Decontextualized Learning for Interpretable Hierarchical Representations of Visual Patterns
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Karl Jordan: a Life in Systematics
AN ABSTRACT OF THE DISSERTATION OF Kristin Renee Johnson for the degree of Doctor of Philosophy in History of SciencePresented on July 21, 2003. Title: Karl Jordan: A Life in Systematics Abstract approved: Paul Lawrence Farber Karl Jordan (1861-1959) was an extraordinarily productive entomologist who influenced the development of systematics, entomology, and naturalists' theoretical framework as well as their practice. He has been a figure in existing accounts of the naturalist tradition between 1890 and 1940 that have defended the relative contribution of naturalists to the modem evolutionary synthesis. These accounts, while useful, have primarily examined the natural history of the period in view of how it led to developments in the 193 Os and 40s, removing pre-Synthesis naturalists like Jordan from their research programs, institutional contexts, and disciplinary homes, for the sake of synthesis narratives. This dissertation redresses this picture by examining a naturalist, who, although often cited as important in the synthesis, is more accurately viewed as a man working on the problems of an earlier period. This study examines the specific problems that concerned Jordan, as well as the dynamic institutional, international, theoretical and methodological context of entomology and natural history during his lifetime. It focuses upon how the context in which natural history has been done changed greatly during Jordan's life time, and discusses the role of these changes in both placing naturalists on the defensive among an array of new disciplines and attitudes in science, and providing them with new tools and justifications for doing natural history. One of the primary intents of this study is to demonstrate the many different motives and conditions through which naturalists came to and worked in natural history. -
Extinction Dynamics of Age-Structured Populations in A
Proc. Nadl. Acad. Sci. USA Vol. 85, pp. 7418-7421, October 1988 Population Biology Extinction dynamics of age-structured populations in a fluctuating environment (demography/ecology/life history/stochastic model/diffusion process) RUSSELL LANDE AND STEVEN HECHT ORZACK Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637 Communicated by David M. Raup, June 3, 1988 (received for review February 2, 1988) ABSTRACT We model density-independent growth of an a recursion formula for the numbers of individuals in each age- (or stage-) structured population, assuming that mortality age class or developmental stage at time t + 1 in terms of and reproductive rates fluctuate as stationary time series. An- those at the previous time t, alytical formulas are derived for the distribution of time to extinction and the cumulative probability of extinction before n(t + 1) = A(t)n(t), [1] a certain time, which are determined by the initial age distri- bution, and by the infinitesimal mean and variance, # and a2, where n(t) is a column vector with entries representing the of a diffusion approximation for the logarithm of total popula- numbers of (female) individuals of each type at time t and tion size. These parameters can be estimated from the average A(t) is a square projection matrix with nonnegative entries life history and the pattern of environmental fluctuations in Aij(t) that determine the number of individuals of type i pro- the vital rates. We also show that the distribution of time to duced at time t + 1 per individual of type j at time t. -
Maintenance of Quantitative Genetic Variance Under Partial Self-Fertilization, with Implications for Evolution of Selfing
