The Impact of Psychostimulant Administration During Development on Adult Brain Functions Controlling Motivation, Impulsivity and Cognition

Total Page:16

File Type:pdf, Size:1020Kb

The Impact of Psychostimulant Administration During Development on Adult Brain Functions Controlling Motivation, Impulsivity and Cognition The impact of psychostimulant administration during development on adult brain functions controlling motivation, impulsivity and cognition. Mathieu Di Miceli Thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy. July 2016 Thesis conducted under the supervision of Dr. Benjamin S. Gronier, first supervisor and Dr. Tyra S. Zetterström, second supervisor. Department of Pharmacology, School of Pharmacy, De Montfort University, Leicester, LE1 9BH, United Kingdom Abstract ADHD pharmacotherapy uses methylphenidate (MPH), D-amphetamine (D- amph), two psychostimulants targeting dopamine transporters, or atomoxetine (ATX), specifically targeting norepinephrine transporters. We have assessed the pharmacological mechanisms of these three drugs on the in vitro efflux of neurotransmitters in rat prefrontal cortex (PFC) and striatal slices as well as on the in vivo electrical activities of PFC pyramidal neurons, striatal medium spiny neurons, ventral tegmental area dopamine neurons or dorsal raphe nucleus serotonin neurons, using single cell extracellular electrophysiological recording techniques. We have also tested whether chronic methylphenidate treatment, during either adolescence or adulthood, could have long-lasting consequences on body growth, depression and neuronal functions. Release experiments showed that all ADHD drugs induce dose-dependent dopamine efflux in both the PFC and striatum, with different efficacies, while only D- amph induced cortical norepinephrine efflux. Atomoxetine induced an unexpected massive dopamine outflow in striatal regions, by mechanisms that depend on physiological parameters. Our electrophysiological studies indicate that all three drugs equally stimulate the excitability of PFC pyramidal neurons, in basal and NMDA-evoked conditions, when administered acutely (3 mg/kg). While the electrophysiological effects elicited by psychostimulants may be dependent on D1 receptor activation, those induced by atomoxetine relied on different mechanisms. In the ventral tegmental area (VTA), methylphenidate (2 mg/kg), but not atomoxetine, induced firing and burst activity reductions, through dopamine D2 autoreceptor activation. Reversal of such effects (eticlopride 0.2 mg/kg) revealed an excitatory effect of methylphenidate on midbrain dopamine neurons that appear to be dependent on glutamate pathways and the combination of D1 and alpha-1 receptors. Finally, acute intraperitoneal psychostimulant i injections increased vertical locomotor activity as well as NMDA2B protein expression in the striatum. Some animals chronically treated with intraperitoneal administrations (methylphenidate 4 mg/kg/day or saline 1.2 ml/kg/day) showed decreased body weight gain. Voluntary oral methylphenidate intake induces desensitisation to subsequent intravenous methylphenidate challenges, without altering dopamine D2 receptor plasticity. Significant decreases in striatal NMDA2B protein expression were observed in animals chronically treated. After adolescent MPH treatment, midbrain dopaminergic neurons do not display either desensitisation or sensitisation to intravenous methylphenidate re-challenges. However, partial dopamine D2 receptor desensitisation was observed in midbrain dopamine neurons. Using behavioural experiments, cross-sensitisation between adolescent methylphenidate exposure and later-life D-amphetamine challenge was observed. Significant decreases in striatal NMDA2B protein expression were observed in animals chronically treated, while striatal medium spiny neurons showed decreased sensitivities to locally applied NMDA and dopamine. While caffeine is devoid of action on baseline spike generation and burst activity of dopamine neurons, nicotine induces either firing rate enhancement, firing rate reduction, or has no consequences. Adolescent methylphenidate treatment leads to decreased neuronal sensitivities to the combination of nicotine, MPH and eticlopride, compared to controls. Finally, nicotine partially prevented D-amphetamine-induced increase of rearing activities. Our results show that increases in the excitability of PFC neurons in basal conditions and via NMDA receptor activation may be involved in the therapeutic response to ADHD drugs. Long-term consequences were observed after psychostimulant exposure. Such novel findings strengthen the mixed hypothesis in ADHD, whereby both dopamine and glutamate neurotransmissions are dysregulated. Therefore, ADHD therapy may now focus on adequate balancing between glutamate and dopamine. ii Acknowledgements First I would like to thank De Montfort University for allowing me to follow this Ph-D program, for