Kinds, Essentialism, Induction, De-Extinction Mark Lowe University of Connecticut - Storrs, [email protected]

Total Page:16

File Type:pdf, Size:1020Kb

Kinds, Essentialism, Induction, De-Extinction Mark Lowe University of Connecticut - Storrs, Mark.Lowe@Uconn.Edu University of Connecticut OpenCommons@UConn Doctoral Dissertations University of Connecticut Graduate School 5-9-2014 Implications of Species-as-Individuals: Kinds, Essentialism, Induction, De-Extinction Mark Lowe University of Connecticut - Storrs, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/dissertations Recommended Citation Lowe, Mark, "Implications of Species-as-Individuals: Kinds, Essentialism, Induction, De-Extinction" (2014). Doctoral Dissertations. 411. https://opencommons.uconn.edu/dissertations/411 Implications of Species-as-Individuals: Kinds, Essentialism, Induction, De-Extinction Mark Downing Lowe University of Connecticut, 2014 The individuality thesis, or “species-as-individuals” (SAI), is the dominant view in philosophy of biology. Biological species are not natural kinds, but individuals. This dissertation defends SAI against recent proposals to reconceptualize species as natural kinds. I argue that, despite criticisms, the preponderance of considerations still weighs in favor of SAI. I then defend another consensus view in philosophy of biology, that species have no essential intrinsic qualitative properties (species anti-essentialism), against recent attempts to revive essentialism, and show how SAI is better suited than the view that species are natural kinds to defeat essentialism. I next develop an account of how it is that biologists can make reliable inductive inferences about species – in particular, reliable generalizations – given that species are individuals. One motivation for reconceiving species as natural kinds is to provide a philosophical grounding for these inductive practices, since the traditional view is that natural kinds, with their essential properties, are uniquely suited for grounding inductive inference. My account appeals to the causal processes which produce the degrees of uniformity and homogeneity within species which permit biologists to make reliable generalizations; shows that other sorts of natural kinds are also at work grounding such inferences; and argues that the inferences in question demand only that species have stable, but not essential, properties. Finally, I apply SAI to a controversial prospect in conservation, the resurrection of extinct species by cloning (de-extinction). The received view is that once an individual is lost, it cannot be recreated. I argue that the descent relation which makes offspring part of the same species- individual as their parent(s) holds between clones and their progenitors; thus clones of organisms Mark Downing Lowe – University of Connecticut, 2014 from an extinct species are part of that species. This makes a resurrected species a temporally discontinuous object; I give reasons to think there can be and are such objects. One argument in favor of SAI is that evolutionary theory requires the spatiotemporal continuity of species, which appears to be violated here. I maintain that evolutionary theory requires the historical continuity of species, which is upheld on my account of de-extinction. Implications of Species-as-Individuals: Kinds, Essentialism, Induction, De-Extinction Mark Downing Lowe B.A., University of Southern California, 1985 M.A., Virginia Polytechnic Institute and State University, 2007 A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy at the University of Connecticut 2014 i Copyright by Mark Downing Lowe 2014 ii APPROVAL PAGE Doctor of Philosophy Dissertation Implications of Species-as-Individuals: Kinds, Essentialism, Induction, De-Extinction Presented by Mark Downing Lowe, B.A., M.A. Major Advisor__________________________________________________________________ Crawford Elder Associate Advisor_______________________________________________________________ Thomas Bontly Associate Advisor_______________________________________________________________ Samuel Wheeler III Associate Advisor_______________________________________________________________ Kent Holsinger University of Connecticut 2014 iii iv Acknowledgments Many people deserve thanks for assisting, one way or another, in the production of this dissertation. A great deal of gratitude is owed to my dissertation committee: Crawford Elder, Thomas Bontly, Samuel