Raman Spectroscopic Study of the Metatellurate Mineral : Xocomecatlite Cu3teo4(OH)4
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Application of Near-Infrared and Mid-Infrared Spectroscopy to the Study of 3 Selected Tellurite Minerals: Xocomecatlite, Tlapallite and Rodalquilarite 4 5 Ray L
QUT Digital Repository: http://eprints.qut.edu.au/ Frost, Ray L. and Keeffe, Eloise C. and Reddy, B. Jagannadha (2009) An application of near-infrared and mid- infrared spectroscopy to the study of selected tellurite minerals: xocomecatlite, tlapallite and rodalquilarite. Transition Metal Chemistry, 34(1). pp. 23-32. © Copyright 2009 Springer 1 2 An application of near-infrared and mid-infrared spectroscopy to the study of 3 selected tellurite minerals: xocomecatlite, tlapallite and rodalquilarite 4 5 Ray L. Frost, • B. Jagannadha Reddy, Eloise C. Keeffe 6 7 Inorganic Materials Research Program, School of Physical and Chemical Sciences, 8 Queensland University of Technology, GPO Box 2434, Brisbane Queensland 4001, 9 Australia. 10 11 Abstract 12 Near-infrared and mid-infrared spectra of three tellurite minerals have been 13 investigated. The structure and spectral properties of two copper bearing 14 xocomecatlite and tlapallite are compared with an iron bearing rodalquilarite mineral. 15 Two prominent bands observed at 9855 and 9015 cm-1 are 16 2 2 2 2 2+ 17 assigned to B1g → B2g and B1g → A1g transitions of Cu ion in xocomecatlite. 18 19 The cause of spectral distortion is the result of many cations of Ca, Pb, Cu and Zn the 20 in tlapallite mineral structure. Rodalquilarite is characterised by ferric ion absorption 21 in the range 12300-8800 cm-1. 22 Three water vibrational overtones are observed in xocomecatlite at 7140, 7075 23 and 6935 cm-1 where as in tlapallite bands are shifted to low wavenumbers at 7135, 24 7080 and 6830 cm-1. The complexity of rodalquilarite spectrum increases with more 25 number of overlapping bands in the near-infrared. -
New Mineral Names*
American Mineralogist, Volume 68, pages 280-2E3, 1983 NEW MINERAL NAMES* MrcnnBr- FrelscHen AND ADoLF Pnnsr Arsendescloizite* The mineral occurs at Uchucchacua,Peru, in acicular crystals up to 2fi) x 20 microns, associatedwith galena, manganoan (1982) Paul Keller and P. J. Dunn Arsendescloizite, a new sphalerite, pyrite, pyrrhotite, and alabandite, with gangue of mineral from Tsumeb. Mineralog. Record, 13, 155-157. quartz, bustamite, rhodonite, and calcite. Also found at Stitra, pyrite-pyrrhotite in rhyo- Microprobe analysis (HzO by TGA) gave AszOs 26.5, PbO Sweden,in a metamorphosed deposit 52.3,ZnO1E.5, FeO 0.3, Il2O2.9, sum 100.5%,corresponding to litic and dacitic rocks; in roundedgrains up to 50 fl.min diameter, associated with galena, freibergite, gudmundite, manganoan Pb1.s6(Zn1.63Fe6.oJ(AsOaXOH)1a or PbZn(AsO+XOH), the ar- senateanalogue ofdescloizite. The mineral is slightly soluble in sphalerite,bismuth, and spessartine. hot HNO3. The name is for A. Benavides, for his contribution to the Weissenbergand precessionmeasurements show the mineral development of mining in Peru. Type material is at the Ecole (Uchucchacua)and at the Free to be orthorhombic, space group F212121,a : 6.075, b = 9.358, Natl. Superieuredes Mines, Paris (SAtra). c = 7.$44, Z = 4, D. calc. 6.57. The strongestX-ray lines University, Amsterdam, Netherlands M.F. (31 eiven) are 4.23(6)(lll); 3.23(lOXl02);2.88(10)(210,031); 2.60 Kolfanite* (E)(13 I ) ; 2.W6)Q3r) ; I .65(6X33I, 143,233); r.559 (EX3I 3,060,25I ). Crystalsare tabular up to 1.0 x 0.4 x 0.5 mm in size, on {001}, A. -
New Mineral Names*,†
