Basic ES Computations, P. 1 BASIC EFFECT SIZE GUIDE with SPSS
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
UCLA STAT 13 Comparison of Two Independent Samples
UCLA STAT 13 Introduction to Statistical Methods for the Life and Health Sciences Comparison of Two Instructor: Ivo Dinov, Independent Samples Asst. Prof. of Statistics and Neurology Teaching Assistants: Fred Phoa, Kirsten Johnson, Ming Zheng & Matilda Hsieh University of California, Los Angeles, Fall 2005 http://www.stat.ucla.edu/~dinov/courses_students.html Slide 1 Stat 13, UCLA, Ivo Dinov Slide 2 Stat 13, UCLA, Ivo Dinov Comparison of Two Independent Samples Comparison of Two Independent Samples z Many times in the sciences it is useful to compare two groups z Two Approaches for Comparison Male vs. Female Drug vs. Placebo Confidence Intervals NC vs. Disease we already know something about CI’s Hypothesis Testing Q: Different? this will be new µ µ z What seems like a reasonable way to 1 y 2 y2 σ 1 σ 1 s 2 compare two groups? 1 s2 z What parameter are we trying to estimate? Population 1 Sample 1 Population 2 Sample 2 Size n1 Size n2 Slide 3 Stat 13, UCLA, Ivo Dinov Slide 4 Stat 13, UCLA, Ivo Dinov − Comparison of Two Independent Samples Standard Error of y1 y2 y µ y − y µ − µ z RECALL: The sampling distribution of was centered at , z We know 1 2 estimates 1 2 and had a standard deviation of σ n z What we need to describe next is the precision of our estimate, SE()− y1 y2 − z We’ll start by describing the sampling distribution of y1 y2 Mean: µ1 – µ2 Standard deviation of σ 2 σ 2 s 2 s 2 1 + 2 = 1 + 2 = 2 + 2 SE()y − y SE1 SE2 n1 n2 1 2 n1 n2 z What seems like appropriate estimates for these quantities? Slide 5 Stat 13, UCLA, Ivo Dinov Slide 6 Stat 13, UCLA, Ivo Dinov 1 − − Standard Error of y1 y2 Standard Error of y1 y2 Example: A study is conducted to quantify the benefits of a new Example: Cholesterol medicine (cont’) cholesterol lowering medication. -
Chapter 8 Example
Chapter 8 Example Frequency Table Time spent travelling to school – to the nearest 5 minutes (Sample of Y7s) Time Frequency Per cent Valid per cent Cumulative per cent 5.00 4 7.4 7.4 7.4 10.00 10 18.5 18.5 25.9 15.00 20 37.0 37.0 63.0 Valid 20.00 15 27.8 27.8 90.7 25.00 3 5.6 5.6 96.3 35.00 2 3.7 3.7 100.0 Total 54 100.0 100.0 Using Pie Charts Pie chart showing relationship of something to a whole Children's Food Preferences Other 28% Chips 72% Ö © Mark O’Hara, Caron Carter, Pam Dewis, Janet Kay and Jonathan Wainwright 2011 O’Hara, M., Carter, C., Dewis, P., Kay, J., and Wainwright, J. (2011) Successful Dissertations. London: Continuum. Pie chart showing relationship of something to other categories Children's Food Preferences Fruit Ice Cream 2% 2% Biscuits 3% Pasta 11% Pizza 10% Chips 72% Using Bar Charts and Histograms Bar chart Mode of Travel to School (Y7s) 14 12 10 8 6 mode of travel 4 2 0 walk car bus cycle other Ö © Mark O’Hara, Caron Carter, Pam Dewis, Janet Kay and Jonathan Wainwright 2011 O’Hara, M., Carter, C., Dewis, P., Kay, J., and Wainwright, J. (2011) Successful Dissertations. London: Continuum. Histogram Number of students 50 40 30 20 10 0 0204060 80 100 Score on final exam (maximum possible = 100) Median and Mean The median and mean of these two sets of numbers is clearly 50, but the spread can be seen to differ markedly 48 49 50 51 52 30 40 50 60 70 © Mark O’Hara, Caron Carter, Pam Dewis, Janet Kay and Jonathan Wainwright 2011 O’Hara, M., Carter, C., Dewis, P., Kay, J., and Wainwright, J. -
Measures of Association for Contingency Tables
Newsom Psy 525/625 Categorical Data Analysis, Spring 2021 1 Measures of Association for Contingency Tables The Pearson chi-squared statistic and related significance tests provide only part of the story of contingency table results. Much more can be gleaned from contingency tables than just whether the results are different from what would be expected due to chance (Kline, 2013). For many data sets, the sample size will be large enough that even small departures from expected frequencies will be significant. And, for other data sets, we may have low power to detect significance. We therefore need to know more about the strength of the magnitude of the difference between the groups or the strength of the relationship between the two variables. Phi The most common measure of magnitude of effect for two binary