Wheeler, and Kent Holsinger. In particular, an immeasurable amount of thanks is due to my dissertation chair and major advisor, Tim Elder. Tim shepherded me patiently through the process of researching and writing this dissertation, and his published challenges to the individuality thesis and to species anti-essentialism form much of the substance of the resulting document. Tim took my extensive criticisms of his work with grace, and encouraged me to press ahead with some of my more radical or controversial views regarding natural kinds, induction, and the persistence of objects, during the many periods when they seemed to me to be beyond hope. I owe an extensive debt also to Kent, who donated many hours of his time over a three-year period confirming, correcting, and otherwise guiding my informal education in the disciplines of evolutionary biology which I deal with in the dissertation. Two other members of the faculty of Ecology and Evolutionary Biology at the University of Connecticut, Elizabeth Jockusch and Andrew Bush, deserve thanks for also giving me hours of their time answering my questions, posing challenging questions of their own, and also sending me in the direction of relevant research. I’d like to thank Carl Schlichting, Nate Jue, and the other members of the Fall 2011 reading group on the Extended Synthesis as well. As a non- biologist, I was honored to be included in this group, and our deliberations added to my understanding of the biological issues I deal with herein. Outside UConn, Carl Zimmer deserves mention for steering me toward research pertinent to de-extinction projects. v I’m also in debt to other members of the philosophy faculty, who as my teachers or interlocutors influenced my thinking, or raised issues and challenges that helped me to refine and, I hope, strengthen a number of my own views: Donald Baxter, Paul Bloomfield, Michael Lynch, Marcus Rossberg, Lionel Shapiro, and in particular, Ruth Millikan, whose own writings on issues involving the individuality thesis make up, like Tim’s, a good deal of the backdrop against which this dissertation was written. Conversations I had with Ruth, her encouragement, and the recognition that I would almost certainly face her questions at my defense, inspired a number of the arguments in the dissertation. Many of my fellow graduate students deserve my gratitude for providing valuable advice, criticisms, suggestions, encouragement, a sounding board for my ideas, or general moral support, including Richard Anderson, Kathy Fazekas, Casey Johnson, Alexis Elder, Michael Hughes, Ross Vandegrift, BJ Strawser, Nathan Lindsey, Toby Napoletano, Benjamin Nelson, Andrew Parisi, Tim Bos, Andrew Ely, David Pruitt, Michael Robillard, Noah Sharpsteen, Nate Sheff, Chelsea Ruxer, Maureen Stringham, Scott Goldstein, Jeremy Wyatt, Sean Dansberger, Micah Newman, Curt VonGunten, Jeff Wisdom, Paul Silva, Matt Clemens, Daniel Massey, Rik Hine, and Nilanjan Bhowmick. Thanks are also due to Shelly Burrelle, our program assistant, for helping me over a five-year period navigate the maze of regulations, requirements, and deadlines to which graduate students are subject. A number of other people, too many to list, are also responsible for giving me friendship and invaluable moral support, and for helping me to keep my sanity during this long process of research, writing, rewriting, and more rewriting, including friends present and past in the Windham Area Games Group, the CardBoard Players Club, Game for Anything!, the UConn Graduate Student Senate, the Bradley Playhouse, and the Windham Theatre Guild. I’m also vi grateful for the love and encouragement I’ve received from my father and mother, Buz and Pat Lowe; my sister, Kathy Knowles; my brother, Tom Lowe; their spouses, Kevin Knowles and Cheri Lowe, and their children, Megan Lowe, Ryan Lowe, Eva Knowles, and Audrey Knowles. Finally, I would like to acknowledge David Hull, who passed away shortly before I began work in earnest on this dissertation, but whose writings in philosophy of biology and in the history and philosophy of science inspired it in nearly every way. vii viii Contents Acknowledgments iv Introduction 1 Chapter One: Biological Species: Still Individuals After All These Years 8 Chapter Two: Why Species Essentialism Should Remain a Dead Issue 72 Chapter Three: Induction and the Individuality Thesis 131 Chapter Four: Is Species De-Extinction Possible If Species Are Individuals? 