paying my tuition fees and giving me financial support in the form of a stipend. For the last 3 years, it has been a real pleasure to come to the University and work with such amazing colleagues, to all of whom I express my heartfelt gratitude. I would also like to thank all the members of staff involved in the radioactivity work: Liz O’Brien, for all the help she provided regarding isotope regulations, radioactivity handling as well as laboratory health and safety; Nazmin Juma and Dr. Ketan Ruparelia for their patience in collecting the radioactive waste and pointing out some mistakes they found in my log book entries while doing so. This work could never have been done without technical support from the B.S.U. team, including Anita O’Donoghue, Stephen Bowen (†) and Mike Storer. Their assistance in maintaining high standards within the animal unit has allowed us to save time and effort, but has also had an impact on the quality of work that we were able to perform. I would like to thank all the technicians in room 2.17 for their immense technical support, in particular David Reeder, Amrat Khorana, Claire West, Jo Tonkin and Leonie Hough. By providing gallons of purified water as well as many consumables, this work could not have been done without their almost daily assistance. On more than one occasion, I have found myself thinking about all the animals used during the last 3 years. I would like to emphasis the help they provide by increasing our knowledge in biology and Science. Memento Mori. I would also like to express my gratitude to my second supervisor, Dr. Tyra Zetterström for her support and ideas from start to end of this Ph-D. Last but of great importance, I personally thank my supervisor, Dr. Benjamin Gronier, for his three years of support, his extensive scientific knowledge and for increasing my research skills. Pour tout cela et tout le reste, merci beaucoup ! À ma famille, sans laquelle je n’aurais jamais pu arriver jusqu’au doctorat. iii Abbreviations ADHD Attention Deficit and Hyperactivity Disorder AMPA 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid ATX Atomoxetine BAPTA-AM Bis(aminophenoxy)ethane-N-tetraacetic acid-acetoxymethyl ester CNVs Copy number variation(s) D-amph Dextro-amphetamine oC Degree Celsius DAT Dopamine transporter EC50 Dose inducing 50% of maximum response EPSCs Excitatory post-synaptic currents fMRI Functional magnetic resonance imaging g - kg Gram - kilogram GABA γ-amino-butyric acid GlyT1 Glycine reuptake transporter 1 IC50 Dose inducing 50% of maximum inhibition i.e. id est IPSCs Inhibitory post-synaptic currents KATP ATP-gated potassium channel Ki Inhibitory constant, binding affinity KIR Inwardly rectifying potassium channel Kv1 Voltage-gated potassium channel, family 1 l Litre LTD Long-term depression LTP Long-term potentiation mEq Milliequivalent min Minute ml Millilitre mm Millimetre mM Millimolar MΩ Megaohm iv MPH Methylphenidate ms Millisecond MSN Medium spiny neurons nA Nanoampere NET Norepinephrine transporter nM Nanomolar NMDA N-methyl-D-aspartate % Percentage PFC Prefrontal cortex rpm Rotations per minute s - sec Second SERT Serotonin transporter SHR Spontaneously hypertensive rat SNPs Single nucleotide polymorphism(s) µm Micrometre µM Micromolar VMAT2 Vesicular monoamine transporter 2 VTA Ventral tegmental area v/v Volume to volume ratio w/v Weight to volume ratio v Table of content The impact of psychostimulant administration during development on adult brain functions controlling motivation, impulsivity and cognition. ...................................... i Abstract ............................................................................................................................ i Acknowledgements ........................................................................................................ iii Abbreviations ................................................................................................................. iv Table of content ............................................................................................................. vi Table of figures .............................................................................................................. xi List of tables ................................................................................................................ xvii Introduction .................................................................................................................... 1 ADHD: statistics and symptoms ................................................................................... 1 Aetiology of ADHD ...................................................................................................... 2 Neurotransmitters and brain regions implicated in ADHD .......................................... 4 ADHD drugs pharmacology ........................................................................................