GENETICS | INVESTIGATION Maintenance of Quantitative Genetic Variance Under Partial Self-Fertilization, with Implications for Evolution of Selfing Russell Lande*,1 and Emmanuelle Porcher† *Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, United Kingdom, and †Centre d’Ecologie et des Sciences de la Conservation (UMR7204), Sorbonne Universités, MNHN, Centre National de la Recherche Scientifique, UPMC, 75005 Paris, France ABSTRACT We analyze two models of the maintenance of quantitative genetic variance in a mixed-mating system of self-fertilization and outcrossing. In both models purely additive genetic variance is maintainedbymutationandrecombinationunder stabilizing selection on the phenotype of one or more quantitative characters. The Gaussian allele model (GAM) involves a finite number of unlinked loci in an infinitely large population, with a normal distribution of allelic effects at each locus within lineages selfed for t consecutive generations since their last outcross. The infinitesimal model for partial selfing (IMS) involves an infinite number of loci in a large but finite population, with a normal distribution of breeding values in lineages of selfing age t. In both models a stable equilibrium genetic variance exists, the outcrossed equilibrium, nearly equal to that under random mating, for all selfing rates, r, up to critical value,^r;the purging threshold, which approximately equals the mean fitness under random mating relative to that under complete selfing. In the GAM a second stable equilibrium, the purged equilibrium, exists for any positive selfing rate, with genetic variance less than or equal to that under pure selfing; as r increases above ^r the outcrossed equilibrium collapses sharply to the purged equilibrium genetic variance. -
A Complete Bibliography of Publications in the Journal of Theoretical Biology: 1990–1999
A Complete Bibliography of Publications in the Journal of Theoretical Biology: 1990{1999 Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 01 June 2019 Version 1.00 Title word cross-reference 2 [SOR91]. 3 [LBND98, Mar92b, SL91a, Van91]. 4 [Lac90]. 6 [RP99]. > [Hir93]. + [BS92, Cla95, Joh93, NK90]. 2+ [AH90, Cha90, CJMBM92, HP97a, ◦ KD94, Kum91, LF95, LC97, LH91, LR94c, SW91]. [Fli99]. 0 [O'N91]. 1 [O'N91]. 2 [CLY99]. 3 [KD94, LR94c, WBC99]. cmax [WBC99]. i [LR94c]. ml + [WBC99]. α [LBDDG90, MGL 95, Nak95, SST91, TSC90]. b1 [Yar96]. β [Iid90, Rad91, TSC90]. · [SST91, Spe90]. ∆ [Fri98]. [Boe90]. g [MNB97]. Km [RP96]. L = C [Hes90]. µ [RSB92]. N [Dug90, Bla97]. p [DGSK99, Khr98]. Φ [N¨ol98, N¨ol99]. ΦF (0) [PN98]. ! [MR98, O'N91]. -1 [LBND98]. -Adic [DGSK99, Khr98]. -amylase-catalyzed [Nak95]. -ATPase [BS92]. -azaadenine [SOR91]. -chymotrypsin [LBDDG90]. -D [Mar92b, SL91a, Van91]. -dependent [MNB97, CJMBM92]. -globin [Boe90, Iid90]. -helix [TSC90]. -induced [KD94]. -morphogen [Lac90]. -person [Dug90]. -phosphogluconolactone [RP99]. -player [Bla97]. -sarcin [MGL+95]. -sarcin-membrane [MGL+95]. -structure [TSC90]. 1 2 -structures [Rad91]. -thalassemia [Iid90]. -values [N¨ol98, N¨ol99]. [Boe90]. /K [BS92]. 1 [Fin92b, Ham93, Mel93a, TCZ95, TL98, WDP98]. 1-dimenthylurea [LBND98]. 100 [CF94b]. 100-A˚ [CF94b]. 16S [AIK99]. 185 [BBM+13a, BBM+13b]. 19th [Ano99c]. 2 [MK93, SST91]. 2- [RSB92]. 2nd [Ano99a]. 353-379 [Ano92-29]. -
OBITUARIES Sir Edward Poulton, F.R.S
No. 3870, jANUARY 1, 1944 NATURE 15 the University of Edinburgh, previously held by a tragic death, and his successor, F. Hasenohrl, was Black. To him we owe the discovery of the maximum killed in action on the Italian front in 1915. The density of water. The centenary of John Dalton falls chemists born in 1844 include Prof. J. Emerson on July 27 of this year, but any commemoration Reynolds (died 1920), who occupied for twenty-eight must inevitably be clouded over by the results of years the chair of chemistry in the University of the air raid of December 24, 1940, when the premises Dublin, and Ferdinand Hurter (died 1898), a native of the Manchester Literary and Philosophical Society of Schaffhausen, Switzerland, who came to England were completely destroyed. From 1817 until 1844 in 1867 and became principal chemist to the United DaJton was president of the Society, and within its Alkali Company. Among astronomers, Prof. W. R. walls he taught, lectured and experimented. The Brooks (died 1921) of the United States was famous Society had an unequalled collection of his apparatus, as a 'comet hunter'. Charles Trepied (died 1907) was but after digging among the ruins the only things for many years director of the Observatory at found were his gold watch, a spark eudiometer and Bouzariah, eleven kilometres from Algiers, while some charred remains of letters and note-books. A Annibale Ricco (died 1919), though he began life as month after Dalton passed away in Manchester, an engineer, for nineteen years directed the observa Francis Baily died in London, after a life devoted to tory of Catania and Etna, his special subject being astronomy and kindred subjects. -