200 Bibliography 265 ix x Introduction For centuries, philosophers had considered biological species to be paradigm natural kinds. They had also assumed that, like all other natural kinds, every species had an essence, some set of intrinsic properties which all and only members of that kind possessed, which were essential to membership in the kind, and which explained why members of the kind were as they are. As modern genetics developed, philosophers seem to have assumed that these properties would turn out to be genetic: just as physicists and chemists had discovered that subatomic particles, chemical elements, and various molecules were all characterized by a discrete and unique microstructure, so biologists would discover that every species was characterized by a unique set of genes, genetic properties, or genetic
Recommended publications
  • Species Concepts and the Evolutionary Paradigm in Modern Nematology
    JOURNAL OF NEMATOLOGY VOLUME 30 MARCH 1998 NUMBER 1 Journal of Nematology 30 (1) :1-21. 1998. © The Society of Nematologists 1998. Species Concepts and the Evolutionary Paradigm in Modern Nematology BYRON J. ADAMS 1 Abstract: Given the task of recovering and representing evolutionary history, nematode taxonomists can choose from among several species concepts. All species concepts have theoretical and (or) opera- tional inconsistencies that can result in failure to accurately recover and represent species. This failure not only obfuscates nematode taxonomy but hinders other research programs in hematology that are dependent upon a phylogenetically correct taxonomy, such as biodiversity, biogeography, cospeciation, coevolution, and adaptation. Three types of systematic errors inherent in different species concepts and their potential effects on these research programs are presented. These errors include overestimating and underestimating the number of species (type I and II error, respectively) and misrepresenting their phylogenetic relationships (type III error). For research programs in hematology that utilize recovered evolutionary history, type II and III errors are the most serious. Linnean, biological, evolutionary, and phylogenefic species concepts are evaluated based on their sensitivity to systematic error. Linnean and biologica[ species concepts are more prone to serious systematic error than evolutionary or phylogenetic concepts. As an alternative to the current paradigm, an amalgamation of evolutionary and phylogenetic species concepts is advocated, along with a set of discovery operations designed to minimize the risk of making systematic errors. Examples of these operations are applied to species and isolates of Heterorhab- ditis. Key words: adaptation, biodiversity, biogeography, coevolufion, comparative method, cospeciation, evolution, nematode, philosophy, species concepts, systematics, taxonomy.
    [Show full text]
  • Western Tiger Salamander,Ambystoma Mavortium
    COSEWIC Assessment and Status Report on the Western Tiger Salamander Ambystoma mavortium Southern Mountain population Prairie / Boreal population in Canada Southern Mountain population – ENDANGERED Prairie / Boreal population – SPECIAL CONCERN 2012 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2012. COSEWIC assessment and status report on the Western Tiger Salamander Ambystoma mavortium in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xv + 63 pp. (www.registrelep-sararegistry.gc.ca/default_e.cfm). Previous report(s): COSEWIC. 2001. COSEWIC assessment and status report on the tiger salamander Ambystoma tigrinum in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi + 33 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Schock, D.M. 2001. COSEWIC assessment and status report on the tiger salamander Ambystoma tigrinum in Canada, in COSEWIC assessment and status report on the tiger salamander Ambystoma tigrinum in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 1-33 pp. Production note: COSEWIC would like to acknowledge Arthur Whiting for writing the status report on the Western Tiger Salamander, Ambystoma mavortium, in Canada, prepared under contract with Environment Canada. This report was overseen and edited by Kristiina Ovaska, Co-chair of the COSEWIC Amphibians and Reptiles Specialist Subcommittee. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: 819-953-3215 Fax: 819-994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur la Salamandre tigrée de l’Ouest (Ambystoma mavortium) au Canada.
