Correlations Copyright © 2000, 2014, 2016, J
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
04 – Everything You Want to Know About Correlation but Were
EVERYTHING YOU WANT TO KNOW ABOUT CORRELATION BUT WERE AFRAID TO ASK F R E D K U O 1 MOTIVATION • Correlation as a source of confusion • Some of the confusion may arise from the literary use of the word to convey dependence as most people use “correlation” and “dependence” interchangeably • The word “correlation” is ubiquitous in cost/schedule risk analysis and yet there are a lot of misconception about it. • A better understanding of the meaning and derivation of correlation coefficient, and what it truly measures is beneficial for cost/schedule analysts. • Many times “true” correlation is not obtainable, as will be demonstrated in this presentation, what should the risk analyst do? • Is there any other measures of dependence other than correlation? • Concordance and Discordance • Co-monotonicity and Counter-monotonicity • Conditional Correlation etc. 2 CONTENTS • What is Correlation? • Correlation and dependence • Some examples • Defining and Estimating Correlation • How many data points for an accurate calculation? • The use and misuse of correlation • Some example • Correlation and Cost Estimate • How does correlation affect cost estimates? • Portfolio effect? • Correlation and Schedule Risk • How correlation affect schedule risks? • How Shall We Go From Here? • Some ideas for risk analysis 3 POPULARITY AND SHORTCOMINGS OF CORRELATION • Why Correlation Is Popular? • Correlation is a natural measure of dependence for a Multivariate Normal Distribution (MVN) and the so-called elliptical family of distributions • It is easy to calculate analytically; we only need to calculate covariance and variance to get correlation • Correlation and covariance are easy to manipulate under linear operations • Correlation Shortcomings • Variances of R.V. -
11. Correlation and Linear Regression
11. Correlation and linear regression The goal in this chapter is to introduce correlation and linear regression. These are the standard tools that statisticians rely on when analysing the relationship between continuous predictors and continuous outcomes. 11.1 Correlations In this section we’ll talk about how to describe the relationships between variables in the data. To do that, we want to talk mostly about the correlation between variables. But first, we need some data. 11.1.1 The data Table 11.1: Descriptive statistics for the parenthood data. variable min max mean median std. dev IQR Dan’s grumpiness 41 91 63.71 62 10.05 14 Dan’s hours slept 4.84 9.00 6.97 7.03 1.02 1.45 Dan’s son’s hours slept 3.25 12.07 8.05 7.95 2.07 3.21 ............................................................................................ Let’s turn to a topic close to every parent’s heart: sleep. The data set we’ll use is fictitious, but based on real events. Suppose I’m curious to find out how much my infant son’s sleeping habits affect my mood. Let’s say that I can rate my grumpiness very precisely, on a scale from 0 (not at all grumpy) to 100 (grumpy as a very, very grumpy old man or woman). And lets also assume that I’ve been measuring my grumpiness, my sleeping patterns and my son’s sleeping patterns for - 251 - quite some time now. Let’s say, for 100 days. And, being a nerd, I’ve saved the data as a file called parenthood.csv. -
Chapter 8 Example
Chapter 8 Example Frequency Table Time spent travelling to school – to the nearest 5 minutes (Sample of Y7s) Time Frequency Per cent Valid per cent Cumulative per cent 5.00 4 7.4 7.4 7.4 10.00 10 18.5 18.5 25.9 15.00 20 37.0 37.0 63.0 Valid 20.00 15 27.8 27.8 90.7 25.00 3 5.6 5.6 96.3 35.00 2 3.7 3.7 100.0 Total 54 100.0 100.0 Using Pie Charts Pie chart showing relationship of something to a whole Children's Food Preferences Other 28% Chips 72% Ö © Mark O’Hara, Caron Carter, Pam Dewis, Janet Kay and Jonathan Wainwright 2011 O’Hara, M., Carter, C., Dewis, P., Kay, J., and Wainwright, J. (2011) Successful Dissertations. London: Continuum. Pie chart showing relationship of something to other categories Children's Food Preferences Fruit Ice Cream 2% 2% Biscuits 3% Pasta 11% Pizza 10% Chips 72% Using Bar Charts and Histograms Bar chart Mode of Travel to School (Y7s) 14 12 10 8 6 mode of travel 4 2 0 walk car bus cycle other Ö © Mark O’Hara, Caron Carter, Pam Dewis, Janet Kay and Jonathan Wainwright 2011 O’Hara, M., Carter, C., Dewis, P., Kay, J., and Wainwright, J. (2011) Successful Dissertations. London: Continuum. Histogram Number of students 50 40 30 20 10 0 0204060 80 100 Score on final exam (maximum possible = 100) Median and Mean The median and mean of these two sets of numbers is clearly 50, but the spread can be seen to differ markedly 48 49 50 51 52 30 40 50 60 70 © Mark O’Hara, Caron Carter, Pam Dewis, Janet Kay and Jonathan Wainwright 2011 O’Hara, M., Carter, C., Dewis, P., Kay, J., and Wainwright, J. -
Construct Validity and Reliability of the Work Environment Assessment Instrument WE-10
International Journal of Environmental Research and Public Health Article Construct Validity and Reliability of the Work Environment Assessment Instrument WE-10 Rudy de Barros Ahrens 1,*, Luciana da Silva Lirani 2 and Antonio Carlos de Francisco 3 1 Department of Business, Faculty Sagrada Família (FASF), Ponta Grossa, PR 84010-760, Brazil 2 Department of Health Sciences Center, State University Northern of Paraná (UENP), Jacarezinho, PR 86400-000, Brazil; [email protected] 3 Department of Industrial Engineering and Post-Graduation in Production Engineering, Federal University of Technology—Paraná (UTFPR), Ponta Grossa, PR 84017-220, Brazil; [email protected] * Correspondence: [email protected] Received: 1 September 2020; Accepted: 29 September 2020; Published: 9 October 2020 Abstract: The purpose of this study was to validate the construct and reliability of an instrument to assess the work environment as a single tool based on quality of life (QL), quality of work life (QWL), and organizational climate (OC). The methodology tested the construct validity through Exploratory Factor Analysis (EFA) and reliability through Cronbach’s alpha. The EFA returned a Kaiser–Meyer–Olkin (KMO) value of 0.917; which demonstrated that the data were adequate for the factor analysis; and a significant Bartlett’s test of sphericity (χ2 = 7465.349; Df = 1225; p 0.000). ≤ After the EFA; the varimax rotation method was employed for a factor through commonality analysis; reducing the 14 initial factors to 10. Only question 30 presented commonality lower than 0.5; and the other questions returned values higher than 0.5 in the commonality analysis. Regarding the reliability of the instrument; all of the questions presented reliability as the values varied between 0.953 and 0.956. -
14: Correlation
14: Correlation Introduction | Scatter Plot | The Correlational Coefficient | Hypothesis Test | Assumptions | An Additional Example Introduction Correlation quantifies the extent to which two quantitative variables, X and Y, “go together.” When high values of X are associated with high values of Y, a positive correlation exists. When high values of X are associated with low values of Y, a negative correlation exists. Illustrative data set. We use the data set bicycle.sav to illustrate correlational methods. In this cross-sectional data set, each observation represents a neighborhood. The X variable is socioeconomic status measured as the percentage of children in a neighborhood receiving free or reduced-fee lunches at school. The Y variable is bicycle helmet use measured as the percentage of bicycle riders in the neighborhood wearing helmets. Twelve neighborhoods are considered: X Y Neighborhood (% receiving reduced-fee lunch) (% wearing bicycle helmets) Fair Oaks 50 22.1 Strandwood 11 35.9 Walnut Acres 2 57.9 Discov. Bay 19 22.2 Belshaw 26 42.4 Kennedy 73 5.8 Cassell 81 3.6 Miner 51 21.4 Sedgewick 11 55.2 Sakamoto 2 33.3 Toyon 19 32.4 Lietz 25 38.4 Three are twelve observations (n = 12). Overall, = 30.83 and = 30.883. We want to explore the relation between socioeconomic status and the use of bicycle helmets. It should be noted that an outlier (84, 46.6) has been removed from this data set so that we may quantify the linear relation between X and Y. Page 14.1 (C:\data\StatPrimer\correlation.wpd) Scatter Plot The first step is create a scatter plot of the data. -
