝트 비디오를 보고 WestConnex 에 관해 읽고 배우세요. 視頻, 並 查閱有關WestConnex的更多訊息。如需要傳譯員請 통역이 필요하시면 번역 및 통역 서비스 131 450 (TIS) 으로 전화 。。 撥電話傳譯服務 131 450 하십시오. Hindi Vietnamese : Hãy tìm hi u thêm và vi ng trang m ng www.westconnex.com.au/yourlanguage ( ) www.westconnex.com.au/yourlanguage xem phim nh b ng Vi t ng v công trình này và c thêm v WestConnex.
    [Show full text]
  • Urban Parks, Urban Icons? the Case of Bicentennial Park in Sydney
    U H P H 2 0 1 6 I c o n s : T h e M a k i n g , M e a n i n g a n d U n d o i n g o f U r b a n I c o n s a n d I c o n i c C i t i e s | 505 Urban Parks, Urban Icons? The case of Bicentennial Park in Sydney Catherine Evans Faculty of the Built Environment, UNSW [email protected] This paper explores the question of how urban parks function as urban icons. It examines Bicentennial Park in Homebush Bay, 12 km west of the Sydney Central Business District (CBD) as a case study. Bicentennial Park was planned and designed between 1983 and 1988, a time when Australia, and its cities in particular, grappled with tensions between celebrating achievements of two hundred years of European settlement and redressing the cultural and ecological harm wrought by those achievements. The research focuses on a review of material related to the design and promotion of the park, and early reviews of the park. The discussion explores the influence of specific ideas about the city and ecology on the transformations of use, materiality, and physical form of the land that became Bicentennial Park. Findings reveal that Bicentennial Park at Homebush Bay was conceived as an awkwardly scripted design, which in turn reflects a convergence of urban planning initiatives, intensifying environmental awareness and ideological tensions within the then nascent Australian- based profession of landscape architecture.
    [Show full text]
  • Western Sydney Airport Fast Train – Discussion Paper
    Western Sydney Airport Fast 2 March 2016 Train - Discussion Paper Reference: 250187 Parramatta City Council & Sydney Business Chamber - Western Sydney Document control record Document prepared by: Aurecon Australasia Pty Ltd ABN 54 005 139 873 Australia T +61 2 9465 5599 F +61 2 9465 5598 E [email protected] W aurecongroup.com A person using Aurecon documents or data accepts the risk of: a) Using the documents or data in electronic form without requesting and checking them for accuracy against the original hard copy version. b) Using the documents or data for any purpose not agreed to in writing by Aurecon. Disclaimer This report has been prepared by Aurecon at the request of the Client exclusively for the use of the Client. The report is a report scoped in accordance with instructions given by or on behalf of Client. The report may not address issues which would need to be addressed with a third party if that party’s particular circumstances, requirements and experience with such reports were known and may make assumptions about matters of which a third party is not aware. Aurecon therefore does not assume responsibility for the use of, or reliance on, the report by any third party and the use of, or reliance on, the report by any third party is at the risk of that party. Project 250187 DRAFT REPORT: NOT FORMALLY ENDORSED BY PARRAMATTA CITY COUNCIL Parramatta Fast Train Discussion Paper FINAL DRAFT B to Client 2 March.docx 2 March 2016 Western Sydney Airport Fast Train - Discussion Paper Date 2 March 2016 Reference 250187 Aurecon
    [Show full text]
  • Sydney Harbour a Systematic Review of the Science 2014
    Sydney Harbour A systematic review of the science 2014 Sydney Institute of Marine Science Technical Report The Sydney Harbour Research Program © Sydney Institute of Marine Science, 2014 This publication is copyright. You may download, display, print and reproduce this material provided that the wording is reproduced exactly, the source is acknowledged, and the copyright, update address and disclaimer notice are retained. Disclaimer The authors of this report are members of the Sydney Harbour Research Program at the Sydney Institute of Marine Science and represent various universities, research institutions and government agencies. The views presented in this report do not necessarily reflect the views of The Sydney Institute of Marine Science or the authors other affiliated institutions listed below. This report is a review of other literature written by third parties. Neither the Sydney Institute of Marine Science or the affiliated institutions take responsibility for the accuracy, currency, reliability, and correctness of any information included in this report provided in third party sources. Recommended Citation Hedge L.H., Johnston E.L., Ayoung S.T., Birch G.F., Booth D.J., Creese R.G., Doblin M.A., Figueira W.F., Gribben P.E., Hutchings P.A., Mayer Pinto M, Marzinelli E.M., Pritchard T.R., Roughan M., Steinberg P.D., 2013, Sydney Harbour: A systematic review of the science, Sydney Institute of Marine Science, Sydney, Australia. National Library of Australia Cataloging-in-Publication entry ISBN: 978-0-646-91493-0 Publisher: The Sydney Institute of Marine Science, Sydney, New South Wales, Australia Available on the internet from www.sims.org.au For further information please contact: SIMS, Building 19, Chowder Bay Road, Mosman NSW 2088 Australia T: +61 2 9435 4600 F: +61 2 9969 8664 www.sims.org.au ABN 84117222063 Cover Photo | Mike Banert North Head The light was changing every minute.