    [Show full text]
  • The Anti-Essentialism Paper
    The New Pragmatism, Anti-essentialism, and What is Universal: It’s The Situation All The Way Down C. F. Abel Stephen F. Austin State University [email protected] The New Pragmatism, Anti-essentialism, and What is Universal: It’s The Situation All The Way Down C. F. Abel Stephen F. Austin State University [email protected] A well-known scientist once gave a public lecture on astronomy. He described how the Earth orbits around the sun and how the sun, in turn, orbits around the center of a vast collection of stars called our galaxy. At the end of the lecture, a little old lady at the back of the room got up and said: "What you have told us is rubbish. The world is really a flat plate supported on the back of a giant tortoise." The scientist gave a superior smile before replying, "What is the tortoise standing on?" "You're very clever, young man," said the old lady. "But it's turtles all the way down!" Introduction “New Pragmatism” attacks the very foundation of pragmatic thought by denying that we may ever have any definitive experience. As what we are experiencing is up for grabs, we can never know any situation that we may encounter, and we are left to ground both our knowledge and our values in our language games alone. This paper argues that this set of claims is founded on two errors, one regarding the nature of language games and the other regarding the nature of deconstruction. The “Old Pragmatism,” by way of contrast, is non-essentialist but not anti- essentialist, and it resolves the problem of how we might know “the situation,” given the subjectivity of our observations and the contingencies of our language games, by suggesting that our experiences can be understood as existing in, and constituted by, the totality of their particular instances or modes at the time of inquiry.
    [Show full text]
  • Loggerhead Shrike, Migrans Subspecies (Lanius Ludovicianus Migrans), in Canada
    PROPOSED Species at Risk Act Recovery Strategy Series Recovery Strategy for the Loggerhead Shrike, migrans subspecies (Lanius ludovicianus migrans), in Canada Loggerhead Shrike, migrans subspecies © Manitoba Conservation 2010 About the Species at Risk Act Recovery Strategy Series What is the Species at Risk Act (SARA)? SARA is the Act developed by the federal government as a key contribution to the common national effort to protect and conserve species at risk in Canada. SARA came into force in 2003, and one of its purposes is “to provide for the recovery of wildlife species that are extirpated, endangered or threatened as a result of human activity.” What is recovery? In the context of species at risk conservation, recovery is the process by which the decline of an endangered, threatened or extirpated species is arrested or reversed, and threats are removed or reduced to improve the likelihood of the species’ persistence in the wild. A species will be considered recovered when its long-term persistence in the wild has been secured. What is a recovery strategy? A recovery strategy is a planning document that identifies what needs to be done to arrest or reverse the decline of a species. It sets objectives and broad strategies to attain them and identifies the main areas of activities to be undertaken. Detailed planning is done at the action plan stage. Recovery strategy development is a commitment of all provinces and territories and of three federal agencies — Environment Canada, Parks Canada Agency and Fisheries and Oceans Canada — under the Accord for the Protection of Species at Risk.
    [Show full text]
  • Putnam's Theory of Natural Kinds and Their Names Is Not The
    PUTNAM’S THEORY OF NATURAL KINDS AND THEIR NAMES IS NOT THE SAME AS KRIPKE’S IAN HACKING Collège de France Abstract Philosophers have been referring to the “Kripke–Putnam” theory of natural- kind terms for over 30 years. Although there is one common starting point, the two philosophers began with different motivations and presuppositions, and developed in different ways. Putnam’s publications on the topic evolved over the decades, certainly clarifying and probably modifying his analysis, while Kripke published nothing after 1980. The result is two very different theories about natural kinds and their names. Both accept that the meaning of a natural- kind term is not given by a description or defining properties, but is specified by its referents. From then on, Putnam rejected even the label, causal theory of reference, preferring to say historical, or collective. He called his own approach indexical. His account of substance identity stops short a number of objections that were later raised, such as what is called the qua problem. He came to reject the thought that water is necessarily H2O, and to denounce the idea of metaphysical necessity that goes beyond physical necessity. Essences never had a role in his analysis; there is no sense in which he was an essentialist. He thought of hidden structures as the usual determinant of natural kinds, but always insisted that what counts as a natural kind is relative to interests. “Natural kind” itself is itself an importantly theoretical concept, he argued. The paper also notes that Putnam says a great deal about what natural kinds are, while Kripke did not.