variables is the phi coefficient. Phi can take on values between -1.0 and 1.0, with 0.0 representing complete independence and -1.0 or 1.0 representing a perfect association. In probability distribution terms, the joint probabilities for the cells will be equal to the product of their respective marginal probabilities, Pn( ij ) = Pn( i++) Pn( j ) , only if the two variables are independent. The formula for phi is often given in terms of a shortcut notation for the frequencies in the four cells, called the fourfold table. Azen and Walker Notation Fourfold table notation n11 n12 A B n21 n22 C D The equation for computing phi is a fairly simple function of the cell frequencies, with a cross- 1 multiplication and subtraction of the two sets of diagonal cells in the numerator. -
2 X 2 Contingency Chi-Square
Newsom Psy 522/622 Multiple Regression and Multivariate Quantitative Methods, Winter 2021 1 2 X 2 Contingency Chi-square The 2 X 2 contingency chi-square is used for the comparison of two groups with a dichotomous dependent variable. We might compare males and females on a yes/no response scale, for instance. The contingency chi-square is based on the same principles as the simple chi-square analysis in which we examine the expected vs. the observed frequencies. The computation is quite similar, except that the estimate of the expected frequency is a little harder to determine. Let’s use the Quinnipiac University poll data to examine the extent to which independents (non-party affiliated voters) support Biden and Trump.1 Here are the frequencies: Trump Biden Party affiliated 338 363 701 Independent 125 156 281 463 519 982 To answer the question whether Biden or Trump have a higher proportion of independent voters, we are making a comparison of the proportion of Biden supporters who are independents, 156/519 = .30, or 30.0%, to the proportion of Trump supporters who are independents, 125/463 = .27, or 27.0%. So, the table appears to suggest that Biden's supporters are more likely to be independents then Trump's supporters. Notice that this is a comparison of the conditional proportions, which correspond to column percentages in cross-tabulation 2 output. First, we need to compute the expected frequencies for each cell. R1 is the frequency for row 1, C1 is the frequency for row 2, and N is the total sample size. -
The Modification of the Phi-Coefficient Reducing Its Dependence on The
c Metho ds of Psychological Research Online 1997, Vol.2, No.1 1998 Pabst Science Publishers Internet: http://www.pabst-publishers.de/mpr/ The Mo di cation of the Phi-co ecient Reducing its Dep endence on the Marginal Distributions Peter V. Zysno Abstract The Phi-co ecient is a well known measure of correlation for dichotomous variables. It is worthy of remark, that the extreme values 1 only o ccur in the case of consistent resp onses and symmetric marginal frequencies. Con- sequently low correlations may be due to either inconsistent data, unequal resp onse frequencies or b oth. In order to overcome this somewhat confusing situation various alternative prop osals were made, which generally, remained rather unsatisfactory. Here, rst of all a system has b een develop ed in order to evaluate these measures. Only one of the well-known co ecients satis es the underlying demands. According to the criteria, the Phi-co ecientisac- companied by a formally similar mo di cation, which is indep endent of the marginal frequency distributions. Based on actual data b oth of them can b e easily computed. If the original data are not available { as usual in publica- tions { but the intercorrelations and resp onse frequencies of the variables are, then the grades of asso ciation for assymmetric distributions can b e calculated subsequently. Keywords: Phi-co ecient, indep endent marginal distributions, dichotomous variables 1 Intro duction In the b eginning of this century the Phi-co ecientYule 1912 was develop ed as a correlational measure for dichotomous variables. Its essential features can b e quickly outlined. -
Robust Approximations to the Non-Null Distribution of the Product Moment Correlation Coefficient I: the Phi Coefficient
