The Host Marking Pheromone Application on the Management of Fruit Flies - a Review

Total Page:16

File Type:pdf, Size:1020Kb

The Host Marking Pheromone Application on the Management of Fruit Flies - a Review View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) Universidade de São Paulo Biblioteca Digital da Produção Intelectual - BDPI Sem comunidade Scielo 2012 The host marking pheromone application on the management of fruit flies - a review Braz. arch. biol. technol.,v.55,n.6,p.835-842,2012 http://www.producao.usp.br/handle/BDPI/40034 Downloaded from: Biblioteca Digital da Produção Intelectual - BDPI, Universidade de São Paulo 835 Vol.55, n. 6: pp.835-842, November-December 2012 BRAZILIAN ARCHIVES OF ISSN 1516-8913 Printed in Brazil BIOLOGY AND TECHNOLOGY AN INTERNATIONAL JOURNAL The Host Marking Pheromone Application on the Management of Fruit Flies - A Review Márcio Alves Silva 1,2 * Gerane Celly Dias Bezerra-Silva 2and Thiago Mastrangelo 3 1Universidade Estadual do Piauí; 64860-000; Uruçuí - PI - Brasil. 2Departamento de Entomologia e Acarologia; Escola Superior de Agricultura Luiz de Queiroz; Universidade de São Paulo; CP:. 9; 13418-900; Piracicaba - SP - Brasil. 3Centro de Energia Nuclear na Agricultura; Universidade de São Paulo; CP:. 96, 13400-970; Piracicaba – SP - Brasil ABSTRACT The aim of this work was to review the role of the host marking pheromone (HMP) and its application in integrated management programs for the fruit flies. Initially the oviposition behavior of tephritids has been analyzed with emphasis on Ceratitis capitata . The deposition of HMP, which consists in the last stage of the oviposition behavior has been characterized and discussed about evolutive aspects and the biological meaning of the tephritidae communication through the HMP. Finally, the perspectives on the use of HMP in the integrated management of fruit flies have been discussed. Key words: Oviposition behavior, host marking pheromone, oviposition deterring pheromone, IPM, fruit flies INTRODUCTION of “decisions”, which are taken as they cumulate information about the potential host (Prokopy and The fruit flies (FF) belong to the Diptera order Roitberg 1989; Fletcher and Prokopy 1991; Díaz- (which has later wings transformed in halteres), Fleischer et al. 2000; Sugayama and Malavasi, Brachycera suborder (with short antenna, usually 2000). The oviposition behavior has been studied with three segments), Schizophora series (with in several fruit flies species and for the Ceratitis ptilinal fissure), Acalyptratae section (without capitata (Wied.), medfly, it happens in four steps: calyptras) and Tephritidae family (with subcostal arriving the fruit, searching, puncture and drawing nervure turned in angle) (Zucchi 2000). In (Prokopy and Roitberg 1989; Fletcher and Tephritidae family, 4,448 species and subspecies Prokopy 1991). When the female arrives on the are known and organized in 484 genera (Norrbom fruit, she uses, at short distance, visual stimuli and 2008). The genera represented by the species of appraises the fruit about its size, color and shape economic importance are classified in the (Prokopy and Roitberg 1984). The female surveys subfamily Trypetinae, Toxotrypanini tribe all the surface of the fruit during the searching, (Anastrepha and Toxotrypana ) and Carpomyinae touching it with the anterior part of the head, the tribe ( Rhagoletis ) in Dacinae subfamily, labelo and the 7 th sintergosternito (ovipositor). In Ceratitidini tribe ( Ceratitis ) and Dacini tribe that step, she analyses the physical (size and (Bactrocera and Dacus ) (Norrbom 2008). After shape) and chemical properties of the fruit mating on the host plant, fruit flies females show a (Prokopy and Roitberg 1989; Fletcher and sequence of behaviors that are interpreted in terms Prokopy 1991; Yuval and Hendrichs 2000; Díaz- *Author for correspondence: [email protected] Braz. Arch. Biol. Technol. v.55 n.6: pp. 835-842, Nov/Dec 2012 836 Silva, M. A. et al. Fleischer et al. 2000). The female inserts its oviposition. For that