    [Show full text]
  • Extinction Dynamics of Age-Structured Populations in A
    Proc. Nadl. Acad. Sci. USA Vol. 85, pp. 7418-7421, October 1988 Population Biology Extinction dynamics of age-structured populations in a fluctuating environment (demography/ecology/life history/stochastic model/diffusion process) RUSSELL LANDE AND STEVEN HECHT ORZACK Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637 Communicated by David M. Raup, June 3, 1988 (received for review February 2, 1988) ABSTRACT We model density-independent growth of an a recursion formula for the numbers of individuals in each age- (or stage-) structured population, assuming that mortality age class or developmental stage at time t + 1 in terms of and reproductive rates fluctuate as stationary time series. An- those at the previous time t, alytical formulas are derived for the distribution of time to extinction and the cumulative probability of extinction before n(t + 1) = A(t)n(t), [1] a certain time, which are determined by the initial age distri- bution, and by the infinitesimal mean and variance, # and a2, where n(t) is a column vector with entries representing the of a diffusion approximation for the logarithm of total popula- numbers of (female) individuals of each type at time t and tion size. These parameters can be estimated from the average A(t) is a square projection matrix with nonnegative entries life history and the pattern of environmental fluctuations in Aij(t) that determine the number of individuals of type i pro- the vital rates. We also show that the distribution of time to duced at time t + 1 per individual of type j at time t.
    [Show full text]
  • The Metaphysics of Natural Kinds
    THE METAPHYSICS OF NATURAL KINDS Alexander Bird Abstract Rev.8.2—Thursday 12th August, 2010, 11:20 This paper explores the meta- physics of natural kinds. I consider a range of increasingly ontologically com- mitted views concerning natural kinds and the possible arguments for them. I then ask how these relate to natural kind essentialism, arguing that essentialism requires commitment to kinds as entities. I conclude by examining the homeo- static property cluster view of kinds in the light of the general understanding of kinds developed. 1 Introduction The principal aim of this paper is to examine the various options concerning the metaphysics of natural kinds, in particular as regards their ontology. Initially pro- ceed by posing a series of questions whose positive answers correspond to a se- quence of increasingly metaphysically committed views about natural kinds. In sec- tion 2 these questions concern the naturalness and kindhood of natural kinds. This leads, in section 3 to the question whether natural kinds are themselves genuine en- tities. In section 4 I present an argument for a positive answer to the existence ques- tion, that takes essentialism about natural kinds to imply their existence: (having an) essence implies existence. In section 5 I consider the objection that kind essen- tialism reduces to individual essentialism, which would undermine the import of the essence-implies-existence argument. In sections 6 and 7, I put this machinery to work, asking first what sort of entity a natural kind may be (e.g. a set, an uni- versal, or a sui generis entity), and, finally, how homeostatic property cluster view fares when compared to the general conception of natural kinds developed in the preceding sections.
    [Show full text]
  • Maintenance of Quantitative Genetic Variance Under Partial Self-Fertilization, with Implications for Evolution of Selfing
    GENETICS | INVESTIGATION Maintenance of Quantitative Genetic Variance Under Partial Self-Fertilization, with Implications for Evolution of Selfing Russell Lande*,1 and Emmanuelle Porcher† *Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, United Kingdom, and †Centre d’Ecologie et des Sciences de la Conservation (UMR7204), Sorbonne Universités, MNHN, Centre National de la Recherche Scientifique, UPMC, 75005 Paris, France ABSTRACT We analyze two models of the maintenance of quantitative genetic variance in a mixed-mating system of self-fertilization and outcrossing. In both models purely additive genetic variance is maintainedbymutationandrecombinationunder stabilizing selection on the phenotype of one or more quantitative characters. The Gaussian allele model (GAM) involves a finite number of unlinked loci in an infinitely large population, with a normal distribution of allelic effects at each locus within lineages selfed for t consecutive generations since their last outcross. The infinitesimal model for partial selfing (IMS) involves an infinite number of loci in a large but finite population, with a normal distribution of breeding values in lineages of selfing age t. In both models a stable equilibrium genetic variance exists, the outcrossed equilibrium, nearly equal to that under random mating, for all selfing rates, r, up to critical value,^r;the purging threshold, which approximately equals the mean fitness under random mating relative to that under complete selfing. In the GAM a second stable equilibrium, the purged equilibrium, exists for any positive selfing rate, with genetic variance less than or equal to that under pure selfing; as r increases above ^r the outcrossed equilibrium collapses sharply to the purged equilibrium genetic variance.