Recommended publications
  • Dextromethorphan Attenuates Sensorineural Hearing Loss in an Animal Model and Population-Based Cohort Study
    International Journal of Environmental Research and Public Health Article Dextromethorphan Attenuates Sensorineural Hearing Loss in an Animal Model and Population-Based Cohort Study Hsin-Chien Chen 1,* , Chih-Hung Wang 1,2 , Wu-Chien Chien 3,4 , Chi-Hsiang Chung 3,4, Cheng-Ping Shih 1, Yi-Chun Lin 1,2, I-Hsun Li 5,6, Yuan-Yung Lin 1,2 and Chao-Yin Kuo 1 1 Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; [email protected] (C.-H.W.); [email protected] (C.-P.S.); [email protected] (Y.-C.L.); [email protected] (Y.-Y.L.); [email protected] (C.-Y.K.) 2 Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan 3 School of Public Health, National Defense Medical Center, Taipei 114, Taiwan; [email protected] (W.-C.C.); [email protected] (C.-H.C.) 4 Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan 5 Department of Pharmacy Practice, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; [email protected] 6 School of Pharmacy, National Defense Medical Center, Taipei 114, Taiwan * Correspondence: [email protected]; Tel.: +886-2-8792-7192; Fax: +886-2-8792-7193 Received: 31 July 2020; Accepted: 28 August 2020; Published: 31 August 2020 Abstract: The effect of dextromethorphan (DXM) use in sensorineural hearing loss (SNHL) has not been fully examined. We conducted an animal model and nationwide retrospective matched-cohort study to explore the association between DXM use and SNHL.
    [Show full text]
  • Journal of Biological Rhythms Official Publication of the Society for Research on Biological Rhythms
    Journal of Biological Rhythms Official Publication of the Society for Research on Biological Rhythms Volume 16, Issue 6 December 2001 EDITORIAL Pebbles of Truth 515 Martin Zatz FEATURE Review Clockless Yeast and the Gears of the Clock: How Do They Mesh? 516 Ruben Baler ARTICLES Resetting of the Circadian Clock by Phytochromes 523 and Cryptochromes in Arabidopsis Marcelo J. Yanovsky, M. Agustina Mazzella, Garry C. Whitelam, and Jorge J. Casal Distinct Pharmacological Mechanisms Leading to c-fos 531 Gene Expression in the Fetal Suprachiasmatic Nucleus Lauren P. Shearman and David R. Weaver Daily Novel Wheel Running Reorganizes and 541 Splits Hamster Circadian Activity Rhythms Michael R. Gorman and Theresa M. Lee Temporal Reorganization of the Suprachiasmatic Nuclei 552 in Hamsters with Split Circadian Rhythms Michael R. Gorman, Steven M. Yellon, and Theresa M. Lee Light-Induced Resetting of the Circadian Pacemaker: 564 Quantitative Analysis of Transient versus Steady-State Phase Shifts Kazuto Watanabe, Tom Deboer, and Johanna H. Meijer Temperature Cycles Induce a Bimodal Activity Pattern in Ruin Lizards: 574 Masking or Clock-Controlled Event? A Seasonal Problem Augusto Foà and Cristiano Bertolucci LETTER Persistence of Masking Responses to Light in Mice Lacking Rods and Cones 585 N. Mrosovsky, Robert J. Lucas, and Russell G. Foster MEETING Eighth Meeting of the Society for Research on Biological Rythms 588 Index 589 Journal of Biological Rhythms Official Publication of the Society for Research on Biological Rhythms EDITOR-IN-CHIEF Martin Zatz FEATURES EDITORS ASSOCIATE EDITORS Larry Morin Michael Hastings SUNY, Stony Brook University of Cambridge Anna Wirz-Justice Ken-Ichi Honma University of Basel Hokkaido Univ School Medicine Michael Young Rockefeller University EDITORIAL BOARD Josephine Arendt Terry Page University of Surrey Vanderbilt University Charles A.