species, however, it was aculeus in the fruit pulp, keeping her ovipositor in proved that the marking occurred after oviposition a perpendicular position to the surface (Yuval and (Katsoyannos 1975). A decade later, Hafliger Hendrichs 2000; Díaz-Fleischer et al. 2000). The (1953) was the first to speculate the biological female does not lay eggs obligatory but, in some meaning of the drawing of the ovipositor. He got cases, she removes the aculeus making only the impressed by the fact that rarely more than one puncture (Barros 1986). At last, in the drawing egg of R. cerasi per fruit was found. The author step, the female surveys again the fruit surface, but speculated that the uniformity on the eggs with the aculeus protract. At this point, she lays a dispersion of R. cerasi used to occur due to a fruit pheromone, the host marking pheromone (HMP) marking procedure when the female drew the (Prokopy et al. 1978). The behavior of marking the ovipositor on the surface of the host. Bush (1966) host is an evident and well-studied aspect of the reported that when Rhagoletis species infested oviposition behavior of many tephritids, especially small fruits, more than one larva per fruit was in the species that attack the fruits. In this review, rarely found. This author agreed with Hafliger and the host marking pheromone of fruit flies is suggested that multiple ovipositions were inhibited discussed and some perspectives of its use in by the deposition of the pheromone after integrated management of fruit flies are suggested. oviposition. Experimentally, Prokopy (1972) was the first to demonstrate that fruit flies let a host marking pheromone during the draw of the HOST MARKING BEHAVIOR ovipositor just after the oviposition. The action of marking the oviposition site has Finding a host that is nutritionally suitable and been reported for 23 frugivorous species of the without the presence of competitor organisms genus Anastrepha , Ceratitis and Rhagoletis (Table requires a sophisticated mechanism of detection of 1). On the other hand, the non-host marking has the environmental signals, such as visual, soundly, been reported in Toxotrypana curvicaudata tactile and smelly signals (Chapmann 1998; Dicke Gerstaecker, which is reported to be a species 2000). The oviposition behavior of herbivorous close to Anastrepha . Considering now the insects is often modified by the presence of Bactrocera genus, the drawing of the aculeus conspecifics (eggs and or larvae). Typically, without deposition of HMP has been reported in females avoid laying eggs in the resources already Bactrocera cucurbitae (Coquillett) (Prokopy and explored (Nufio and Papaj 2001). The variation in Koyama 1982), Bactrocera dorsalis (Hendel) the compounds released by the plant related to the (Prokopy et al. 1989) and Bactrocera tryoni damage provoked by the oviposition or by the (Froggatt) and Bactrocera jarvisi (Tryon) (Fitt tissues destroyed by the immature or adults 1984). represent important tools for the intraspecific and Individuals of the Rhagoletis genus that belongs to interspecific recognition (Dicke 2000; Nufio and a group of species that became specialists in small Papaj 2001). However, the fruit flies lay their eggs hosts (e.g., groups of alternata, indifferens and inside the plant structures, provoking a small pomonella ) tend to pledge the host marking visible damage. No evidences of variability in the behavior (Prokopy and Papaj 2000). By contrast, emission of volatiles when the plant is infested flies of the suavis group were observed marking only with the fly eggs are known. In this case, occasionally (Círio 1972; Papaj 1994). Not during the embryonic stage of the plague, surprisely, members of the suavis group often lay additional evidences of conspecific presence are eggs on already infested fruits (Lalonde and necessary to the exploitation of a particular Mangel 1994; Papaj 1993; 1994). There are two resource, what suggests the host marking as such possible explanations for the inconsistence on host evidence. Competition for