    [Show full text]
  • A Complete Bibliography of Publications in the Journal of Theoretical Biology: 1990–1999
    A Complete Bibliography of Publications in the Journal of Theoretical Biology: 1990{1999 Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 01 June 2019 Version 1.00 Title word cross-reference 2 [SOR91]. 3 [LBND98, Mar92b, SL91a, Van91]. 4 [Lac90]. 6 [RP99]. > [Hir93]. + [BS92, Cla95, Joh93, NK90]. 2+ [AH90, Cha90, CJMBM92, HP97a, ◦ KD94, Kum91, LF95, LC97, LH91, LR94c, SW91]. [Fli99]. 0 [O'N91]. 1 [O'N91]. 2 [CLY99]. 3 [KD94, LR94c, WBC99]. cmax [WBC99]. i [LR94c]. ml + [WBC99]. α [LBDDG90, MGL 95, Nak95, SST91, TSC90]. b1 [Yar96]. β [Iid90, Rad91, TSC90]. · [SST91, Spe90]. ∆ [Fri98]. [Boe90]. g [MNB97]. Km [RP96]. L = C [Hes90]. µ [RSB92]. N [Dug90, Bla97]. p [DGSK99, Khr98]. Φ [N¨ol98, N¨ol99]. ΦF (0) [PN98]. ! [MR98, O'N91]. -1 [LBND98]. -Adic [DGSK99, Khr98]. -amylase-catalyzed [Nak95]. -ATPase [BS92]. -azaadenine [SOR91]. -chymotrypsin [LBDDG90]. -D [Mar92b, SL91a, Van91]. -dependent [MNB97, CJMBM92]. -globin [Boe90, Iid90]. -helix [TSC90]. -induced [KD94]. -morphogen [Lac90]. -person [Dug90]. -phosphogluconolactone [RP99]. -player [Bla97]. -sarcin [MGL+95]. -sarcin-membrane [MGL+95]. -structure [TSC90]. 1 2 -structures [Rad91]. -thalassemia [Iid90]. -values [N¨ol98, N¨ol99]. [Boe90]. /K [BS92]. 1 [Fin92b, Ham93, Mel93a, TCZ95, TL98, WDP98]. 1-dimenthylurea [LBND98]. 100 [CF94b]. 100-A˚ [CF94b]. 16S [AIK99]. 185 [BBM+13a, BBM+13b]. 19th [Ano99c]. 2 [MK93, SST91]. 2- [RSB92]. 2nd [Ano99a]. 353-379 [Ano92-29].