    [Show full text]
  • Nucleus Accumbens Medium Spiny Neurons Subtypes Signal Both Reward and Aversion
    Molecular Psychiatry https://doi.org/10.1038/s41380-019-0484-3 ARTICLE Nucleus accumbens medium spiny neurons subtypes signal both reward and aversion 1,2 1,2,3,4 1,2 1,2 Carina Soares-Cunha ● Nivaldo A. P. de Vasconcelos ● Bárbara Coimbra ● Ana Verónica Domingues ● 1,2 1,2 1,2,5,6 1,2 1,2,7 Joana M. Silva ● Eduardo Loureiro-Campos ● Rita Gaspar ● Ioannis Sotiropoulos ● Nuno Sousa ● Ana João Rodrigues 1,2,7 Received: 25 June 2018 / Revised: 14 May 2019 / Accepted: 20 June 2019 © The Author(s) 2019. This article is published with open access Abstract Deficits in decoding rewarding (and aversive) signals are present in several neuropsychiatric conditions such as depression and addiction, emphasising the importance of studying the underlying neural circuits in detail. One of the key regions of the reward circuit is the nucleus accumbens (NAc). The classical view on the field postulates that NAc dopamine receptor D1- expressing medium spiny neurons (D1-MSNs) convey reward signals, while dopamine receptor D2-expressing MSNs (D2- MSNs) encode aversion. Here, we show that both MSN subpopulations can drive reward and aversion, depending on their 1234567890();,: 1234567890();,: neuronal stimulation pattern. Brief D1- or D2-MSN optogenetic stimulation elicited positive reinforcement and enhanced cocaine conditioning. Conversely, prolonged activation induced aversion, and in the case of D2-MSNs, decreased cocaine conditioning. Brief stimulation was associated with increased ventral tegmenta area (VTA) dopaminergic tone either directly (for D1-MSNs) or indirectly via ventral pallidum (VP) (for D1- and D2-MSNs). Importantly, prolonged stimulation of either MSN subpopulation induced remarkably distinct electrophysiological effects in these target regions.
    [Show full text]
  • A Review of Effective ADHD Treatment Devin Hilla Grand Valley State University, [email protected]
    Grand Valley State University ScholarWorks@GVSU Honors Projects Undergraduate Research and Creative Practice 12-2015 Changing Behavior, Brain Differences, or Both? A Review of Effective ADHD Treatment Devin Hilla Grand Valley State University, [email protected] Follow this and additional works at: http://scholarworks.gvsu.edu/honorsprojects Part of the Medicine and Health Sciences Commons Recommended Citation Hilla, Devin, "Changing Behavior, Brain Differences, or Both? A Review of Effective ADHD Treatment" (2015). Honors Projects. 570. http://scholarworks.gvsu.edu/honorsprojects/570 This Open Access is brought to you for free and open access by the Undergraduate Research and Creative Practice at ScholarWorks@GVSU. It has been accepted for inclusion in Honors Projects by an authorized administrator of ScholarWorks@GVSU. For more information, please contact [email protected]. Running Head: EFFECTIVE ADHD TREATMENT 1 Changing Behavior, Brain Differences, or Both? A Review of Effective ADHD Treatment Devin Hilla Grand Valley State University Honors Senior Thesis EFFECTIVE ADHD TREATMENT 2 Abstract Much debate exists over the proper course of treatment for individuals with attention- deficit/hyperactivity disorder (ADHD). Stimulant medications, such as methylphenidate (e.g., Ritalin) and amphetamine (e.g., Adderall), have been shown to be effective in managing ADHD symptoms. More recently, non-stimulant medications, such as atomoxetine (e.g., Strattera), clonidine (e.g., Kapvay), and guanfacine (e.g., Intuniv), have provided a pharmacological alternative with potentially lesser side effects than stimulants. Behavioral therapies, like behavioral parent training, behavioral classroom management, and behavioral peer interventions, have shown long-term benefits for children with ADHD; however, the success of the short-term management of ADHD symptoms is not as substantial when compared with stimulant medications.