tephritids is the key marking in the group of suavis species. The first is ecological factor for the evolution of the host related to the host, all the members of the suavis marking pheromone (Díaz-Fleischer et al. 2000). group infest the nuts ( Juglans spp.), a host not Porter (1928) was the first scientist to describe used by other flies of that genus in the North precisely this behavior, observing Rhagoletis America (Prokopy and Papaj 2000). The nuts are pomonella (Walsh). Later, Wiesmann (1937) large, allowing abundant food for the larvae and reported a similar behavior for Rhagoletis cerasi reducing larval competition (Prokopy and Papaj (Linnaeus), suggesting a host marking before the 2000) and the concern to the success of the Braz. Arch. Biol. Technol. v.55 n.6: pp. 835-842, Nov/Dec 2012 The Host Marking Pheromone Application on the Management of Fruit Flies - A Review 837 offspring. The second explanation is about the this mark. It is possible that the host marking by occurrence of host marking behavior by the male. the males replaces the mark of the own females, Papaj et al. (1996) found that the males of leading to a loss or reduction in female marks. Rhagoletis boycei Cresson usually touched the Male marks have been reported for two members host fruit, leaving on it a viscous substance and the of the suavis group, R. boycei and Rhagoletis females preferred to oviposite in the fruits without suavis (Loew) (Díaz-Fleischer et al. 2000). Table 1 – Records for frugivorous species (Diptera: Tephritidae) showing the host marking behavior. Tribe Genus Species Reference A. suspensa Prokopy et al. 1977 A. sororcula Simões et al. 1978 A. fraterculus Prokopy et al. 1982 A. pseudoparallela Poloni and Silva 1986 A. bistrigata Selivon 1991 Toxotrypanini Anastrepha A. grandis Silva 1991 A. ludens Papaj and Aluja 1993 A. striata Aluja et al. 1993 A. obliqua Aluja and Díaz-Fleischer 2006 A. serpentina R. completa Círio 1972 R. pomonnela Prokopy 1972 R. cerasi Katsoyannos 1975 R. fausta Prokopy 1975 R. cingulata R. cornivora Carpomyinae Rhagoletis R. indifferens Prokopy et al. 1976 R. mendax R. tabellaria R.
Recommended publications
  • Context-Dependence and the Development of Push-Pull Approaches for Integrated Management of Drosophila Suzukii
    insects Review Context-Dependence and the Development of Push-Pull Approaches for Integrated Management of Drosophila suzukii 1 1, , 2, , Jeroen T. Alkema , Marcel Dicke * y and Bregje Wertheim * y 1 Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700AA Wageningen, The Netherlands; [email protected] 2 Groningen Institute of Evolutionary Life Sciences, University of Groningen, P.O. Box 11103, 9700 CC Groningen, The Netherlands * Correspondence: [email protected] (M.D.); [email protected] (B.W.) Shared senior authors and corresponding authors. y Received: 13 November 2019; Accepted: 10 December 2019; Published: 15 December 2019 Abstract: Sustainable pest control requires a systems approach, based on a thorough ecological understanding of an agro-ecosystem. Such fundamental understanding provides a basis for developing strategies to manipulate the pest’s behaviour, distribution, and population dynamics, to be employed for crop protection. This review focuses on the fundamental knowledge required for the development of an effective push-pull approach. Push-pull is a strategy to repel a pest from a crop, while attracting it toward an external location. It often relies on infochemicals (e.g., pheromones or allelochemicals) that are relevant in the ecology of the pest insect and can be exploited as lure or repellent. Importantly, responsiveness of insects to infochemicals is dependent on both the insect’s internal physiological state and external environmental conditions. This context-dependency reflects the integration of cues from different sensory modalities, the effect of mating and/or feeding status, as well as diurnal or seasonal rhythms. Furthermore, when the costs of responding to an infochemical outweigh the benefits, resistance can rapidly evolve.