    [Show full text]
  • Estuary Surveillance for QX Disease
    Estuary surveillance Student task sheet for QX disease The following tables show data collected Estuary Surveillance 2002: during estuary surveillance from 2001– During the 2002 sampling period a total of 2004 for New South Wales and 5250 oysters were received and processed Queensland. N is the number of oysters from 18 NSW estuaries and three tested in a random sample of the oyster Queensland zones using tissue imprints. population. Dr Adlard used two methods of disease detection in surveillance — tissue imprint and PCR. Table 2A: Tissue imprints used to detect the QX disease parasite Estuary Surveillance 2001: 2002 Survey results Table 1: Tissue imprint results for 2001 N 2001 Survey Results Estuary N infected % N Northern Moreton Bay 250 0 0 Estuary N infected % Central Moreton Bay 250 0 0 Tweed River 316 0 0 Southern Moreton Bay 250 2 0.8 Brunswick River 320 0 0 Tweed River 250 0 0 Richmond River 248 0 0 Brunswick River 250 0 0 Clarence River 330 5 1.52 Richmond River 250 102 40.8 Wooli River 294 0 0 Clarence River 250 55 22 Kalang /Bellinger 295 0 0 Wooli River 250 0 0 Rivers Kalang /Bellingen Rivers 250 0 0 Macleay River 261 0 0 Macleay River 250 0 0 Hastings River 330 0 0 Hastings River 250 0 0 Manning River 286 0 0 Manning River 250 0 0 Wallis Lakes 271 0 0 Wallis Lakes 250 0 0 Port Stephens 263 0 0 Port Stephens 250 0 0 Hawkesbury River 323 0 0 Hawkesbury River 250 0 0 Georges River 260 123 47.31 Georges River 250 40 16 Shoalhaven/ 255 0 0 Crookhaven Shoalhaven/Crookhaven 250 0 0 Bateman's Bay 300 0 0 Bateman's Bay 250 0 0 Tuross Lake 304 0 0 Tuross Lake 250 0 0 Narooma 300 0 0 Narooma 250 0 0 Merimbula 250 0 0 Merimbula 250 0 0 © Queensland Museum 2006 Table 2B: PCR results from 2002 on Estuary Surveillance 2003: oysters which had tested negative to QX During 2003 a total of 4450 oysters were disease parasite using tissue imprints received and processed from 22 NSW estuaries and three Queensland zones.
    [Show full text]
  • Sewage Treatment System Impact Monitoring Program
    Sewage Treatment System Impact Monitoring Program Volume 1 Data Report 2019-20 Commercial-in-Confidence Sydney Water 1 Smith Street, Parramatta, NSW Australia 2150 PO Box 399 Parramatta NSW 2124 Report version: STSIMP Data Report 2019-20 Volume 1 final © Sydney Water 2020 This work is copyright. It may be reproduced for study, research or training purposes subject to the inclusion of an acknowledgement of the source and no commercial usage or sale. Reproduction for purposes other than those listed requires permission from Sydney Water. Sewage Treatment System Impact Monitoring Program | Vol 1 Data Report 2019-20 Page | i Executive summary Background Sydney Water operates 23 wastewater treatment systems and each system has an Environment Protection Licence (EPL) regulated by the NSW Environment Protection Authority (EPA). Each EPL specifies the minimum performance standards and monitoring that is required. The Sewage Treatment System Impact Monitoring Program (STSIMP) commenced in 2008 to satisfy condition M5.1a of our EPLs. The results are reported to the NSW EPA every year. The STSIMP aims to monitor the environment within Sydney Water’s area of operations to determine general trends in water quality over time, monitor Sydney Water’s performance and to determine where Sydney Water’s contribution to water quality may pose a risk to environmental ecosystems and human health. The format and content of 2019-20 Data Report predominantly follows four earlier reports (2015-16 to 2018-19). Sydney Water’s overall approach to monitoring (design and method) is consistent with the Australian and New Zealand Environment and Conservation Council (ANZECC 2000 and ANZG 2018) guidelines.