American Mineralogist, Volume 104, pages 625–629, 2019 New Mineral Names*,† DMITRIY I. BELAKOVSKIY1 AND FERNANDO CÁMARA2 1Fersman Mineralogical Museum, Russian Academy of Sciences, Leninskiy Prospekt 18 korp. 2, Moscow 119071, Russia 2Dipartimento di Scienze della Terra “Ardito Desio”, Universitá di degli Studi di Milano, Via Mangiagalli, 34, 20133 Milano, Italy IN THIS ISSUE This New Mineral Names has entries for 8 new minerals, including fengchengite, ferriperbøeite-(Ce), genplesite, heyerdahlite, millsite, saranchinaite, siudaite, vymazalováite and new data on lavinskyite-1M. FENGCHENGITE* X-ray diffraction pattern [d Å (I%; hkl)] are: 7.186 (55; 110), 5.761 (44; 113), 4.187 (53; 123), 3.201 (47; 028), 2.978 (61; 135). 2.857 (100; 044), G. Shen, J. Xu, P. Yao, and G. Li (2017) Fengchengite: A new species with 2.146 (30; 336), 1.771 (36; 24.11). Single-crystal X-ray diffraction data the Na-poor but vacancy-dominante N(5) site in the eudialyte group. shows the mineral is trigonal, space group R3m, a = 14.2467 (6), c = Acta Mineralogica Sinica, 37 (1/2), 140–151. 30.033(2) Å, V = 5279.08 Å3, Z = 3. The structure was solved by direct methods and refined to R = 0.043 for all unique I > 2σ(I) reflections. Fengchengite (IMA 2007-018a), Na Ca (Fe3+,) Zr Si (Si O ) 12 3 6 3 3 25 73 Fenchengite is the Fe3+ analog of eudialyte with a structural difference (H O) (OH) , trigonal, is a new eudialyte-group mineral discovered in 2 3 2 in vacancy dominant N5 site and splitting its Na site N1 into N1a and the agpaitic nepheline syenites and its pegmatite facies near the Saima N1b sites. -
Mineral Processing
Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19 -
Utahite, a New Mineral and Associated Copper Tellurates from the Centennial Eureka Mine, Tintic District, Juab County, Utah
UTAHITE, A NEW MINERAL AND ASSOCIATED COPPER TELLURATES FROM THE CENTENNIAL EUREKA MINE, TINTIC DISTRICT, JUAB COUNTY, UTAH Andrew C. Roberts and John A. R. Stirling Geological Survey of Canada 601 Booth Street Ottawa, Ontario, Canada K IA OE8 Alan J. Criddle Martin C. Jensen Elizabeth A. Moffatt Department of Mineralogy 121-2855 Idlewild Drive Canadian Conservation Institute The Natural History Museum Reno, Nevada 89509 1030 Innes Road Cromwell Road Ottawa, Ontario, Canada K IA OM5 London, England SW7 5BD Wendell E. Wilson Mineralogical Record 4631 Paseo Tubutama Tucson, Arizona 85750 ABSTRACT Utahite, idealized as CusZn;(Te6+04JiOH)8·7Hp, is triclinic, fracture. Utahite is vitreous, brittle and nonfluorescent; hardness space-group choices P 1 or P 1, with refined unit-cell parameters (Mohs) 4-5; calculated density 5.33 gtcm' (for empirical formula), from powder data: a = 8.794(4), b = 9996(2), c = 5.660(2);\, a = 5.34 glcm' (for idealized formula). In polished section, utahite is 104.10(2)°, f3 = 90.07(5)°, y= 96.34(3YO, V = 479.4(3) ;\3, a:b:c = slightly bireflectant and nonpleochroic. 1n reflected plane-polar- 0.8798:1 :0.5662, Z = 1. The strongest five reflections in the X-ray ized light in air it is very pale brown, with ubiquitous pale emerald- powder pattern are (dA(f)(hkl)]: 9.638(100)(010); 8.736(50)(100); green internal reflections. The anisotropy is unknown because it is 4.841(100)(020); 2.747(60)(002); 2.600(45)(301, 311). The min- masked by the internal reflections. Averaged electron-microprobe eral is an extremely rare constituent on the dumps of the Centen- analyses yielded CuO = 25.76, ZnO = 15.81, Te03 = 45.47, H20 nial Eureka mine, Tintic district, Juab County, Utah, where it (by difference) {12.96], total = {100.00] weight %, corresponding occurs both as isolated 0.6-mm clusters of tightly bound aggre- to CU49;Zn29lTe6+04)39l0H)79s' 7.1H20, based on 0 = 31. -
An Overview of Minerals Toxicity, by RDG, 2014-2020