CORRELATION COEFFICIENTS Ice Cream and Crimedistribute Difficulty Scale ☺ ☺ (Moderately Hard)Or
5 COMPUTING CORRELATION COEFFICIENTS Ice Cream and Crimedistribute Difficulty Scale ☺ ☺ (moderately hard)or WHAT YOU WILLpost, LEARN IN THIS CHAPTER • Understanding what correlations are and how they work • Computing a simple correlation coefficient • Interpretingcopy, the value of the correlation coefficient • Understanding what other types of correlations exist and when they notshould be used Do WHAT ARE CORRELATIONS ALL ABOUT? Measures of central tendency and measures of variability are not the only descrip- tive statistics that we are interested in using to get a picture of what a set of scores 76 Copyright ©2020 by SAGE Publications, Inc. This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher. Chapter 5 ■ Computing Correlation Coefficients 77 looks like. You have already learned that knowing the values of the one most repre- sentative score (central tendency) and a measure of spread or dispersion (variability) is critical for describing the characteristics of a distribution. However, sometimes we are as interested in the relationship between variables—or, to be more precise, how the value of one variable changes when the value of another variable changes. The way we express this interest is through the computation of a simple correlation coefficient. For example, what’s the relationship between age and strength? Income and years of education? Memory skills and amount of drug use? Your political attitudes and the attitudes of your parents? A correlation coefficient is a numerical index that reflects the relationship or asso- ciation between two variables. The value of this descriptive statistic ranges between −1.00 and +1.00. -
Measures of Association for Contingency Tables
Newsom Psy 525/625 Categorical Data Analysis, Spring 2021 1 Measures of Association for Contingency Tables The Pearson chi-squared statistic and related significance tests provide only part of the story of contingency table results. Much more can be gleaned from contingency tables than just whether the results are different from what would be expected due to chance (Kline, 2013). For many data sets, the sample size will be large enough that even small departures from expected frequencies will be significant. And, for other data sets, we may have low power to detect significance. We therefore need to know more about the strength of the magnitude of the difference between the groups or the strength of the relationship between the two variables. Phi The most common measure of magnitude of effect for two binary variables is the phi coefficient. Phi can take on values between -1.0 and 1.0, with 0.0 representing complete independence and -1.0 or 1.0 representing a perfect association. In probability distribution terms, the joint probabilities for the cells will be equal to the product of their respective marginal probabilities, Pn( ij ) = Pn( i++) Pn( j ) , only if the two variables are independent. The formula for phi is often given in terms of a shortcut notation for the frequencies in the four cells, called the fourfold table. Azen and Walker Notation Fourfold table notation n11 n12 A B n21 n22 C D The equation for computing phi is a fairly simple function of the cell frequencies, with a cross- 1 multiplication and subtraction of the two sets of diagonal cells in the numerator. -
2 X 2 Contingency Chi-Square