    [Show full text]
  • The March 1978 Flood on the Hawkesbury and Nepean
    ... I'., The March, 1978 flood on the Hawkesbury and Nepean River between Penrith and Pitt Town S. J. Riley School of Earth Sciences, Macquarie University, - North Ryde. N. S.W. 2113 .. ,.. ... .. ... ..... .. - ~ . .. '~,i';~;: '~ It'i _:"to "\f',. .,.,. ~ '.! . I .... I ,', ; I I ' }, I , I , I The March, 1978 flood on the I Hawkesbury and Nepean River I .. between PenDth and Pitt Town I I I I S.J. Riley 1 f I :''',i I I School of Earth Sciences, I Macquarie University, ·1 North Ryde. N.S.W. 2113 I I',.. , ··1 " " ., ~: ". , r-~.I··_'~ __'_'. ~ . '.," '. '..a.w-.,'",' --~,~"; l .' . - l~' _I,:.{·_ .. -1- Introduction As a result of three days of heavy rainfall over the Hawkesbury c:ltchment in March, 1978 floods occurred on all the streams in the Hawkesbury system. These floods caused considerable property damage and resulted in morphological changes to the channels and floodplains 1 of, the Hawkesbury system. This paper describes the flodd in the Hawkesbury-Nepean system in the reach'extending from Penrith to Pitt Town •. Storm Pattern An intense low pressure cell developed over the Coral Sea on the 16th March, 1978. This low pressure system travelled southeast towards the Queensland coast and gained in intensity (Fig.l). On the 18th March it,appeared that the cell would move eastwards away from Australia. However, the system reversed its direction of travel and moved inland. Resultant wind systems brought warm moist air from ,the east onto the .. " coast of New South Wal,es. Consequently, heavy rainfall$ occurred from f I .. the 18th to 24th March over the whole of eastern New South Wales.
    [Show full text]
  • Reducing the Impact of Weirs on Aquatic Habitat
    REDUCING THE IMPACT OF WEIRS ON AQUATIC HABITAT NSW DETAILED WEIR REVIEW REPORT TO THE NEW SOUTH WALES ENVIRONMENTAL TRUST SYDNEY METROPOLITAN CMA REGION Published by NSW Department of Primary Industries. © State of New South Wales 2006. This publication is copyright. You may download, display, print and reproduce this material in an unaltered form only (retaining this notice) for your personal use or for non-commercial use within your organisation provided due credit is given to the author and publisher. To copy, adapt, publish, distribute or commercialise any of this publication you will need to seek permission from the Manager Publishing, NSW Department of Primary Industries, Orange, NSW. DISCLAIMER The information contained in this publication is based on knowledge and understanding at the time of writing (July 2006). However, because of advances in knowledge, users are reminded of the need to ensure that information upon which they rely is up to date and to check the currency of the information with the appropriate officer of NSW Department of Primary Industries or the user‘s independent adviser. This report should be cited as: NSW Department of Primary Industries (2006). Reducing the Impact of Weirs on Aquatic Habitat - New South Wales Detailed Weir Review. Sydney Metropolitan CMA region. Report to the New South Wales Environmental Trust. NSW Department of Primary Industries, Flemington, NSW. ISBN: 0 7347 1753 9 (New South Wales Detailed Weir Review) ISBN: 978 0 7347 1833 4 (Sydney Metropolitan CMA region) Cover photos: Cob-o-corn Weir, Cob-o-corn Creek, Northern Rivers CMA (upper left); Stroud Weir, Karuah River, Hunter/Central Rivers CMA (upper right); Mollee Weir, Namoi River, Namoi CMA (lower left); and Hartwood Weir, Billabong Creek, Murray CMA (lower right).