AN OVERVIEW OF MINERALS TOXICITY Written by RDG, 2014 Copyright © 2014 - 2020, RDG. All rights reserved. First published electronically November 2014. Last updated December 19, 2020. Disclaimer: This article is not intended as an authoritative text. The author cannot be held responsible for your safety. TABLE OF CONTENTS 1.INTRODUCTION …................................................................................................................. 3 1.1.Why discuss the toxicity of minerals …....................................................................................3 1.2.A few basic notions of toxicology …........................................................................................ 3 1.2.1.Dose …...................................................................................................................................3 1.2.2.Bioavailability …................................................................................................................... 3 1.2.3.Toxicity class, Acute toxicity, and Median lethal dose …......................................................3 1.2.4.Chronic toxicity …................................................................................................................. 4 1.2.5.Carcinogenic, Mutagenic, Reprotoxic …...............................................................................4 1.3.Risk assessment ….................................................................................................................... 4 2.TOXICITY OF MINERALS …............................................................................................... -
A Review of the Structural Architecture of Tellurium Oxycompounds
Mineralogical Magazine, May 2016, Vol. 80(3), pp. 415–545 REVIEW OPEN ACCESS A review of the structural architecture of tellurium oxycompounds 1 2,* 3 A. G. CHRISTY ,S.J.MILLS AND A. R. KAMPF 1 Research School of Earth Sciences and Department of Applied Mathematics, Research School of Physics and Engineering, Australian National University, Canberra, ACT 2601, Australia 2 Geosciences, Museum Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia 3 Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA [Received 24 November 2015; Accepted 23 February 2016; Associate Editor: Mark Welch] ABSTRACT Relative to its extremely low abundance in the Earth’s crust, tellurium is the most mineralogically diverse chemical element, with over 160 mineral species known that contain essential Te, many of them with unique crystal structures. We review the crystal structures of 703 tellurium oxysalts for which good refinements exist, including 55 that are known to occur as minerals. The dataset is restricted to compounds where oxygen is the only ligand that is strongly bound to Te, but most of the Periodic Table is represented in the compounds that are reviewed. The dataset contains 375 structures that contain only Te4+ cations and 302 with only Te6+, with 26 of the compounds containing Te in both valence states. Te6+ was almost exclusively in rather regular octahedral coordination by oxygen ligands, with only two instances each of 4- and 5-coordination. Conversely, the lone-pair cation Te4+ displayed irregular coordination, with a broad range of coordination numbers and bond distances. -
Raman Spectroscopic Study of the Tellurite Minerals: Carlfriesite and Spirof- fite