Newsom Psy 522/622 Multiple Regression and Multivariate Quantitative Methods, Winter 2021 1 2 X 2 Contingency Chi-square The 2 X 2 contingency chi-square is used for the comparison of two groups with a dichotomous dependent variable. We might compare males and females on a yes/no response scale, for instance. The contingency chi-square is based on the same principles as the simple chi-square analysis in which we examine the expected vs. the observed frequencies. The computation is quite similar, except that the estimate of the expected frequency is a little harder to determine. Let’s use the Quinnipiac University poll data to examine the extent to which independents (non-party affiliated voters) support Biden and Trump.1 Here are the frequencies: Trump Biden Party affiliated 338 363 701 Independent 125 156 281 463 519 982 To answer the question whether Biden or Trump have a higher proportion of independent voters, we are making a comparison of the proportion of Biden supporters who are independents, 156/519 = .30, or 30.0%, to the proportion of Trump supporters who are independents, 125/463 = .27, or 27.0%. So, the table appears to suggest that Biden's supporters are more likely to be independents then Trump's supporters. Notice that this is a comparison of the conditional proportions, which correspond to column percentages in cross-tabulation 2 output. First, we need to compute the expected frequencies for each cell. R1 is the frequency for row 1, C1 is the frequency for row 2, and N is the total sample size. -
The Modification of the Phi-Coefficient Reducing Its Dependence on The
c Metho ds of Psychological Research Online 1997, Vol.2, No.1 1998 Pabst Science Publishers Internet: http://www.pabst-publishers.de/mpr/ The Mo di cation of the Phi-co ecient Reducing its Dep endence on the Marginal Distributions Peter V. Zysno Abstract The Phi-co ecient is a well known measure of correlation for dichotomous variables. It is worthy of remark, that the extreme values 1 only o ccur in the case of consistent resp onses and symmetric marginal frequencies. Con- sequently low correlations may be due to either inconsistent data, unequal resp onse frequencies or b oth. In order to overcome this somewhat confusing situation various alternative prop osals were made, which generally, remained rather unsatisfactory. Here, rst of all a system has b een develop ed in order to evaluate these measures. Only one of the well-known co ecients satis es the underlying demands. According to the criteria, the Phi-co ecientisac- companied by a formally similar mo di cation, which is indep endent of the marginal frequency distributions. Based on actual data b oth of them can b e easily computed. If the original data are not available { as usual in publica- tions { but the intercorrelations and resp onse frequencies of the variables are, then the grades of asso ciation for assymmetric distributions can b e calculated subsequently. Keywords: Phi-co ecient, indep endent marginal distributions, dichotomous variables 1 Intro duction In the b eginning of this century the Phi-co ecientYule 1912 was develop ed as a correlational measure for dichotomous variables. Its essential features can b e quickly outlined. -
Basic ES Computations, P. 1 BASIC EFFECT SIZE GUIDE with SPSS
Basic ES Computations, p. 1 BASIC EFFECT SIZE GUIDE WITH SPSS AND SAS SYNTAX Gregory J. Meyer, Robert E. McGrath, and Robert Rosenthal Last updated January 13, 2003 Pending: 1. Formulas for repeated measures/paired samples. (d = r / sqrt(1-r^2) 2. Explanation of 'set aside' lambda weights of 0 when computing focused contrasts. 3. Applications to multifactor designs. SECTION I: COMPUTING EFFECT SIZES FROM RAW DATA. I-A. The Pearson Correlation as the Effect Size I-A-1: Calculating Pearson's r From a Design With a Dimensional Variable and a Dichotomous Variable (i.e., a t-Test Design). I-A-2: Calculating Pearson's r From a Design With Two Dichotomous Variables (i.e., a 2 x 2 Chi-Square Design). I-A-3: Calculating Pearson's r From a Design With a Dimensional Variable and an Ordered, Multi-Category Variable (i.e., a Oneway ANOVA Design). I-A-4: Calculating Pearson's r From a Design With One Variable That Has 3 or More Ordered Categories and One Variable That Has 2 or More Ordered Categories (i.e., an Omnibus Chi-Square Design with df > 1). I-B. Cohen's d as the Effect Size I-B-1: Calculating Cohen's d From a Design With a Dimensional Variable and a Dichotomous Variable (i.e., a t-Test Design). SECTION II: COMPUTING EFFECT SIZES FROM THE OUTPUT OF STATISTICAL TESTS AND TRANSLATING ONE EFFECT SIZE TO ANOTHER. II-A. The Pearson Correlation as the Effect Size II-A-1: Pearson's r From t-Test Output Comparing Means Across Two Groups. -