    [Show full text]
  • Government Gazette No 164 of Friday 23 April 2021
    GOVERNMENT GAZETTE – 4 September 2020 Government Gazette of the State of New South Wales Number 164–Electricity and Water Friday, 23 April 2021 The New South Wales Government Gazette is the permanent public record of official NSW Government notices. It also contains local council, non-government and other notices. Each notice in the Government Gazette has a unique reference number that appears in parentheses at the end of the notice and can be used as a reference for that notice (for example, (n2019-14)). The Gazette is compiled by the Parliamentary Counsel’s Office and published on the NSW legislation website (www.legislation.nsw.gov.au) under the authority of the NSW Government. The website contains a permanent archive of past Gazettes. To submit a notice for gazettal, see the Gazette page. By Authority ISSN 2201-7534 Government Printer NSW Government Gazette No 164 of 23 April 2021 DATA LOGGING AND TELEMETRY SPECIFICATIONS 2021 under the WATER MANAGEMENT (GENERAL) REGULATION 2018 I, Kaia Hodge, by delegation from the Minister administering the Water Management Act 2000, pursuant to clause 10 of Schedule 8 to the Water Management (General) Regulation 2018 (the Regulation) approve the following data logging and telemetry specifications for metering equipment. Dated this 15 day of April 2021. KAIA HODGE Executive Director, Regional Water Strategies Department of Planning, Industry and Environment By delegation Explanatory note This instrument is made under clause 10 (1) of Schedule 8 to the Regulation. The object of this instrument is to approve data logging and telemetry specifications for metering equipment that holders of water supply work approvals, water access licences and Water Act 1912 licences and entitlements that are subject to the mandatory metering equipment condition must comply with.
    [Show full text]
  • Parramatta River
    anchorage anchorage ail far enough along the Parramatta River held at Homebush Bay in 2000, there has wetlands, vast stretches of open space, sailing Sand you can’t fail to notice a broken white been a dramatic rise in activity on the river. and rowing clubs, unit blocks and posh parramatta column mounted on a rock near the water’s On any given day, it bustles with yachts and waterfront mansions. Yaralla House, in Concord edge at Henley. powerboats, tinnies, canoes, kayaks and (pictured here) is one of the oldest and largest This simple monument is dedicated to the RiverCat ferries (seven low-wash catamarans and has considerable historical significance. short but spectacular life of Henry Searle, one of named after famous Australian sportswomen). There are four islands along the river: Australia’s greatest scullers, who died in 1889 at The river, which is tidal to Charles Street Rodd Island in Iron Cove, and Cockatoo, just 23. The column also marks the finish line Weir at Parramatta, is jam-packed with things to Spectacle and Snapper islands huddled between where, a year earlier, Searle comprehensively see – if you know what to look for. Woolwich and Birchgrove. In the late 19th defeated the world rowing champion. century, Rodd Island was used as a biological Searle’s Monument is one of the landmarks colonial History laboratory by a team from the Pasteur Institute along the Parramatta River, which officially As a key link between the settlements of Sydney in France, and also as a temporary quarantine merges with Sydney Harbour at Longnose Point, and Parramatta, the Parramatta River played an area for a pet dog that French actress Sarah Birchgrove and Manns Point, Greenwich.
    [Show full text]
  • Contaminant Chemistry and Toxicity of Sediments in Sydney Harbour, Australia: Spatial Extent and Chemistry–Toxicity Relationships
    Vol. 363: 71–87, 2008 MARINE ECOLOGY PROGRESS SERIES Published July 15 doi: 10.3354/meps07445 Mar Ecol Prog Ser Contaminant chemistry and toxicity of sediments in Sydney Harbour, Australia: spatial extent and chemistry–toxicity relationships Gavin F. Birch1,*, Stephanie McCready1, Edward R. Long2, Stuart S. Taylor1, 3, Gina Spyrakis1 1School of Geosciences, Environmental Geology Group, The University of Sydney, New South Wales, 2006, Australia 2ERL Environmental, 3691 Cole Road South, Salem, Oregon 97306, USA 3URS, 116 Miller St., North Sydney, New South Wales, 2060, Australia ABSTRACT: The spatial distribution of chemical contamination and toxicity of surficial sediments in Sydney Harbour, Australia, was investigated in a 3-tiered, hierarchical approach. An initial chemical investigation throughout the entire estuary (Stage 1) indicated wide ranges and different spatial patterns in sediment chemical concentrations. Sediment quality guidelines (SQGs) were used as a preliminary estimate of possible toxicity in Stage 2 of the investigation. Assessment of chemical mixtures indicated that sediments in a small part (~2%) of the harbour had the highest probability of being toxic (~75%), whereas sediment in almost 25% of the port was estimated to have an inter- mediate (~50%) probability of being toxic. The SQG assessment in Stage 2 enabled careful stratifica- tion of the harbour into areas with different toxicity risks, reducing cost and time commitments in the final tier of assessment. The spatial survey carried out in Stage 3 involved concurrent chemical and ecotoxicological analyses. In this final stage, the degree of response in tests of amphipod survival in whole sediment samples, as well as in tests of microbial metabolism (Microtox©) and sea urchin egg fertilisation and embryo development in pore waters, generally increased with increasing chemical concentrations.
    [Show full text]