    [Show full text]
  • EGTOP Annex II Draft/Final Report
    EGTOP/2016 EUROPEAN COMMISSION DIRECTORATE-GENERAL FOR AGRICULTURE AND RURAL DEVELOPMENT Directorate B. Multilateral relations, quality policy B.4. Organics Expert Group for Technical Advice on Organic Production EGTOP FINAL REPORT ON PLANT PROTECTION (III) The EGTOP adopted this technical advice at the 13th plenary meeting of 9 – 10 June 2016 and submitted the final version on 26 October 2016 EGTOP/2016 Plant Protection (III) __________________________________________________________________________________ About the setting up of an independent expert panel for technical advice With the Communication from the Commission to the Council and to the European Parliament on a European action plan for organic food and farming adopted in June 2004, the Commission intended to assess the situation and to lay down the basis for policy development, thereby providing an overall strategic vision for the contribution of organic farming to the common agricultural policy. In particular, the European action plan for organic food and farming recommends, in action 11, establishing an independent expert panel for technical advice. The Commission may need technical advice to decide on the authorisation of the use of products, substances and techniques in organic farming and processing, to develop or improve organic production rules and, more in general, for any other matter relating to the area of organic production. By Commission Decision 2009/427/EC of 3 June 2009, the Commission set up the Expert Group for Technical Advice on Organic Production. EGTOP The Group shall provide technical advice on any matter relating to the area of organic production and in particular it must assist the Commission in evaluating products, substances and techniques which can be used in organic production, improving existing rules and developing new production rules and in bringing about an exchange of experience and good practices in the field of organic production.
    [Show full text]
  • Dipterists Forum
    BULLETIN OF THE Dipterists Forum Bulletin No. 76 Autumn 2013 Affiliated to the British Entomological and Natural History Society Bulletin No. 76 Autumn 2013 ISSN 1358-5029 Editorial panel Bulletin Editor Darwyn Sumner Assistant Editor Judy Webb Dipterists Forum Officers Chairman Martin Drake Vice Chairman Stuart Ball Secretary John Kramer Meetings Treasurer Howard Bentley Please use the Booking Form included in this Bulletin or downloaded from our Membership Sec. John Showers website Field Meetings Sec. Roger Morris Field Meetings Indoor Meetings Sec. Duncan Sivell Roger Morris 7 Vine Street, Stamford, Lincolnshire PE9 1QE Publicity Officer Erica McAlister [email protected] Conservation Officer Rob Wolton Workshops & Indoor Meetings Organiser Duncan Sivell Ordinary Members Natural History Museum, Cromwell Road, London, SW7 5BD [email protected] Chris Spilling, Malcolm Smart, Mick Parker Nathan Medd, John Ismay, vacancy Bulletin contributions Unelected Members Please refer to guide notes in this Bulletin for details of how to contribute and send your material to both of the following: Dipterists Digest Editor Peter Chandler Dipterists Bulletin Editor Darwyn Sumner Secretary 122, Link Road, Anstey, Charnwood, Leicestershire LE7 7BX. John Kramer Tel. 0116 212 5075 31 Ash Tree Road, Oadby, Leicester, Leicestershire, LE2 5TE. [email protected] [email protected] Assistant Editor Treasurer Judy Webb Howard Bentley 2 Dorchester Court, Blenheim Road, Kidlington, Oxon. OX5 2JT. 37, Biddenden Close, Bearsted, Maidstone, Kent. ME15 8JP Tel. 01865 377487 Tel. 01622 739452 [email protected] [email protected] Conservation Dipterists Digest contributions Robert Wolton Locks Park Farm, Hatherleigh, Oakhampton, Devon EX20 3LZ Dipterists Digest Editor Tel.