Robust Approximations to the Non-Null Distribution of the Product Moment Correlation Coefficient I: the Phi Coefficient
DOCUMENT RESUME ED 330 706 TM 016 274 AUTHOR Edwards, Lynne K.; Meyers, Sarah A. TITLE Robust Approximations to the Non-Null Distribution of the Product Moment Correlation Coefficient I: The Phi Coefficient. SPONS AGENCY Minnesota Supercomputer Inst. PUB DATE Apr 91 NOTE 18p.; Paper presented at the Annual Meeting of the American Educational Research Association (Chicago, IL, April 3-7, 1991). PUB TYPE Reports - Evaluative/Feasibility (142) -- Speeches/Conference Papers (150) EDRS PRICE MF01/PC01 Plus Postage. DESCRI2TORS *Computer Simulation; *Correlation; Educational Research; *Equations (Mathematics); Estimation (Mathematics); *Mathematical Models; Psychological Studies; *Robustness (Statistics) IDENTIFIERS *Apprv.amation (Statistics); Nonnull Hypothesis; *Phi Coefficient; Product Moment Correlation Coefficient ABSTRACT Correlation coefficients are frequently reported in educational and psychological research. The robustnessproperties and optimality among practical approximations when phi does not equal0 with moderate sample sizes are not well documented. Threemajor approximations and their variations are examined: (1) a normal approximation of Fisher's 2, N(sub 1)(R. A. Fisher, 1915); (2)a student's t based approximation, t(sub 1)(H. C. Kraemer, 1973; A. Samiuddin, 1970), which replaces for each sample size thepopulation phi with phi*, the median of the distribution ofr (the product moment correlation); (3) a normal approximation, N(sub6) (H.C. Kraemer, 1980) that incorporates the kurtosis of the Xdistribution; and (4) five variations--t(sub2), t(sub 1)', N(sub 3), N(sub4),and N(sub4)'--on the aforementioned approximations. N(sub 1)was fcund to be most appropriate, although N(sub 6) always producedthe shortest confidence intervals for a non-null hypothesis. All eight approximations resulted in positively biased rejection ratesfor large absolute values of phi; however, for some conditionswith low values of phi with heteroscedasticity andnon-zero kurtosis, they resulted in the negatively biased empirical rejectionrates. -
Testing Statistical Assumptions in Research Dedicated to My Wife Haripriya Children Prachi-Ashish and Priyam, –J.P.Verma
Testing Statistical Assumptions in Research Dedicated to My wife Haripriya children Prachi-Ashish and Priyam, –J.P.Verma My wife, sweet children, parents, all my family and colleagues. – Abdel-Salam G. Abdel-Salam Testing Statistical Assumptions in Research J. P. Verma Lakshmibai National Institute of Physical Education Gwalior, India Abdel-Salam G. Abdel-Salam Qatar University Doha, Qatar This edition first published 2019 © 2019 John Wiley & Sons, Inc. IBM, the IBM logo, ibm.com, and SPSS are trademarks or registered trademarks of International Business Machines Corporation, registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at “IBM Copyright and trademark information” at www.ibm.com/legal/ copytrade.shtml All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law.Advice on how to obtain permision to reuse material from this title is available at http://www.wiley.com/go/permissions. The right of J. P. Verma and Abdel-Salam G. Abdel-Salam to be identified as the authors of this work has been asserted in accordance with law. Registered Offices John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA Editorial Office 111 River Street, Hoboken, NJ 07030, USA For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com. Wiley also publishes its books in a variety of electronic formats and by print-on-demand.