Orchiflora March 2014
Volume 4, Issue 6 Orchiflora March 2014 Announcements: Monthly General Meetings: 4th Wednes- day of each month (except July, August Speaker Series: & December) at Van Dusen Floral Hall March 26th, 2014: Calvin Wong: Cypripediums Doors Open 6:30pm, Meeting starts at April 23rd, 2014: Inge and Peter Poot: Stanhopeas and Coryanthes 7:30pm May 28th, 2014: Mario Ferussi: Masdevallias and Draculas Inside this issue: Culture class, held in the Cedar room, VanDusen Gardens from 6:30 to 8: 30 pm, all orchid related questions welcome Request for Orchids for Show! Pg 2 April 14, (Monday) 6:30 pm - 8:30 pm , Cedar Room, Van Dusen Gardens, 5251 Oak street: Forum on Paphiopedilums. Bring your expertise or your questions. We are open to any questions about any orchids, of course. Come Message From the President Pg 3 join this lively group and learn how to grow orchids. All levels of expertise welcome - we all began as beginners, at some time. May 12: Topic to be determined - give your suggestions! Show Schedule Pg 4 Upcoming shows: Members’ Showcase: Jim Poole Pg 5 Vancouver Orchid Society Show March 22-23, preview night Friday March 31, reserve your ticket ($12) by emailing [email protected] Monthly Show Table—26 Feb 2014 Pg 6 Central Vancouver Island Orchid Society Show, April 12-13, Nanaimo North Town Centre, 4750 Rutherford Road, Nanaimo, B.C. PNWJC Awards from 08 Feb 2014 Pg 9 Show Notes: We need your blooming orchids! February Meeting Minutes Pg 11 We will need your orchids for our VOS display. Grant Rampton will kindly coordinate our display, and it would be nice if he had an idea of how many plants are going to be available. -
Back Matter (PDF)
[ 229 • ] INDEX TO THE PHILOSOPHICAL TRANSACTIONS, S e r ie s B, FOR THE YEAR 1897 (YOL. 189). B. Bower (F. 0.). Studies in the Morphology of Spore-producing Members.— III. Marattiaceae, 35. C Cheirostrobus, a new Type of Fossil Cone (Scott), 1. E. Enamel, Tubular, in Marsupials and other Animals (Tomes), 107. F. Fossil Plants from Palaeozoic Rocks (Scott), 1, 83. L. Lycopodiaceae; Spencerites, a new Genus of Cones from Coal-measures (Scott), 83. 230 INDEX. M. Marattiaceae, Fossil and Recent, Comparison of Sori of (Bower), 3 Marsupials, Tubular Enamel a Class Character of (Tomes), 107. N. Naqada Race, Variation and Correlation of Skeleton in (Warren), 135 P. Pteridophyta: Cheirostrobus, a Fossil Cone, &c. (Scott), 1. S. Scott (D. H.). On the Structure and Affinities of Fossil Plants from the Palaeozoic Ro ks.—On Cheirostrobus, a new Type of Fossil Cone from the Lower Carboniferous Strata (Calciferous Sandstone Series), 1. Scott (D. H.). On the Structure and Affinities of Fossil Plants from the Palaeozoic Rocks.—II. On Spencerites, a new Genus of Lycopodiaceous Cones from the Coal-measures, founded on the Lepidodendron Spenceri of Williamson, 83. Skeleton, Human, Variation and Correlation of Parts of (Warren), 135. Sorus of JDancea, Kaulfxissia, M arattia, Angiopteris (Bower), 35. Spencerites insignis (Will.) and S. majusculus, n. sp., Lycopodiaceous Cones from Coal-measures (Scott), 83. Sphenophylleae, Affinities with Cheirostrobus, a Fossil Cone (Scott), 1. Spore-producing Members, Morphology of.—III. Marattiaceae (Bower), 35. Stereum lvirsutum, Biology of; destruction of Wood by (Ward), 123. T. Tomes (Charles S.). On the Development of Marsupial and other Tubular Enamels, with Notes upon the Development of Enamels in general, 107. -
Genetics and Demography in Biological Conservation