    [Show full text]
  • Diptera: Tephritidae)
    ANNALS OF THE UPPER SILESIAN MUSEUM IN BYTOM ENTOMOLOGY Vol. 28 (online 008): 1–9 ISSN 0867-1966, eISSN 2544-039X (online) Bytom, 17.12.2019 ANDRZEJ PALACZYK1 , ANNA KLASA2, ANDRZEJ SZLACHETKA3 First record in Poland and remarks on the origin of the northern populations of Goniglossum wiedemanni MEIGEN, 1826 (Diptera: Tephritidae) http://doi.org/10.5281/zenodo.3580897 1 Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31–016 Kraków, Poland, e-mail: [email protected] 2 Ojców National Park, 32–045 Sułoszowa, Ojców 9, e-mail: [email protected] 3 Parszowice 81, 59–330 Ścinawa, e-mail: [email protected] Abstract: The fruit fly Goniglossum wiedemanni has been recorded from Poland for the first time. Found in a single locality (Parszowice) in Lower Silesia, this species was recorded in a garden on Bryonia alba. Notes on the identification, biology and remarks on the general distribution and origin of the northern populations of this species are given. Colour photographs of the habitus and live specimens are also provided. Key words: Goniglossum wiedemanni, Carpomyini, species new for Poland, Lower Silesia, general distribution, Bryonia alba. INTRODUCTION Species from the family Tephritidae, the larvae of which develop in fruit, belong to the subfamilies Dacinae and Trypetinae. They occur most numerously in regions with a tropical or subtropical climate, where they pose a serious economic problem: in some areas they give rise to crop losses worth many millions of dollars. In central Europe, there are only a few species whose larvae feed on fruit; they belong exclusively to the tribes Carpomyini and Trypetini from the subfamily Trypetinae.
    [Show full text]
  • Fitness Benefits of the Fruit Fly Rhagoletis Alternata on a Non-Native Rose Host Meijer, Kim; Smit, Christian; Schilthuizen, Menno; Beukeboom, Leo W
    University of Groningen Fitness benefits of the fruit fly Rhagoletis alternata on a non-native rose host Meijer, Kim; Smit, Christian; Schilthuizen, Menno; Beukeboom, Leo W. Published in: Oecologia DOI: 10.1007/s00442-015-3524-y IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2016 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Meijer, K., Smit, C., Schilthuizen, M., & Beukeboom, L. W. (2016). Fitness benefits of the fruit fly Rhagoletis alternata on a non-native rose host. Oecologia, 181(1), 185-192. https://doi.org/10.1007/s00442-015-3524- y Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal.
    [Show full text]
  • Wolbachia-Mitochondrial DNA Associations in Transitional Populations of Rhagoletis Cerasi
    insects Communication Wolbachia-Mitochondrial DNA Associations in Transitional Populations of Rhagoletis cerasi 1, , 1 1, 2, Vid Bakovic * y , Martin Schebeck , Christian Stauffer z and Hannes Schuler z 1 Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences Vienna, BOKU, Peter-Jordan-Strasse 82/I, A-1190 Vienna, Austria; [email protected] (M.S.); christian.stauff[email protected] (C.S.) 2 Faculty of Science and Technology, Free University of Bozen-Bolzano, Universitätsplatz 5, I-39100 Bozen-Bolzano, Italy; [email protected] * Correspondence: [email protected]; Tel.: +43-660-7426-398 Current address: Department of Biology, IFM, University of Linkoping, Olaus Magnus Vag, y 583 30 Linkoping, Sweden. Equally contributing senior authors. z Received: 29 August 2020; Accepted: 3 October 2020; Published: 5 October 2020 Simple Summary: Wolbachia is an endosymbiotic bacterium that infects numerous insects and crustaceans. Its ability to alter the reproduction of hosts results in incompatibilities of differentially infected individuals. Therefore, Wolbachia has been applied to suppress agricultural and medical insect pests. The European cherry fruit fly, Rhagoletis cerasi, is mainly distributed throughout Europe and Western Asia, and is infected with at least five different Wolbachia strains. The strain wCer2 causes incompatibilities between infected males and uninfected females, making it a potential candidate to control R. cerasi. Thus, the prediction of its spread is of practical importance. Like mitochondria, Wolbachia is inherited from mother to offspring, causing associations between mitochondrial DNA and endosymbiont infection. Misassociations, however, can be the result of imperfect maternal transmission, the loss of Wolbachia, or its horizontal transmission from infected to uninfected individuals.