    [Show full text]
  • Towards a Global Names Architecture: the Future of Indexing Scientific Names
    A peer-reviewed open-access journal ZooKeys 550: 261–281Towards (2016) a Global Names Architecture: The future of indexing scientific names 261 doi: 10.3897/zookeys.550.10009 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Towards a Global Names Architecture: The future of indexing scientific names Richard L. Pyle1 1 Bernice Pauahi Bishop Museum, 1525 Bernice Street, Honolulu, HI 96817, USA Corresponding author: Richard L. Pyle (email address) Academic editor: Ellinor Michel | Received 19 May 2015 | Accepted 20 May 2015 | Published 7 January 2016 http://zoobank.org/AD5B8CE2-BCFC-4ABC-8AB0-C92DEC7D4D85 Citation: Pyle RL (2016) Towards a Global Names Architecture: The future of indexing scientific names. In: Michel E (Ed.) Anchoring Biodiversity Information: From Sherborn to the 21st century and beyond. ZooKeys 550: 261–281. doi: 10.3897/zookeys.550.10009 Abstract For more than 250 years, the taxonomic enterprise has remained almost unchanged. Certainly, the tools of the trade have improved: months-long journeys aboard sailing ships have been reduced to hours aboard jet airplanes; advanced technology allows humans to access environments that were once utterly inacces- sible; GPS has replaced crude maps; digital hi-resolution imagery provides far more accurate renderings of organisms that even the best commissioned artists of a century ago; and primitive candle-lit micro- scopes have been replaced by an array of technologies ranging from scanning electron microscopy to DNA sequencing. But the basic paradigm remains the same. Perhaps the most revolutionary change of all – which we are still in the midst of, and which has not yet been fully realized – is the means by which taxonomists manage and communicate the information of their trade.
    [Show full text]
  • The Philosophy of Biology a Companion for Educators Kostas Kampourakis Editor
    History, Philosophy & Theory of the Life Sciences Kostas Kampourakis Editor The Philosophy of Biology A Companion for Educators Kostas Kampourakis Editor The Philosophy of Biology A Companion for Educators Editor Kostas Kampourakis Secretariat of Educational Research and Development Geitonas School Vari Attikis, Greece ISSN 2211-1948 ISSN 2211-1956 (electronic) ISBN 978-94-007-6536-8 ISBN 978-94-007-6537-5 (eBook) DOI 10.1007/978-94-007-6537-5 Springer Dordrecht Heidelberg New York London Library of Congress Control Number: 2013938263 © Springer Science+Business Media Dordrecht 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifi cally for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc.
    [Show full text]
  • Hibbett Et Al 2011 Fung Biol
    fungal biology reviews 25 (2011) 38e47 journal homepage: www.elsevier.com/locate/fbr Plenary Paper Progress in molecular and morphological taxon discovery in Fungi and options for formal classification of environmental sequences David S. HIBBETTa,*, Anders OHMANa, Dylan GLOTZERa, Mitchell NUHNa, Paul KIRKb, R. Henrik NILSSONc,d aBiology Department, Clark University, Worcester, MA 01610, USA bCABI UK, Bakeham Lane, Egham, Surrey TW20 9TY, UK cDepartment of Plant and Environmental Sciences, University of Gothenburg, Box 461, 405 30 Goteborg,€ Sweden dDepartment of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St., 51005 Tartu, Estonia article info abstract Article history: Fungal taxonomy seeks to discover, describe, and classify all species of Fungi and provide Received 14 December 2010 tools for their identification. About 100,000 fungal species have been described so far, but it Accepted 3 January 2011 has been estimated that there may be from 1.5 to 5.1 million extant fungal species. Over the last decade, about 1200 new species of Fungi have been described in each year. At that Keywords: rate, it may take up to 4000 y to describe all species of Fungi using current specimen-based Biodiversity approaches. At the same time, the number of molecular operational taxonomic units Classification (MOTUs) discovered in ecological surveys has been increasing dramatically. We analyzed Environmental sequences ribosomal RNA internal transcribed spacer (ITS) sequences in the GenBank nucleotide data- Molecular ecology base and classified them as “environmental” or “specimen-based”. We obtained 91,225 MOTU sequences, of which 30,217 (33 %) were of environmental origin. Clustering at an average Taxonomy 93 % identity in extracted ITS1 and ITS2 sequences yielded 16,969 clusters, including 6230 (37 %) clusters with only environmental sequences, and 2223 (13 %) clusters with both envi- ronmental and specimen-based sequences.
    [Show full text]