This may be the author’s version of a work that was submitted/accepted for publication in the following source: Frost, Ray, Dickfos, Marilla,& Keeffe, Eloise (2009) Raman spectroscopic study of the tellurite minerals: Carlfriesite and spirof- fite. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 71(5), pp. 1663-1666. This file was downloaded from: https://eprints.qut.edu.au/17256/ c Copyright 2009 Elsevier Reproduced in accordance with the copyright policy of the publisher Notice: Please note that this document may not be the Version of Record (i.e. published version) of the work. Author manuscript versions (as Sub- mitted for peer review or as Accepted for publication after peer review) can be identified by an absence of publisher branding and/or typeset appear- ance. If there is any doubt, please refer to the published source. https://doi.org/10.1016/j.saa.2008.06.014 QUT Digital Repository: http://eprints.qut.edu.au/ Frost, Ray L. and Dickfos, Marilla J. and Keeffe, Eloise C. (2009) Raman spectroscopic study of the tellurite minerals : carlfriesite and spiroffite. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy, 71(5). pp. 1663-1666. © Copyright 2009 Elsevier Raman spectroscopic study of the tellurite minerals: carlfriesite and spiroffite Ray L. Frost, • Marilla J. Dickfos and Eloise C. Keeffe Inorganic Materials Research Program, School of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane Queensland 4001, Australia. ---------------------------------------------------------------------------------------------------------------------------- Abstract Raman spectroscopy has been used to study the tellurite minerals spiroffite 2+ and carlfriesite, which are minerals of formula type A2(X3O8) where A is Ca for the mineral carlfriesite and is Zn2+ and Mn2+ for the mineral spiroffite. -
QUT Digital Repository
QUT Digital Repository: http://eprints.qut.edu.au/ Frost, Ray L. and Keeffe, Eloise C. (2009) Raman spectroscopic study of the tellurite minerals: graemite CuTeO3.H2O and teineite CuTeO3.2H2O. Journal of Raman Spectroscopy, 40(2). pp. 128-132. © Copyright 2009 John Wiley and Sons . 1 Raman spectroscopic study of the tellurite minerals: graemite CuTeO3 H2O and . 2 teineite CuTeO3 2H2O 3 4 Ray L. Frost • and Eloise C. Keeffe 5 6 Inorganic Materials Research Program, School of Physical and Chemical Sciences, 7 Queensland University of Technology, GPO Box 2434, Brisbane Queensland 4001, 8 Australia. 9 10 11 Tellurites may be subdivided according to formula and structure. 12 There are five groups based upon the formulae (a) A(XO3), (b) . 13 A(XO3) xH2O, (c) A2(XO3)3 xH2O, (d) A2(X2O5) and (e) A(X3O8). Raman 14 spectroscopy has been used to study the tellurite minerals teineite and 15 graemite; both contain water as an essential element of their stability. 16 The tellurite ion should show a maximum of six bands. The free 17 tellurite ion will have C3v symmetry and four modes, 2A1 and 2E. 18 Raman bands for teineite at 739 and 778 cm-1 and for graemite at 768 -1 2- 19 and 793 cm are assigned to the ν1 (TeO3) symmetric stretching mode 20 whilst bands at 667 and 701 cm-1 for teineite and 676 and 708 cm-1 for 2- 21 graemite are attributed to the the ν3 (TeO3) antisymmetric stretching 22 mode. The intense Raman band at 509 cm-1 for both teineite and 23 graemite is assigned to the water librational mode. -
Revision 2 Lead–Tellurium Oxysalts from Otto Mountain Near Baker
1 Revision 2 2 3 Lead–tellurium oxysalts from Otto Mountain near Baker, California: XI. Eckhardite, 2+ 6+ 4 (Ca,Pb)Cu Te O5(H2O), a new mineral with HCP stair-step layers. 5 6 Anthony R. Kampf1,*, Stuart J. Mills2, Robert M. Housley3, George R. Rossman3, Joseph Marty4, 7 and Brent Thorne5 8 9 1Mineral Sciences Department, Natural History Museum of Los Angeles County, 10 900 Exposition Blvd., Los Angeles, CA 90007, U.S.A. 11 2Geosciences, Museum Victoria, GPO Box 666, Melbourne 3001, Victoria, Australia 12 3Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, 13 CA 91125, U.S.A. 14 45199 E. Silver Oak Road, Salt Lake City, UT 84108, U.S.A. 15 53898 S. Newport Circle, Bountiful, UT 84010, U.S.A. 16 *e-mail: [email protected] 17 18 ABSTRACT 2+ 6+ 19 Eckhardite, (Ca,Pb)Cu Te O5(H2O), is a new tellurate mineral from Otto Mountain near Baker, 20 California, U.S.A. It occurs in vugs in quartz in association with Br-rich chlorargyrite, gold, 21 housleyite, khinite, markcooperite, and ottoite. It is interpreted as having formed from the partial 22 oxidation of primary sulfides and tellurides during or following brecciation of quartz veins. 