0044817 67. G. M. Mace, thesis, University of Sussex, Sussex (1979); P. H. Harvey and T. H. 82. M. S. Boyce, Annu. Rev. Ecol. Syst. 15, 427 (1984). Clutton-Brock, Evolution 39, 559 (1985); J. L. Gittleman, Am. Nat. 127, 744 83. J. Roughgarden, Ecology52, 453 (1971). (1986). 84. E. R. Pianka, Am. Nat. 104, 592 (1970). 68. P. H. Harvey, D. P. Promislow, A. F. Read, in ComparativeSocioecology, R. Foley 85. S. C. Steams, Annu. Rev. Ecol. Syst. 8, 145 (1977). and V. Standen, Eds. (British Ecological Society Special Publication, Blackwell, 86. L. S. Luckinbill, Am. Nat. 113, 427 (1979). Oxford, in press). 87. , Science202, 1201 (1978); Ecology65, 1170 (1984); C. E. Taylor and C. 69. P. H. Harvey and A. F. Read, in Evolutionof Life Histories:Pattern and Theoryfrom Condra, Evolution34, 1183 (1980); J. H. Barclay and P. T. Gregory, Am. Nat. Mammals,M. S. Boyce, Ed. (Yale Univ. Press, New Haven, CN, 1988), pp. 213- 117, 944 (1981). 232. 88. L. D. Mueller and F. J. Ayala, Proc. Natl. Acad. Sci. U.S.A. 78, 1303 (1981); M. 70. P. H. Harvey and R. M. Zammuto, Nature315, 319 (1985). Tosic and F. J. Ayala, Genetics97, 679 (1981). 71. B. E. Seather, ibid. 331, 616 (1988); P. M. Bennett and P. H. Harvey, ibid. 333, 89. G. E. Hutchinson, The EcologicalTheater and the EvolutionaryPlay (Yale Univ. Press, 216 (1988). New Haven, CN, 1965). 72. W. J. Sutherland, A. Grafen, P. H. Harvey, ibid. 320, 88 (1986). 90. P. J. M. Greenslade, Am. Nat. 122, 352 (1983). 73. P. -
Dlaczego Rozszerzona Synteza Ewolucyjna Jest Niezbędna *
Filozoficzne Aspekty Genezy — 2018, t. 15 Philosophical Aspects of Origin s. 371-413 ISSN 2299-0356 http://www.nauka-a-religia.uz.zgora.pl/images/FAG/2018.t.15/art.08.pdf Gerd B. Müller Dlaczego rozszerzona synteza ewolucyjna jest niezbędna * 1. Wprowadzenie Sto lat temu w dziedzinie fizyki zauważono, że „pojęcia, które okazały się pożyteczne przy porządkowaniu, zdobywają u nas łatwo taki autorytet, że zapo- minamy o ich ziemskim pochodzeniu i przyjmujemy je jako dane mające cha- rakter niezmiennej rzeczywistości. Przypisujemy im następnie miano «koniecz- ności myślowych», «danych a priori» itd. Tego rodzaju błędy często przez długi czas zagradzają drogę postępowi naukowemu”. 1 Biologia ewolucyjna znajduje się obecnie w podobnej sytuacji. Mocno ugruntowany paradygmat, mający swe korzenie w unifikacji teoretycznej, której dokonano około osiemdziesiąt lat te- mu, nazywany nowoczesną syntezą (MS — modern synthesis) lub Syntetyczną Teorią Ewolucji, nadal stanowi dominujące ujęcie biologii ewolucyjnej. W mię- dzyczasie w naukach biologicznych nastąpił znaczący rozwój. Zrozumiano ma- terialną podstawę procesu dziedziczenia, powstały też zupełnie nowe dziedziny GERD B. MÜLLER, PH.D. — University of Vienna, e-mail: [email protected]. © Copyright by Gerd B. Müller, Interface Focus, Dariusz Sagan & Filozoficzne Aspekty Ge- nezy. * Gerd B. MÜLLER, „Why an Extended Evolutionary Synthesis Is Necessary”, Interface Focus 2017, vol. 7, no. 5, s. 1-11, https://royalsocietypublishing.org/doi/pdf/10.1098/rsfs.2017.0015 (18. 11.2018). W przekładzie uwzględniono korektę odnośników bibliograficznych zgodnie z plikiem dostępnym pod adresem: https://royalsocietypublishing.org/doi/pdf/10.1098/rsfs.2017.0065 (18. 11.2018). Za zgodą Autora i Redakcji z języka angielskiego przełożył: Dariusz SAGAN. -
John Stein -- FACA Stuff, Welcome
Considering Life History, Behavioral, and Ecological Complexity in Defining Conservation Units for Pacific Salmon An independent panel report, requested by NOAA Fisheries June 13, 2005 Jody Hey (Chair); Ernest L. Brannon; Donald E. Campton; Roger W. Doyle; Ian A. Fleming; Michael T. Kinnison; Russell Lande; Jeffrey Olsen; David P. Philipp; Joseph Travis; Chris C. Wood; Holly Doremus (Facilitator) Table of Contents Introduction 2 Background 2 Questions 4 1. Evolutionary Lineages 5 Answer to question 1 7 2. ESUs and Hatchery Produced Fish 7 2. A. On Scientific Evidence 8 2.B. Biological contrasts between hatchery and wild fish 8 2.C. On the relationship of hatchery and wild populations 11 2.D. Regarding the conservation of hatchery stocks 11 Answer to Question 2. 