DOCUMENT RESUME ED 330 706 TM 016 274 AUTHOR Edwards, Lynne K.; Meyers, Sarah A. TITLE Robust Approximations to the Non-Null Distribution of the Product Moment Correlation Coefficient I: The Phi Coefficient. SPONS AGENCY Minnesota Supercomputer Inst. PUB DATE Apr 91 NOTE 18p.; Paper presented at the Annual Meeting of the American Educational Research Association (Chicago, IL, April 3-7, 1991). PUB TYPE Reports - Evaluative/Feasibility (142) -- Speeches/Conference Papers (150) EDRS PRICE MF01/PC01 Plus Postage. DESCRI2TORS *Computer Simulation; *Correlation; Educational Research; *Equations (Mathematics); Estimation (Mathematics); *Mathematical Models; Psychological Studies; *Robustness (Statistics) IDENTIFIERS *Apprv.amation (Statistics); Nonnull Hypothesis; *Phi Coefficient; Product Moment Correlation Coefficient ABSTRACT Correlation coefficients are frequently reported in educational and psychological research. The robustnessproperties and optimality among practical approximations when phi does not equal0 with moderate sample sizes are not well documented. Threemajor approximations and their variations are examined: (1) a normal approximation of Fisher's 2, N(sub 1)(R. A. Fisher, 1915); (2)a student's t based approximation, t(sub 1)(H. C. Kraemer, 1973; A. Samiuddin, 1970), which replaces for each sample size thepopulation phi with phi*, the median of the distribution ofr (the product moment correlation); (3) a normal approximation, N(sub6) (H.C. Kraemer, 1980) that incorporates the kurtosis of the Xdistribution; and (4) five variations--t(sub2), t(sub 1)', N(sub 3), N(sub4),and N(sub4)'--on the aforementioned approximations. N(sub 1)was fcund to be most appropriate, although N(sub 6) always producedthe shortest confidence intervals for a non-null hypothesis. All eight approximations resulted in positively biased rejection ratesfor large absolute values of phi; however, for some conditionswith low values of phi with heteroscedasticity andnon-zero kurtosis, they resulted in the negatively biased empirical rejectionrates. -
Testing Statistical Assumptions in Research Dedicated to My Wife Haripriya Children Prachi-Ashish and Priyam, –J.P.Verma
Testing Statistical Assumptions in Research Dedicated to My wife Haripriya children Prachi-Ashish and Priyam, –J.P.Verma My wife, sweet children, parents, all my family and colleagues. – Abdel-Salam G. Abdel-Salam Testing Statistical Assumptions in Research J. P. Verma Lakshmibai National Institute of Physical Education Gwalior, India Abdel-Salam G. Abdel-Salam Qatar University Doha, Qatar This edition first published 2019 © 2019 John Wiley & Sons, Inc. IBM, the IBM logo, ibm.com, and SPSS are trademarks or registered trademarks of International Business Machines Corporation, registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at “IBM Copyright and trademark information” at www.ibm.com/legal/ copytrade.shtml All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law.Advice on how to obtain permision to reuse material from this title is available at http://www.wiley.com/go/permissions. The right of J. P. Verma and Abdel-Salam G. Abdel-Salam to be identified as the authors of this work has been asserted in accordance with law. Registered Offices John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA Editorial Office 111 River Street, Hoboken, NJ 07030, USA For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com. Wiley also publishes its books in a variety of electronic formats and by print-on-demand. -
On the Fallacy of the Effect Size Based on Correlation and Misconception of Contingency Tables
Revisiting Statistics and Evidence-Based Medicine: On the Fallacy of the Effect Size Based on Correlation and Misconception of Contingency Tables Sergey Roussakow, MD, PhD (0000-0002-2548-895X) 85 Great Portland Street London, W1W 7LT, United Kingdome [email protected] +44 20 3885 0302 Affiliation: Galenic Researches International LLP 85 Great Portland Street London, W1W 7LT, United Kingdome Word count: 3,190. ABSTRACT Evidence-based medicine (EBM) is in crisis, in part due to bad methods, which are understood as misuse of statistics that is considered correct in itself. This article exposes two related common misconceptions in statistics, the effect size (ES) based on correlation (CBES) and a misconception of contingency tables (MCT). CBES is a fallacy based on misunderstanding of correlation and ES and confusion with 2 × 2 tables, which makes no distinction between gross crosstabs (GCTs) and contingency tables (CTs). This leads to misapplication