    [Show full text]
  • (Diptera: Tephritidae) Control in Mango
    OPTIMIZATION OF AN INTEGRATED PEST MANAGEMENT PROGRAM FOR FRUIT FLIES (DIPTERA: TEPHRITIDAE) CONTROL IN MANGO: A CASE OF MANICA PROVINCE, MOZAMBIQUE LAURA DA GRAҪA JOSÉ CANHANGA A THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY OF SOKOINE UNIVERSITY OF AGRICULTURE. MOROGORO, TANZANIA. 2018 ii EXTENDED ABSTRACT This study was undertaken to reduce the losses caused by Bactrocera dorsalis (Hendel) in Manica province, Mozambique, through an optimized integrated pest management (IPM) package. It involved interviews with farmers to collect baseline information on awareness of fruit producers regarding fruit fly pests and their management so that an IPM package can be developed based on the farmers’ needs. Additionally, systematic trapping data of B. dorsalis seasonality and damage were collected and economic injury level (EIL) for B. dorsalis was estimated. Based on EIL, the IPM for B. dorsalis control developed in Tanzania by the Sokoine University of Agriculture (SUA IPM) was optimized. The SUA IPM included calendar GF 120 NF bait sprays and orchard sanitation while for the optimized IPM the GF 120 NF was only sprayed in the subplots inside the orchard when the threshold of 30 flies/trap/week was reached. The effectiveness of SUA IPM and its optimized version were also tested. Results showed that fruit flies were the main pest problem in mango and citrus orchards. More than 70% the respondents indicated low fruit quality and increasing volumes of uncommercial zed fruits as consequences of fruit flies infestation. The monetary value of losses reached a value of USD 135,784.8 during 2014/15 mango season.
    [Show full text]
  • Mango Fruit Fly, Ceratitis Cosyra (Walker) (Insecta: Diptera: Tephritidae)1 G
    EENY286 Mango Fruit Fly, Ceratitis cosyra (Walker) (Insecta: Diptera: Tephritidae)1 G. J. Steck2 Introduction Fruit flies known as Ceratitis giffardi Bezzi and Ceratitis sarcocephali (Bezzi) may be the same as C. cosyra, but the The mango fruit fly, Ceratitis cosyra (Walker), is also taxonomy remains ambiguous (De Meyer 1998). commonly known as the marula fruit fly, based on its common occurrence in these host plants. Marula is a native African fruit related to mango and sometimes known Description locally as wild plum. This fly is a serious pest in smallholder Body and wing color yellowish; sides and posterior of tho- and commercial mango across sub-Saharan Africa, where it rax prominently ringed with black spots, dorsum yellowish is more destructive than either the Mediterranean fruit fly except for two tiny black spots centrally and two larger (Medfly; Ceratitis capitata (Wiedemann)) or the Natal fruit black spots near scutellum; scutellum with three wide, black fly (Ceratitis rosa Karsch) (Malio 1979, Labuschagne et al. stripes separated by narrow yellow stripes; wing length 4–6 1996, Javaid 1979, De Lima 1979, Rendell et al. 1995, Lux et mm, costal band and discal crossband joined. Adults are al. 1998). similar in size, coloration, and wing markings to Medfly. However, the thorax of Medfly has much more black, and The fly’s impact is growing along with the more widespread the apex of its scutellum is solid black; the costal band and commercialization of mango. Late maturing varieties of discal crossband of the Medfly wing are not joined. mango suffer most in Zambia (Javaid 1986).