13 3. Resident and anadromous populations of Oncorhynchus mykiss 13 Answer to Question 3 15 4. The Role of ecology versus genetics in defining conservation units 16 Minority Viewpoint 17 References 18 Appendix 1 Workshop Panel - Biographical Information 22 Appendix 2 Symposium Held Prior to the Workshop 29 Appendix 3 Background documents provided to panel members 31 1 Introduction This report details the conclusions of a scientific panel that was convened at the request of NOAA Fisheries to summarize scientific thinking on questions regarding the biological relationship between hatchery and wild Pacific salmon populations, and between resident populations of rainbow trout and related steelhead populations. The panel included scientists from a range of specialties that pertain to the questions, including population biology, evolutionary genetics, and especially salmon and fisheries biology. A summary of panel members’ backgrounds is provided in appendix 1. -
Deceived by Orchids: Sex, Science, fiction and Darwin
BJHS 49(2): 205–229, June 2016. © British Society for the History of Science 2016 doi:10.1017/S0007087416000352 First published online 09 June 2016 Deceived by orchids: sex, science, fiction and Darwin JIM ENDERSBY* Abstract. Between 1916 and 1927, botanists in several countries independently resolved three problems that had mystified earlier naturalists – including Charles Darwin: how did the many species of orchid that did not produce nectar persuade insects to pollinate them? Why did some orchid flowers seem to mimic insects? And why should a native British orchid suffer ‘attacks’ from a bee? Half a century after Darwin’s death, these three mysteries were shown to be aspects of a phenomenon now known as pseudocopulation, whereby male insects are deceived into attempting to mate with the orchid’s flowers, which mimic female insects; the males then carry the flower’s pollen with them when they move on to try the next deceptive orchid. Early twentieth-century botanists were able to see what their predecessors had not because orchids (along with other plants) had undergone an imaginative re-creation: Darwin’s science was appropriated by popular interpreters of science, including the novelist Grant Allen; then H.G. Wells imagined orchids as killers (inspiring a number of imitators), to produce a genre of orchid stories that reflected significant cultural shifts, not least in the presentation of female sexuality. It was only after these changes that scientists were able to see plants as equipped with agency, actively able to pursue their own, cunning reproductive strategies – and to outwit animals in the process. -
Dot Product Graphs and Their Applications to Ecology
Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-2013 Dot Product Graphs and Their Applications to Ecology Sean Bailey Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Mathematics Commons Recommended Citation Bailey, Sean, "Dot Product Graphs and Their Applications to Ecology" (2013). All Graduate Theses and Dissertations. 2006. https://digitalcommons.usu.edu/etd/2006 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. DOT PRODUCT GRAPHS AND THEIR APPLICATIONS TO ECOLOGY by Sean Bailey A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Mathematics Approved: David Brown LeRoy Beasley Major Professor Committee Member David Koons Mark R. McLellan Committee Member Vice President for Research Dean of the School of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2013 ii Copyright c Sean Bailey 2013 All Rights Reserved iii Abstract Dot Product Graphs and Their Applications to Ecology by Sean Bailey, Master of Science Utah State University, 2013 Major Professor: Dr. David Brown Department: Mathematics and Statistics During the past few decades, examinations of social, biological, and communication networks have taken on increased attention. While numerous models of these networks have arisen, some have lacked visual representations. This is particularly true in ecology, where scientists have often been restricted to at most three dimensions when creating graphical representations of pattern and process.