23 Eckhardite is monoclinic, space group P21/n, with unit cell dimensions a = 8.1606(8), b = 24 5.3076(6), c = 11.4412(15) Å, β = 101.549(7)°, V = 485.52(10) Å3, and Z = 4. It forms as needles 25 or blades up to about 150 x 15 x 5 µm in size, typically in radial or sub-radial aggregates, but also 26 as isolated needles. -
Adanite, a New Lead-Tellurite-Sulfate Mineral from the North Star Mine, Tintic, Utah, and Tombstone, Arizona, Usa
403 The Canadian Mineralogist Vol. 58, pp. 403-410 (2020) DOI: 10.3749/canmin.2000010 ADANITE, A NEW LEAD-TELLURITE-SULFATE MINERAL FROM THE NORTH STAR MINE, TINTIC, UTAH, AND TOMBSTONE, ARIZONA, USA § ANTHONY R. KAMPF Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, USA ROBERT M. HOUSLEY AND GEORGE R. ROSSMAN Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA HEXIONG YANG AND ROBERT T. DOWNS Department of Geosciences, University of Arizona, 1040 4th Street, Tucson, Arizona 85721-0077, USA ABSTRACT 4þ Adanite, Pb2(Te O3)(SO4), is a new oxidation-zone mineral from the North Star mine, Tintic district, Juab County, Utah, and from Tombstone, Cochise County, Arizona, USA. The characterization of the species is based principally on North-Star holotype material. Crystals are beige wedge-shaped blades, up to about 1 mm in length, in cockscomb intergrowths. The mineral is transparent with adamantine luster, white streak, Mohs hardness 2½, brittle tenacity, conchoidal fracture, and no cleavage. The calculated density is 6.385 g/cm3. Adanite is biaxial (–), with a ¼ 1.90(1), b ¼ 2.04(calc), c ¼ 2.08(calc), 2V(meas) ¼ 54(1)8. The Raman spectrum is consistent with the presence of tellurite and sulfate groups and the absence of OH 3þ 4þ 6þ and H2O. Electron-microprobe analyses gave the empirical formula Pb1.89Sb 0.02Te 0.98S 1.04Cl0.02O6.98. The mineral is ˚ ˚ 3 monoclinic, space group P21/n, with a ¼7.3830(3), b ¼ 10.7545(5), c ¼9.3517(7) A, b ¼ 111.500(8)8, V ¼690.86(7) A , and Z ¼ ˚ 4. -
A New Mineral from Poзos De Caldas, Minas Gerais
Ñïèñîê ëèòåðàòóðû Ïåêîâ È. Â., Âèíîãðàäîâà Ð. À., ×óêàíîâ Í. Â., Êóëèêîâà È. Ì. Î ìàãíåçèàëüíûõ è êîáàëüòîâûõ àð- ñåíàòàõ ãðóïï ôàéðôèëäèòà è ðîçåëèòà / ÇÂÌÎ. 2001. ¹ 4. Ñ. 10—23. 4+ Burns P. C., Clark C. M., Gault R. A. Juabite, CaCu10(Te O3)4(AsO4)4(OH)2(H2O)4: crystal structure and revision of the chemical formula / Canad. Miner. 2000a. Vol. 38. P. 823—830. Burns P. C., Pluth J. J., Smith J. V., Eng P., Steele I., Housley R. M. Quetzalcoatlite: A new octahed- ral-tetrahedral structure from a 2 % 2 % 40 ìm3 crystal at the Advances Photon Source-GSE-CARS Facility / Amer. Miner. 2000b. Vol. 85. P. 604—607. 4+ 6+ Frost R. L., Keefe E. C. Raman spectroscopic study of kuranakhite PbMn Te O6 — a rare tellurate mi- neral / J. Raman Spectroscopy. 2009. Vol. 40(3). P. 249—252. Grice J. D., Roberts A. C. Frankhawthorneite, a unique HCP framework structure of a cupric tellurate / Canad. Miner. 1995. Vol. 33. P. 823—830. Lam A. E., Groat L. A., Ercit T. S. The crystal structure of dugganite, Pb3Zn3TeAs2O14 / Canad. Miner. 1998. Vol. 36. P. 823—830. Mandarino J. A. The Gladstone—Dale relationship: Part IV. The compatibility concept and its applicati- on / Canad. Miner. 1981. Vol. 19. P. 441—450. Pekov I. V., Jensen M. C., Roberts A. C., Nikischer A. J. A new mineral from an old locality: eurekadum- pite takes seventeen years to characterize / Mineral News. 2010. Vol. 26(2). P. 1—3. Pertlik F. Der Strukturtyp von Emmonsit, {Fe2(TeO3)3$H2O}$xH2O(x = 0—1) / Tschermaks Miner.