    [Show full text]
  • Modafinil Tablets
    PRODUCT MONOGRAPH INCLUDING PATIENT MEDICATION INFORMATION PrAURO-MODAFINIL Modafinil Tablets 100 mg House Standard Central Nervous System Stimulant Auro Pharma Inc. 3700 Steeles Avenue West, Suite # 402 Date of Revision: Woodbridge, ON, L4L 8K8, August 8, 2019. CANADA Submission Control Number: 230314 Page 1 of 41 Table of Contents PART I: HEALTH PROFESSIONAL INFORMATION ......................................................... 3 SUMMARY PRODUCT INFORMATION .................................................................... 3 INDICATIONS AND CLINICAL USE .......................................................................... 3 CONTRAINDICATIONS ............................................................................................... 4 WARNINGS AND PRECAUTIONS .............................................................................. 4 ADVERSE REACTIONS .............................................................................................. 12 DRUG INTERACTIONS .............................................................................................. 16 DOSAGE AND ADMINISTRATION .......................................................................... 19 OVERDOSAGE ............................................................................................................ 21 ACTION AND CLINICAL PHARMACOLOGY ........................................................ 21 STORAGE AND STABILITY ...................................................................................... 23 DOSAGE FORMS, COMPOSITION AND PACKAGING
    [Show full text]
  • Guidelines for the Forensic Analysis of Drugs Facilitating Sexual Assault and Other Criminal Acts
    Vienna International Centre, PO Box 500, 1400 Vienna, Austria Tel.: (+43-1) 26060-0, Fax: (+43-1) 26060-5866, www.unodc.org Guidelines for the Forensic analysis of drugs facilitating sexual assault and other criminal acts United Nations publication Printed in Austria ST/NAR/45 *1186331*V.11-86331—December 2011 —300 Photo credits: UNODC Photo Library, iStock.com/Abel Mitja Varela Laboratory and Scientific Section UNITED NATIONS OFFICE ON DRUGS AND CRIME Vienna Guidelines for the forensic analysis of drugs facilitating sexual assault and other criminal acts UNITED NATIONS New York, 2011 ST/NAR/45 © United Nations, December 2011. All rights reserved. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. This publication has not been formally edited. Publishing production: English, Publishing and Library Section, United Nations Office at Vienna. List of abbreviations . v Acknowledgements .......................................... vii 1. Introduction............................................. 1 1.1. Background ........................................ 1 1.2. Purpose and scope of the manual ...................... 2 2. Investigative and analytical challenges ....................... 5 3 Evidence collection ...................................... 9 3.1. Evidence collection kits .............................. 9 3.2. Sample transfer and storage........................... 10 3.3. Biological samples and sampling ...................... 11 3.4. Other samples ...................................... 12 4. Analytical considerations .................................. 13 4.1. Substances encountered in DFSA and other DFC cases .... 13 4.2. Procedures and analytical strategy...................... 14 4.3. Analytical methodology .............................. 15 4.4.
    [Show full text]
  • Addictions and the Brain
    9/18/2012 Addictions and the Brain TAAP Conference September 14, 2012 Acknowledgements • La Hacienda Treatment Center • American Society of Addiction Medicine • National Institute of Drug Abuse © 2012 La Hacienda Treatment Center. All rights reserved. 1 9/18/2012 Definition • A primary, progressive biochemical, psychosocial, genetically transmitted chronic disease of relapse who’s hallmarks are denial, loss of control and unmanageability. DSM IV Criteria for dependency: At least 3 of the 7 below 1. Withdrawal 2. Tolerance 3. The substance is taken in larger amounts or over a longer period than was intended. 4. There is a persistent desire or unsuccessful efforts to cut down or control substance use. 5. A great deal of time is spent in activities necessary to obtain the substance, use the substance, or recover from its effects. 6. Important social, occupational, or recreational activities are given up or reduced because of the substance use. 7. The substance use is continued despite knowledge of having a persistent or recurrent physical or psychological problem that is likely to have been caused or exacerbated by the substance. © 2012 La Hacienda Treatment Center. All rights reserved. 2 9/18/2012 Dispute between behavior and disease Present understanding of the Hypothalamus location of the disease hypothesis. © 2012 La Hacienda Treatment Center. All rights reserved. 3 9/18/2012 © 2012 La Hacienda Treatment Center. All rights reserved. 4 9/18/2012 © 2012 La Hacienda Treatment Center. All rights reserved. 5 9/18/2012 Dispute regarding behavior versus disease © 2012 La Hacienda Treatment Center. All rights reserved. 6 9/18/2012 © 2012 La Hacienda Treatment Center.
    [Show full text]
  • Specifications of Approved Drug Compound Library
    Annexure-I : Specifications of Approved drug compound library The compounds should be structurally diverse, medicinally active, and cell permeable Compounds should have rich documentation with structure, Target, Activity and IC50 should be known Compounds which are supplied should have been validated by NMR and HPLC to ensure high purity Each compound should be supplied as 10mM solution in DMSO and at least 100µl of each compound should be supplied. Compounds should be supplied in screw capped vial arranged as 96 well plate format.