of Pearson’s Phi, designed for CTs, to GCTs and confusion of the resulting gross Pearson Phi, or mean-square effect half-size, with the implied Pearson mean square contingency coefficient. Generalizing this binary fallacy to continuous data and the correlation in general (Pearson’s r) resulted in flawed equations directly expressing ES in terms of the correlation coefficient, which is impossible without including covariance, so these equations and the whole CBES concept are fundamentally wrong. MCT is a series of related misconceptions due to confusion with 2 × 2 tables and misapplication of related statistics. The misconceptions are threatening because most of the findings from contingency tables, including CBES-based meta-analyses, can be misleading. -
BHS 307 – Statistics for the Behavioral Sciences
PSY 307 – Statistics for the Behavioral Sciences Chapter 14 – t-Test for Two Independent Samples Independent Samples Observations in one sample are not paired on a one-to-one basis with observations in the other sample. Effect – any difference between two population means. Hypotheses: Null H0: 1 – 2 = 0 ≤ 0 Alternative H1: 1 – 2 ≠ 0 > 0 The Difference Between Two Sample Means Effect Size X1 minus X2 The null hypothesis (H0) is that these two means come from underlying populations with the same mean (so the difference between them is 0 and 1 – 2 = 0). Sampling Distribution of Differences in Sample Means All possible x1-x2 difference scores that could occur by chance 1 – 2 x1-x2 Critical Value Critical Value Does our x1-x2 exceed the critical value? YES – reject the null (H0) What if the Difference is Smaller? All possible x1-x2 difference scores that could occur by chance 1 – 2 x1-x2 Critical Value Critical Value Does our x1-x2 exceed the critical value? NO – retain the null (H0) Distribution of the Differences In a one-sample case, the mean of the sampling distribution is the population mean. In a two-sample case, the mean of the sampling distribution is the difference between the two population means. The standard deviation of the difference scores is the standard error of this distribution. Formulas for t-test (independent) (X X ) ( ) t 1 2 1 2 hyp s Estimated standard error x1 x2 2 2 s p s p 2 SS1 SS2 SS1 SS2 s s p x1 x2 df n n 2 n1 n2 1 2 2 2 2 ( X1) 2 ( X 2 ) SS1 X1 SS2 X 2 n1 n2 Estimated Standard Error Pooled variance – the variance common to both populations is estimated by combining the variances. -
Learn to Use the Phi Coefficient Measure and Test in R with Data from the Welsh Health Survey (Teaching Dataset) (2009)
Learn to Use the Phi Coefficient Measure and Test in R With Data From the Welsh Health Survey (Teaching Dataset) (2009) © 2019 SAGE Publications, Ltd. All Rights Reserved. This PDF has been generated from SAGE Research Methods Datasets. SAGE SAGE Research Methods Datasets Part 2019 SAGE Publications, Ltd. All Rights Reserved. 2 Learn to Use the Phi Coefficient Measure and Test in R With Data From the Welsh Health Survey (Teaching Dataset) (2009) Student Guide Introduction This example dataset introduces the Phi Coefficient, which allows researchers to measure and test the strength of association between two categorical variables, each of which has only two groups. This example describes the Phi Coefficient, discusses the assumptions underlying its validity, and shows how to compute and interpret it. We illustrate the Phi Coefficient measure and test using a subset of data from the 2009 Welsh Health Survey. Specifically, we measure and test the strength of association between sex and whether the respondent has visited the dentist in the last twelve months. The Phi Coefficient can be used in its own right as a means to assess the strength of association between two categorical variables, each with only two groups. However, typically, the Phi Coefficient is used in conjunction with the Pearson’s Chi-Squared test of association in tabular analysis. Pearson’s Chi-Squared test tells us whether there is an association between two categorical variables, but it does not tell us how important, or how strong, this association is. The Phi Coefficient provides a measure of the strength of association, which can also be used to test the statistical significance (with which that association can be distinguished from zero, or no-association). -
When Does the Pooled Variance T-Test Fail?