    [Show full text]
  • Fruit Fly (Diptera: Tephritidae) Host Status Determination: Critical Conceptual, Methodological, and Regulatory Considerations∗
    ANRV330-EN53-24 ARI 2 November 2007 18:52 Fruit Fly (Diptera: Tephritidae) Host Status Determination: Critical Conceptual, Methodological, and Regulatory Considerations∗ Martın´ Aluja1 and Robert L. Mangan2 1Instituto de Ecologıa,´ A.C., Xalapa, Veracruz, Mexico;´ email: [email protected] 2Kika de la Garza ARC, USDA-ARS, Weslaco, Texas; email: [email protected] Annu. Rev. Entomol. 2008. 53:473–502 Key Words First published online as a Review in Advance on host plant, oviposition behavior, host range evolution, quarantine September 17, 2007 pest, risk analysis, systems approach The Annual Review of Entomology is online at ento.annualreviews.org Abstract This article’s doi: Although fruit fly host status determination/designation lies at the 10.1146/annurev.ento.53.103106.093350 heart of strategic decisions on national and international trade of Copyright c 2008 by Annual Reviews. fruit and vegetables, all attempts thus far to define host plant sta- All rights reserved by Wageningen UR on 02/01/08. For personal use only. tus have been contentious and as a result long-standing disputes 0066-4170/08/0107-0473$20.00 between commercial partners throughout the world have lingered ∗ The U.S. Government has the right to retain a over decades. Part of the problem is that too little effort has been nonexclusive, royalty-free license in and to any devoted to understanding the underlying mechanisms involved in copyright covering this paper. host plant use by fruit flies and that instead economic and political Annu. Rev. Entomol. 2008.53:473-502. Downloaded from arjournals.annualreviews.org interests usually prevail.
    [Show full text]
  • Molecular Phylogenetics of the Genus Ceratitis (Diptera: Tephritidae)
    Molecular Phylogenetics and Evolution 38 (2006) 216–230 www.elsevier.com/locate/ympev Molecular phylogenetics of the genus Ceratitis (Diptera: Tephritidae) Norman B. Barr ¤, Bruce A. McPheron Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA Received 29 March 2005; revised 3 October 2005; accepted 5 October 2005 Abstract The Afrotropical fruit Xy genus Ceratitis MacLeay is an economically important group that comprises over 89 species, subdivided into six subgenera. Cladistic analyses of morphological and host use characters have produced several phylogenetic hypotheses for the genus. Only monophyly of the subgenera Pardalaspis and Ceratitis (sensu stricto) and polyphyly of the subgenus Ceratalaspis are common to all of these phylogenies. In this study, the hypotheses developed from morphological and host use characters are tested using gene trees pro- duced from DNA sequence data of two mitochondrial genes (cytochrome oxidase I and NADH-dehydrogenase subunit 6) and a nuclear gene (period). Comparison of gene trees indicates the following relationships: the subgenus Pardalaspis is monophyletic, subsection A of the subgenus Pterandrus is monophyletic, the subgenus Pterandrus may be either paraphyletic or polyphyletic, the subgenus Ceratalaspis is polyphyletic, and the subgenus Ceratitis s. s. might not be monophyletic. In addition, the genera Ceratitis and Trirhithrum do not form reciprocally monophyletic clades in the gene trees. Although the data statistically reject monophyly for Trirhithrum under the Shimoda- ira–Hasegawa test, they do not reject monophyly of Ceratitis. 2005 Elsevier Inc. All rights reserved. Keywords: Ceratitis; Trirhithrum; Tephritidae; ND6; COI; period 1. Introduction cies, C. capitata (Wiedemann) (commonly known as the Mediterranean fruit Xy), is already an invasive species The genus Ceratitis MacLeay (Diptera: Tephritidae) with established populations throughout tropical, sub- comprises over 89 Afrotropical species of fruit Xy (De tropical, and mild temperate habitats worldwide (Vera Meyer, 2000a).