    [Show full text]
  • Upregulation of Peroxisome Proliferator-Activated Receptor-Α And
    Upregulation of peroxisome proliferator-activated receptor-α and the lipid metabolism pathway promotes carcinogenesis of ampullary cancer Chih-Yang Wang, Ying-Jui Chao, Yi-Ling Chen, Tzu-Wen Wang, Nam Nhut Phan, Hui-Ping Hsu, Yan-Shen Shan, Ming-Derg Lai 1 Supplementary Table 1. Demographics and clinical outcomes of five patients with ampullary cancer Time of Tumor Time to Age Differentia survival/ Sex Staging size Morphology Recurrence recurrence Condition (years) tion expired (cm) (months) (months) T2N0, 51 F 211 Polypoid Unknown No -- Survived 193 stage Ib T2N0, 2.41.5 58 F Mixed Good Yes 14 Expired 17 stage Ib 0.6 T3N0, 4.53.5 68 M Polypoid Good No -- Survived 162 stage IIA 1.2 T3N0, 66 M 110.8 Ulcerative Good Yes 64 Expired 227 stage IIA T3N0, 60 M 21.81 Mixed Moderate Yes 5.6 Expired 16.7 stage IIA 2 Supplementary Table 2. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of an ampullary cancer microarray using the Database for Annotation, Visualization and Integrated Discovery (DAVID). This table contains only pathways with p values that ranged 0.0001~0.05. KEGG Pathway p value Genes Pentose and 1.50E-04 UGT1A6, CRYL1, UGT1A8, AKR1B1, UGT2B11, UGT2A3, glucuronate UGT2B10, UGT2B7, XYLB interconversions Drug metabolism 1.63E-04 CYP3A4, XDH, UGT1A6, CYP3A5, CES2, CYP3A7, UGT1A8, NAT2, UGT2B11, DPYD, UGT2A3, UGT2B10, UGT2B7 Maturity-onset 2.43E-04 HNF1A, HNF4A, SLC2A2, PKLR, NEUROD1, HNF4G, diabetes of the PDX1, NR5A2, NKX2-2 young Starch and sucrose 6.03E-04 GBA3, UGT1A6, G6PC, UGT1A8, ENPP3, MGAM, SI, metabolism
    [Show full text]
  • Galantamine Potentiates the Neuroprotective Effect of Memantine Against NMDA-Induced Excitotoxicity Joao~ P
    Galantamine potentiates the neuroprotective effect of memantine against NMDA-induced excitotoxicity Joao~ P. Lopes1, Glauco Tarozzo1, Angelo Reggiani1, Daniele Piomelli1,2 & Andrea Cavalli1,3 1D3 – Drug Discovery and Development Department, Istituto Italiano di Tecnologia, Via Morego, 16163, Genova, Italy 2Departments of Anatomy and Neurobiology and Biological Chemistry, University of California, Irvine, CA, 92697-4621 3Department of Pharmacy and Biotechnologies, Alma Mater Studiorum, Bologna University, Via Belmeloro, 40126, Bologna, Italy Keywords Abstract Alzheimer’s disease, drug combination, N NMDA neurotoxicity, NR2B, The combination of memantine, an -methyl-D-aspartate (NMDA) receptor polypharmacology, primary cortical neurons antagonist, with an acetylcholinesterase inhibitor (AChEI) is the current stan- dard of care in Alzheimer’s disease (AD). Galantamine, an AChEI currently Correspondence marketed for the treatment of AD, exerts memory-enhancing and neuroprotec- Andrea Cavalli, D3 – Drug Discovery and tive effects via activation of nicotinic acetylcholine receptors (nAChRs). Here, Development Department, Istituto Italiano we investigated the neuroprotective properties of galantamine in primary cul- di Tecnologia – Via Morego, 30, 16163 tures of rat cortical neurons when given alone or in combination with meman- Genova, Italy. Tel: +39 010 71781530; Fax: +39 010 tine. In agreement with previous findings, we found that memantine was fully 71781228; E-mail: [email protected] effective in reversing NMDA toxicity at concentrations of 2.5 and 5 lmol/L. Galantamine also completely reversed NMDA toxicity at a concentration of Funding Information 5 lmol/L. The a7 and a4b2 nAChR antagonists, methyllycaconitine, and dihy- No funding information provided. dro-b-erythroidine blocked the neuroprotective effect of galantamine, demon- strating the involvement of nAChRs.