African Journal of Mathematics and Computer Science Research Vol. 2(4), pp. 056-062, May, 2009 Available online at http://www.academicjournals.org/AJMCSR © 2009 Academic Journals Full Length Research Paper When does the pooled variance t-test fail? Teh Sin Yin* and Abdul Rahman Othman School of Distance Education, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia. E-mail: [email protected] or [email protected]. Accepted 30 April, 2009 The pooled variance t-tests used prominently for comparing means between two groups is usually restricted with the assumptions of normality and homogeneity of variances. However, the violation of the assumptions happens in many real world data. In this study, the conditions where the pooled variance t-test would fail were investigated. The performance of the t-test was evaluated under different conditions. They were sample sizes, type of distributions (normal or non-normal), and unequal group variances. The Type I error rates and power of the pooled variance t-tests for different designs were obtained and compared. The results showed that the test failed dramatically when the group sample sizes were small and unequal with slight departure from homogeneity of variances. Key words: Pooled variance, power, t-test, type 1 error. INTRODUCTION The t-test first proposed in 1908 by William Sealy Gosset, mance of the t-test was evaluated under different condi- a statistician working for the Guinness brewery in Dublin, tions. They were sample sizes, type of distributions (nor- Ireland ("Student" was his pen name) (Mankiewicz, 1975; mal or non-normal), and equal/unequal group variances. -
Accepted Manuscript
Accepted Manuscript Comparing different ways of calculating sample size for two independent means: A worked example Lei Clifton, Jacqueline Birks, David A. Clifton PII: S2451-8654(18)30128-5 DOI: https://doi.org/10.1016/j.conctc.2018.100309 Article Number: 100309 Reference: CONCTC 100309 To appear in: Contemporary Clinical Trials Communications Received Date: 3 September 2018 Revised Date: 18 November 2018 Accepted Date: 28 November 2018 Please cite this article as: L. Clifton, J. Birks, D.A. Clifton, Comparing different ways of calculating sample size for two independent means: A worked example, Contemporary Clinical Trials Communications (2018), doi: https://doi.org/10.1016/j.conctc.2018.100309. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Revised Journal Paper: Sample Size 2018 ACCEPTED MANUSCRIPT Comparing different ways of calculating sample size for two independent means: a worked example Authors: Lei Clifton (1), Jacqueline Birks (1), David A. Clifton (2) Institution: University of Oxford Affiliations: (1) Centre for Statistics in Medicine (CSM), NDORMS, University of Oxford; [email protected], [email protected] (2) Institute of Biomedical Engineering (IBME), Department of Engineering Science, University of Oxford; [email protected] Version: 0.7, Date: 23 Nov 2018 Running Head: Comparing sample sizes for two independent means Key words: sample size, independent, means, standard error, standard deviation, RCT, variance, change score, baseline, correlation, arm, covariate, outcome measure, post-intervention.