    [Show full text]
  • Diptera: Tephritidae: Dacini) of Nepal
    DProceedingsacine fruit offlies the of h nawaiianepal entomological society (2019) 51(2):39–46 39 New Country Records and Annotated Checklist of the Dacine Fruit Flies (Diptera: Tephritidae: Dacini) of Nepal Luc Leblanc1, Bishnu P. Bhandari2, Lok Nath Aryal3, and Sanjaya Bista4 1University of Idaho, Dept. of Entomology, Plant Pathology and Nematology, 875 Perimeter Drive MS 2329, Moscow, Idaho 83844-2329; corresponding author: [email protected] 2University of Hawaii at Manoa. Department of Plant and Environmental Protection Sciences. 3050 Maile Way, Gilmore 310. Honolulu, Hawaii 96822, U.S.A. 3Nepal Agricultural Research Council (NARC), Horticulture Research Station, Malepatan, Pokhara, P.O. Box 01, Kaski, Nepal 4Nepal Agricultural Research Council (NARC), Entomology Division, Khumaltar, Lalitpur. P.O. Box 976, Kathmandu, Nepal Abstract. Preliminary surveys for Dacine fruit flies were carried out in May 2015 and June 2017, with male lure (cue-lure, methyl eugenol, zingerone) traps maintained at 55 sites, (110–1,780 m elevation range), comprised mostly of Nepal Agricultural Research Council research stations. Twenty species were collected, including 11 new country occurrence and 2 new male lure association records. The most common species were fruit pests Bactrocera dorsalis (60.4% of all captures) and B. zonata (15.2%), and cucurbit pests Zeugodacus tau (9.5%) and Z. cucurbitae (8.7%). We present an annotated checklist of the 26 species now known to occur in Nepal, including 5 fruit and 6 cucurbit pests. Introduction Materials and Methods The tribe Dacini is a large and diverse We maintained, for a period of 6–14 group of tropical fruit flies with frugivo- days in June 2017, 50 sets of three traps rous and florivorous larvae, many of which baited with the fruit fly male lures cue- are severe invasive pests that limit com- lure, methyl eugenol, and zingerone.
    [Show full text]
  • Mediterranean Fruit Fly, Ceratitis Capitata (Wiedemann) (Insecta: Diptera: Tephritidae)1 M
    EENY-214 Mediterranean Fruit Fly, Ceratitis capitata (Wiedemann) (Insecta: Diptera: Tephritidae)1 M. C. Thomas, J. B. Heppner, R. E. Woodruff, H. V. Weems, G. J. Steck, and T. R. Fasulo2 Introduction Because of its wide distribution over the world, its ability to tolerate cooler climates better than most other species of The Mediterranean fruit fly, Ceratitis capitata (Wiede- tropical fruit flies, and its wide range of hosts, it is ranked mann), is one of the world’s most destructive fruit pests. first among economically important fruit fly species. Its The species originated in sub-Saharan Africa and is not larvae feed and develop on many deciduous, subtropical, known to be established in the continental United States. and tropical fruits and some vegetables. Although it may be When it has been detected in Florida, California, and Texas, a major pest of citrus, often it is a more serious pest of some especially in recent years, each infestation necessitated deciduous fruits, such as peach, pear, and apple. The larvae intensive and massive eradication and detection procedures feed upon the pulp of host fruits, sometimes tunneling so that the pest did not become established. through it and eventually reducing the whole to a juicy, inedible mass. In some of the Mediterranean countries, only the earlier varieties of citrus are grown, because the flies develop so rapidly that late-season fruits are too heav- ily infested to be marketable. Some areas have had almost 100% infestation in stone fruits. Harvesting before complete maturity also is practiced in Mediterranean areas generally infested with this fruit fly.
    [Show full text]