    [Show full text]
  • TAK-063, a PDE10A Inhibitor with Balanced Activation of Direct and Indirect Pathways, Provides Potent Antipsychotic-Like Effects in Multiple Paradigms
    Neuropsychopharmacology (2016) 41, 2252–2262 © 2016 American College of Neuropsychopharmacology. All rights reserved 0893-133X/16 www.neuropsychopharmacology.org TAK-063, a PDE10A Inhibitor with Balanced Activation of Direct and Indirect Pathways, Provides Potent Antipsychotic-Like Effects in Multiple Paradigms 1 1 1 1,2 ,1 Kazunori Suzuki , Akina Harada , Hirobumi Suzuki , Maki Miyamoto and Haruhide Kimura* 1 2 CNS Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan; Drug Metabolism and Pharmacokinetics Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan Phosphodiesterase 10A (PDE10A) inhibitors are expected to be novel drugs for schizophrenia through activation of both direct and indirect pathway medium spiny neurons. However, excess activation of the direct pathway by a dopamine D receptor agonist SKF82958 1 canceled antipsychotic-like effects of a dopamine D receptor antagonist haloperidol in methamphetamine (METH)-induced hyperactivity 2 in rats. Thus, balanced activation of these pathways may be critical for PDE10A inhibitors. Current antipsychotics and the novel PDE10A inhibitor TAK-063, but not the selective PDE10A inhibitor MP-10, produced dose-dependent antipsychotic-like effects in METH-induced hyperactivity and prepulse inhibition in rodents. TAK-063 and MP-10 activated the indirect pathway to a similar extent; however, MP-10 caused greater activation of the direct pathway than did TAK-063. Interestingly, the off-rate of TAK-063 from PDE10A in rat brain sections was faster than that of MP-10, and a slower off-rate PDE10A inhibitor with TAK-063-like chemical structure showed an MP-10-like pharmacological profile. In general, faster off-rate enzyme inhibitors are more sensitive than slower off-rate inhibitors to binding inhibition by enzyme substrates.
    [Show full text]
  • [123I]FP-CIT SPECT in Atypical Degenerative Parkinsonism
    CONTRAST AGENT EVALUATION [123I]FP-CIT SPECT in atypical degenerative parkinsonism One of the most widely used techniques to support the clinical diagnosis of Parkinson’s disease is the SPECT scan with [123I]FP-CIT. This tracer binds reversibly and visualizes the striatal presynaptic dopamine transporters. Several uncertainties remain on the value of [123I]FP-CIT and SPECT in atypical degenerative parkinsonian syndromes. In this concise review, we discuss the contribution of SPECT and [123I]FP-CIT in supporting the clinical diagnosis of Parkinson’s disease and their role in the differential diagnosis of Parkinson’s disease and atypical degenerative parkinsonism. The chemistry, pharmacodynamics and pharmacokinetics of [123I]FP-CIT are also discussed. 1,2,3 KEywordS: atypical degenerative parkinsonism n FP-CIT n ioflupane n SPECT Ioannis U Isaias* , Giorgio Marotta4, Gianni Pezzoli2, Parkinson’s disease (PD) is the second most dystonic tremor [15] and psychogenic parkin- Osama Sabri5 [1] [16,17] 5,6 common neurodegenerative disorder , yet sonism . In this concise review, we will & Swen Hesse 123 early accurate diagnosis remains challenging. discuss the role of SPECT and [ I]FP-CIT in 1Università degli Studi di Milano, The estimated prevalence of PD is 0.5–1% in supporting the clinical diagnosis of PD and its Dipartimento di Fisiologia Umana, those aged 65–69 years and 1–3% in those aged differential diagnosis with ADP. Milano, Italy 2Centro per la Malattia di Parkinson e i ≥80 years [1]. Although the clinical diagnosis of Disturbi del Movimento,
    [Show full text]